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MOTIVATION Nucleosomes are the basic unit of chromatin, but genome-scale maps of nucleosome posi-
tioning along chromatin fibers do not exist for brain andmany other complex tissues. Conventional chromatin
accessibility assays designed to map nucleosome-depleted regions via nucleolytic digestion face major lim-
itations such as limited resolution and sequence bias, with additional shortcomings from PCR-generated
short-read libraries including poor annotation for an estimated 50% of the human genome. To address
this, we tested a brain-adapted single-molecule chromatin fiber sequencing (Fiber-seq) protocol designed
for amplification-free adenine-methyltransferase tagging of extranucleosomal DNA in neuronal and, sepa-
rately, non-neuronal nuclei in situ.
SUMMARY
We apply a single-molecule chromatin fiber sequencing (Fiber-seq) protocol designed for amplification-free
cell-type-specific mapping of the regulatory architecture at nucleosome resolution along extended �10-kb
chromatin fibers to neuronal and non-neuronal nuclei sorted from human brain tissue. Specifically, applica-
tion of this method enables the resolution of cell-selective promoter and enhancer architectures on single fi-
bers, including transcription factor footprinting and position mapping, with sequence-specific fixation of
nucleosome arrays flanking transcription start sites and regulatory motifs. We uncover haplotype-specific
chromatin patterns, multiple regulatory elements cis-aligned on individual fibers, and accessible chromatin
at 20,000 unique sites encompassing retrotransposons and other repeat sequences hitherto ‘‘unmappable’’
by short-read epigenomic sequencing. Overall, we show that Fiber-seq is applicable to human brain tissue,
offering sharp demarcation of nucleosome-depleted regions at sites of open chromatin in conjunction with
multi-kilobase nucleosomal positioning at single-fiber resolution on a genome-wide scale.
Cell Reports Methods 4, 100911, December 16, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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INTRODUCTION length. Specifically, we demonstrate the application of Fiber-
Genome function is tightly linked to the 3D organization of nu-

clear DNA into chromatin structures across multiple scales.

The nucleosome is the basic unit of chromatin fibers comprising

a core histone octamer and approximately 147 bp of DNA wrap-

ped around it.1 Neighboring nucleosomes are interconnected by

linker DNA into nucleosomal arrays, assembling as heteroge-

neous 8- to 24-nm-wide chromatin fibers, with nucleosome posi-

tioning along the fiber thought to reflect a complex regulome

driven by genomic sequence, ATP-dependent chromatin re-

modeling, and transcriptional activity2–4 and to serve as a strong

determinant for chromosomal organization into functional

domains.5,6

To date, no brain-related genome-scale maps exist for nucle-

osome positioning and occupancy (the latter being defined as

the fraction of cells carrying a nucleosome at a specific genomic

region2). However, genomic sites of low nucleosomal density,

commonly referred to as ‘‘accessible chromatin,’’ have been

mapped in brain with DNase- and transposase-based assays

or related nucleolytic approaches7 and are thought to include se-

quences where transcription factors (TFs) and other chromatin

regulatory proteins bind directly to genomic DNA. This includes

�79,000 active enhancers8 that could regulate gene expression

relevant for human-specific cognition and neuropsychiatric

disease9–12 and brain-specific neoplasms.12 Unfortunately,

conventional chromatin accessibility mappings face major limi-

tations that impede deeper understanding of the brain’s epige-

nomic landscape and fall short of charting nucleosome posi-

tioning in the brain’s neuronal and glial genomes. This is

because DNase- and transposase-based assays, while intended

tomap nucleosome-depleted sequences, show a strong bias to-

ward genomic sites with overall loose chromatin, and therefore,

these techniques suffer from decreased resolution and inflated

size calculation of nucleosome-depleted sequences.7 Additional

shortcomings of conventional techniques for genome-scale

chromatin accessibility mapping, such as the DNase I diges-

tion-based DNase-sequencing (DNase-seq) method and the,

by now more widely used, assay for transposase-accessible

chromatin (ATAC)-seq, include requirements for titration experi-

ments, and their intrinsic cleavage preferences necessitate bias

corrections.13 These techniques therefore offer only a crude

approximation of the regulatory architecture of chromatin fibers.

Furthermore, short-read sequencing in general is conducted

with 100- to 150-bp fragments of exponentially amplified DNA,

resulting in a significant loss of resolution at genomic regions

that are not uniquely spanned by overlapping short reads.

Thus, genome-scale chromatin accessibility mapping by short-

read sequencing is suboptimal at low-complexity repetitive

loci, duplicated regions, tandem arrays, and complex structural

variants.14 As these types of sequences constitute far more

than 50% of the human genome,15 the epigenomic composition

of the majority of the nuclear genome is left unexplored.

Here, we bypass these limitations by adapting single-molecule

chromatin fiber sequencing (Fiber-seq),16 a novel technology

hitherto applied only to peripheral cells, which was designed to

map the open chromatin landscape and nucleosomal positions

at the resolution of single chromatin fibers, each �10 kb in
2 Cell Reports Methods 4, 100911, December 16, 2024
seq to sorted intact adult human brain nuclei, amplification

free, and on a genome-wide scale. We present initial reference

maps for nucleosomal positioning specific to neuronal and

non-neuronal nuclei and demarcate nucleosome-depleted regu-

latory sequences with sharper resolution compared to conven-

tional nucleolytic short-read chromatin assays. We uncover

tens of thousands of nucleosome-depleted regions (NDRs) and

actively regulated genomic ‘‘dark matter,’’ including repetitive

sequences that hitherto had remained epigenomically unmappa-

ble. We highlight the ability of this approach to uncover haplo-

type-specific nucleosome positioning and occupancy using

recently introduced Fiber-seq analytical pipelines,17 and co-

regulation of cis-bound promoter and enhancer elements at sin-

gle-fiber levels. We confirm for the human brain long-standing

principles previously shown only in simple eukaryote models

and cell lines, such as the invariance in sequence-specific occu-

pancy of nucleosomes bordering transcription start sites (TSSs)

at active promoters.

RESULTS

Cell-type-specific Fiber-seq in brain nuclei in situ

Epigenomic regulation is cell-type specific.18 To more compre-

hensively test the potential of Fiber-seq in brain, we separated

nuclei from human prefrontal cortex (PFC) by immunotagging

and fluorescence-activated sorting into neuronal (NeuN+) and

non-neuronal (NeuN�) fractions of nuclei (Figure 1A; Table S1).

Quality control checks, including single-nucleus RNA-seq from

sorted NeuN+ and NeuN� nuclei (n = 22,844 and n = 13,977

nuclei, respectively), confirmed complete separation of the

neuronal and non-neuronal fractions (Figures S1A–S1C). As ex-

pected from transcriptomics-based cell typing of the adult hu-

man cortex,19 the NeuN+ fraction included multiple subtypes of

glutamatergic and GABAergic neurons, while the largest share

of the NeuN� fraction comprised oligodendrocytes and their pre-

cursors, followed by astrocytic and microglial populations (Fig-

ure S1B). Sorted NeuN+ and NeuN� nuclei then served as input

material for the generation of Fiber-seq libraries (Figures 1B–1D).

For each sample, 0.4–2.5 3 106 sorted nuclei (Figure 1E) were

incubated in situ with recombinant Hia5 m6A adenine methyl-

transferase (m6A-MTase) (Figures S2A and S2B) and processed

for PacBio Sequel II sequencing, without any polymerase chain

reaction (PCR). Thus, in each Fiber-seq library, each sequenced

DNA molecule (Figures 1C and 1D) directly originates from a

sorted PFC nucleus and represents a single chromatin fiber.

Accessibility mapping methods are sensitive to enzyme con-

centrations and various other factors.20We exploredwhether var-

iations in nucleus-to-Hia5 enzyme ratio (N/E) could impact the

overall proportion of methyladenines. We conducted a pilot

study on n = 46 Fiber-seq assays (n = 23 brains 3 2 cell types,

NeuN+ andNeuN�) by systematically varying the N/E and keeping

all other conditions unaltered across experiments. We titrated the

N/E from13103 to 13 107 nuclei/nUHia5 (we defined via anm6A

ELISA the relative Hia5 enzyme activity as 16.6 nmol/min/mL)

(Figures S2C–S2E), followed by shallow sequencing (N reads/

Fiber-seq library; range �400–600,000, median �500,000). As

expected, there was overall an inverse correlation between the
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Figure 1. Single chromatin fiber long-read epigenomic profiling by cell type in human brain

(A–D)Work flow. (A) Fluorescence-activated cell sorting (FACS) of NeuN immunostained neuronal and non-neuronal nuclei from the region of interest (PFC) and in

situ incubation of the intact nuclei with adenine methyltransferase Hia5 for m6A tagging of extranucleosomal genomic DNA, followed by (B) amplification-free

PacBio (Sequel II or Revio) long-read sequencing of �10-kb single DNA molecules derived directly from the brain nuclei. (C and D) Early step computational

analyses include annotation to the telomere-to-telomere T2T-CHM13v2.0/hs1 genome, mapping of Hia5 methylation-sensitive patches (MSPs)/nucleosome-

depleted regions, and calling of linker DNA (purple) and regulatory elements (red, brown), such as promoters and enhancers, at single-fiber resolution. (C)

Example fiber visualizations were taken from the NeuN� Fiber-seq reference set, showing the promoter region of the chr18 SEH1L gene locus. Portions of fibers

shown (fiber 1–4) are marked by green bars in (D). Fiber 4 in (C) is shown at enlarged scale, highlighting Fiber-seq-generated nucleosomal position map at single-

nucleosome resolution. (D) hs1-T2T genome browser shots for PFC non-neuronal chromatin profiles at the SEH1L locus, including (top to bottom) ‘‘peak’’

landscapes for (blue) ATAC, (green) H3K4me3, (red) H3K27ac-seq, and (orange) CTCF ENCODE (Enc.) neural cell line (CTCF short-read-based peak landscapes).

Fiber-seq long-read sequencing: (brown) m5CpG tracks, (black) Fiber-seq FIRE scores of MSPs. NeuN� single DNA molecules = single chromatin fibers as

indicated; green-shaded single DNAmolecules/chromatin fibers are highlighted as representative fiber examples shown in (C), including the fourth fiber at 150 bp

resolution. Purple vertical rectangles mark linker DNA. Red/brown MSPs scoring as regulatory elements (P, promoter, and other REs, regulatory elements) on

fiber (FIRE false discovery rate [FDR], orange, 0.10 R q > 0.05; bright red, 0.05 R q > 0.01; dark red-brown, q % 0.01).

(E) Representative FACS showing efficient separation of non-neuronal (NeuN�) from neuronal (NeuN+) nuclei.

(F) Genome-scale proportion of methyladenines (m6A/total A; y axis) in 46 Fiber-seq-processed samples of human brain nuclei. Each sample/aliquot was

sequenced at low depth (see text), and the m6A/A was computed as an average across all DNAmolecules of a sample. The x axis marks the number of nuclei/nU

Hia5 enzyme for each sample of nuclei (log scale, x axis). Blue dot, NeuN� reference sample sequenced with 11,143,795 reads/median of 30-fold genomic

coverage; red dots, NeuN+ samples (4 aliquots 3 2 brains) picked for sequencing to a total of 4,749,556 reads/median of 20-fold genomic coverage.
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genome-wide extent of Hia5 methylation and the N/E ratio (Fig-

ure 1F). Fiber-seq samples with an N/E in the range of 1 3 104

to 2 3 105 nuclei/nU Hia5 were associated with the target m6A/

A of 0.03–0.09 (median from all single DNA molecules). Further-

more, control experiments with samples processed with the

Fiber-seq protocol but without Hia5 enzyme in themethylation re-
action displayed m6A levels effectively at zero (Figure S2F).

Importantly, this is consistent with recent studies reporting

extremely low, or non-detectable, levels of endogenous m6A in

genomic DNA from normal brain-derived cells, which reportedly

do not exceed 16 ppm.21 Therefore, levels of endogenous m6A,

if the mark is present at all, remain several thousand-fold below
Cell Reports Methods 4, 100911, December 16, 2024 3



A B

C D

E

F

G

H

(legend on next page)

4 Cell Reports Methods 4, 100911, December 16, 2024

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
them6A levels observed in ourHia5-treatedbrain nuclei and could

not impact Hia5-based epigenomic mapping. Furthermore, we

wanted to address whether tissue conditions and cell type or

experimental conditions, including sequencing parameters, affect

the quality of the Fiber-seq output, so we analyzed these in our

PFC Fiber-seq samples (Table S1). We did this using a linear

mixed-effects model with m6A proportion as the dependent vari-

able and PMI and NeuN as the independent variables, adjusting

for the covariatesHia5 concentration (nuclei per Hia5 unit) and cir-

cular consensus sequence (CCS) coverage, including a random

intercept across BrainID to account for repeated measures. The

dependent variable m6A proportion was transformed, using the

square-root function, to ensure normality, which was confirmed

using a Shapiro-Wilk test (p = 0.30). Results show that N nuclei

per Hia5 unit (p < 0.001) with R �0.78 (p = 0) and CCS coverage

(p < 0.05) with R �0.48 (p = 0.002), but not PMI or cell type,

were significantly affecting the m6A proportion in our samples

(Table S2A; Figure S3A).

To assess the impact of genome-level adenine methylation

(m6A/A proportion) on the calling ofmethylation-sensitive patches

(MSPs), nucleosomes, and Fiber-seq inferred regulatory elements

(FIREs), we first calculated the correlation of these values using

our PFC Fiber-seq samples (Table S1). As expected, m6A propor-

tion showed strong correlations with the average sizes of MSPs

and nucleosomes (Figure S3B). This was expected because

MSPs are called based on the m6A distribution, and the nucleo-

somes are inversely called from the MSP distribution in the fiber-

tools pipeline.22 Similarly, the number of FIREs showed a correla-

tion with m6A proportion level and the read numbers as well. This

was also expected, for FIREs are called from MSPs using a ma-

chine learning classifier,17 and low read numbers and inappro-

priate adenine methylation levels would fail to call FIREs. Since

bothm6A proportion and read numbers could affect the FIRE call-
Figure 2. Hia5 m6A tagging of accessible chromatin and internucleoso

(A–D) Quality controls for PFC NeuN+ (red) and NeuN� (blue) Fiber-seq, includ

sequence (CCS) coverage, (B) read length, (C) m6A/A per read, and (D) genome-w

length (x axis).

(E and F) Heatmap for 6-kb sequences centered on 45,992 ATAC-seq peaks each

(NeuN+) ATAC cluster 1 and (NeuN�) cluster 3 and enhancer prominent (NeuN+)

indicate number of peaks by cluster. Pie charts display the genomic annotation of

to right) ATAC-seq, H3K4me3 and H3K27ac ChIP-seq, and m6A signal in the (by

specific NeuN+ versus NeuN� differential regulation for enhancer-dominated clu

(G) Signal difference by cell type (NeuN+ versus NeuN�) for each of the 39,807

neuronal ATAC-seq peaks from cluster 4 (F), using the formula shown on the y ax

and percentage accessibility was computed for every peak at each position and th

difference in ATAC-seq counts and Fiber-seq percentage accessibility at each

NeuN� signal was subtracted from NeuN+ signal, while for NeuN� enhancers, N

calculate the per-position difference in ATAC-seq counts and Fiber-seq percentag

NeuN+ and NeuN� are denoted as ANeuN+ and ANeuN�, respectively, while for Fib

NeuN+ and NeuN� enhancer ATAC peaks are denoted as Ncluster2 and Ncluster4.

(H) Representative browser shots, �15 kb wide, comparing hs1-T2T genome an

genomic landscapes with (bottom) Fiber-seq signals for (left)GRIN1 NMDA recep

locus (chromosome 11q13.1) (right). Top to bottom, as indicated,GRIN1 genemap

(green) H3K4m3, (red) H3K27ac-seq, and (orange) H1 neural cell line (ENCODE) C

(brown) m5CpG tracks by cell type, (black) NeuN+ Fiber-seq FIRE scores of meth

as indicated; blue-shaded single DNAmolecules/chromatin fibers are highlighted

resolution, with purple-colored vertical rectangles marking linker DNA (examples

red/brown-colored MSPs scoring as regulatory elements (P, promoter, and RE,

bright red, FDR 0.05R q > 0.01; dark red-brown FDR q% 0.01). Notice prominen

MALAT1 in non-neuronal fibers.
ing, we next tested the association using a linear mixed-effects

model with FIRE as the dependent variable, m6A proportion as

the independent variable, read numbers and cell type (NeuN) as

covariates, a random intercept across BrainID to account for

repeated measures, and an interaction between the m6A propor-

tion and the read numbers. This analysis found that the interaction

between the m6A proportion and the read numbers was signifi-

cantly associated with the number of FIREs being called in our

samples (Table S2B; Figure S3C).

We then generated a PFC NeuN� reference set from a

32-year-old female donor, with a total of 11,143,795 reads (fi-

bers) and amedian of 30-fold genomic coverage (Table S1, sam-

ple SA9B, NeuN�). To assess cell-type-specific regulation, we

generated an additional PFC NeuN+ Fiber-seq reference set

merged from four libraries of two 24-year-old brain donors

(one female/onemale), with a combined total reads (fibers) count

of 4,749,556 and a median of 20-fold genomic coverage

(Table S1, samples SA21A–24A, NeuN+).The final NeuN� and

NeuN+ samples showed passing levels of CCS coverage, read

length, m6A/A proportion, and MSP and nucleosome size distri-

bution, with median mononucleosome/end-to-end linker DNA

base pair lengths of 150/52 bp for NeuN+ and 142/46 bp for

NeuN� (Figures 2A–2D, S4A, and S4B).

Using these non-neuronal and neuronal Fiber-seq reference

datasets, we first examined whether, on a genome-wide

scale, ‘‘open’’ chromatin peaks mappable by the short-read

sequencing-based ATAC-seq, which is the most widely applied

chromatin accessibility assay in brain, are tracked by a corre-

sponding Hia5 m6A signal in Fiber-seq reads. To this end, we

applied k-means (n = 2) clustering to the top scoring 45,992

cell-type-specific ATAC-seq peaks for each cell type, NeuN+

and NeuN�,23 together with chromatin immunoprecipitation-

sequencing (ChIP-seq) data for H3K4me3 and H3K27ac.24 We
mal DNA in neurons and non-neurons at single-molecule resolution

ing (A) proportional representation of DNA molecules by circular consensus

ide counts of (Hia5) methylation sensitive patches (MSPs) (y axis) by base pair

for (E) NeuN+ and (F) NeuN�, split by k-means (k = 2) into promoter prominent

ATAC cluster 2 and (NeuN�) cluster 4, as indicated. Numbers in parentheses

each cluster. Cell-type-specific alignments (NeuN+, NeuN�) are shown for (left

cell type) corresponding Fiber-seq libraries (see text). Notice strong cell-type-

sters 2 and 4 compared to promoter-dominated clusters 1 and 3.

neuronal ATAC-seq peaks from cluster 2 (E) and for each of the 39,988 non-

is of each plot. For each set of enhancer peaks, the difference in ATAC counts

en divided by the total number of peaks in the cluster to determine the average

position relative to the center of the ATAC-seq peaks. For NeuN+ enhancers,

euN+ signal was subtracted from NeuN� signal. The exact equation used to

e accessibility is noted in the y axis label of each plot. The ATAC-seq counts for

er-seq percentage accessibility they are referred to as FNeuN+ and FNeuN�. The

notated neuronal and non-neuronal chromatin from PFC (top) short-read epi-

tor gene locus (chromosome 9q34.3) and (right) long non-coding RNAMALAT1

, NeuN+- and, separately, NeuN�- specific ‘‘peak’’ landscapes for (blue) ATAC,
CCTC-binding factor (CTCF) peak landscape. Fiber-seq long-read sequencing:

ylation-sensitive patches (MSPs); NeuN+ and NeuN� single DNA molecules are

as representative examples and shown at the bottom again at a higher (150 bp)

marked by ‘‘L’’ on fiber), with single-nucleosome (‘‘n’’ on fiber) resolution, and

regulatory element on fiber) by FIRE analyses (orange, FDR 0.10 R q > 0.05;

ce of FIRE nucleosome-depleted regions (NDRs) forGRIN1 in neuronal and for

Cell Reports Methods 4, 100911, December 16, 2024 5
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identified clusters corresponding to gene-proximal promoters

(clusters 1 [NeuN+] and 3 [NeuN�]) and enhancers and other

distal regulatory elements (clusters 2 [NeuN+] and 4 [NeuN�])
(Figures 2E and 2F). Promoter clusters (1 and 3) showed enrich-

ment of H3K4me3 and H3K27ac signal in NeuN+ and NeuN�,
while enhancer clusters (2 and 4) showed enrichment of only

H3K27ac (Figures S4C–S4F). To further confirm that Fiber-seq

accessibility is detectable and comparable to ATAC-seq within

our ATAC-seq peak clusters, we used the fibertools pipeline to

identify single-molecule nucleosome footprints and MSPs22,

and then used the FIRE pipeline to identify MSPs with features

consistent with accessible regulatory elements (i.e., FIREs) along

each molecule, as well as peaks of significantly enriched Fiber-

seq chromatin accessibility.17 Notably, each of the peaks’ total

FIRE score in the corresponding cell-type-specific Fiber-seq li-

braries sequencing signal correlated with the ATAC peak levels

in the neuronal and non-neuronal ATAC-seq libraries, respec-

tively (promoters, clusters 1 and 3: NeuN+, r = 0.574; NeuN�,
r = 0.683, p < 0.00001; enhancers, clusters 2 and 4: NeuN+,

r = 0.41; NeuN�, r = 0.55, p < 0.00001) (Figures S4G and S4H).

Therefore, genomic sites with transposase-defined accessible

chromatin as defined in conventional, neuronal and non-

neuronal ATAC-seq match to sequences that are called as

MSP/nucleosome-depleted regulatory elements in the (by cell

type) corresponding Fiber-seq libraries. Furthermore, on a

genome-wide scale, cell-type specificity is primarily defined by

distal tissue-specific enhancer sequences (compared with a

much lesser cell-specific degree at promoters).25 We therefore

examined cell-type-specific regulation in our Fiber-seq datasets.

Distal regulatory elements of NeuN+ cluster 2 and NeuN� clus-

ter 4, both of which are dominated by enhancers, showed stron-

gest cell-type-specific Fiber-seq and ATAC-seq and histone

H3K27ac signals, compared to moderate differences in pro-

moter-dominated clusters 1 and 3 (Figures S4C–S4F). Robust

cell-type-specific NeuN+ versus NeuN� Fiber-seq effects were

further confirmed with peak-by-peak differential analyses (Fig-

ure 2G), with the Fiber-seq differentials at both promoter and

enhancer tightly matching the corresponding sequence-

matched NeuN+ versus NeuN� differentials in the ATAC-seq da-

tasets (Figure S5). Furthermore, three of the five highest scoring

Gene Ontology categories for NeuN+ Fiber-seq peaks were

dominated by neuron-specific biological processes, including

neuron ion channel regulation and dendritic spine plasticity,

while none of the top scoring NeuN�-specific Fiber-seq peaks

included neuron-specific functions but instead were reflective

of immune functions, chemotaxis, and metabolism (Tables S3A

and S3B). These findings, taken together, strongly suggest that

regulation of Fiber-seq-defined NDRs is highly specific for neu-

rons compared to non-neurons.

Furthermore, NeuN�- and NeuN+-specific signals for tran-

scriptional histone marks, including H3K4me3 and H3K27ac,24

sharply flanked the m6A signal in the corresponding cell-type-

specific Fiber-seq libraries (Figures 2E, 2F, and S4C–S4F).

Representative genome browser shots highlight cell-type-spe-

cific short- and long-read neuronal and non-neuronal chromatin

profiles for the NMDA receptor GRIN1 and non-codingMALAT1

gene loci, with FIREs showed prominence for GRIN1 in neuronal

and for MALAT1 in non-neuronal fibers within their respective
6 Cell Reports Methods 4, 100911, December 16, 2024
promoter regions (Figure 2H). While the short-read libraries

generally demarcate active chromatin at the corresponding pro-

moter sequences, Fiber-seq shows much sharper boundaries of

regulatory elements at single nucleosome resolution on the indi-

vidual fibers, with fiber-to-fiber variability in sequence-specific

positioning of nucleosomes andNDRs, which at that level cannot

be assessed by conventional ATAC- or histone ChIP-seq (Fig-

ure 2H). Overall, our Fiber-seq data detected 43,457 peaks in

the PFC NeuN� Fiber-seq peak reference set, with 34,861 peaks

meeting a minimum coverage of 10 (Figure S6A; Table S4; see

STAR Methods). Peak-specific detection limits in our NeuN� Fi-

ber-seq library showed aminimum of 35.7% of fibers required to

be in an open/accessible state for us to call a peak (Figure S6A;

Table S4; see STAR Methods) Note that, to control for cell-type

specificity, we also generated a PFC NeuN+ peak set from our

NeuN+ Fiber-seq reference library, but due to sample material

limitations we did not reach sufficient sequencing depth to call

a sufficient number of peaks for a deeper genomic analysis

(Figure S6B).

We applied k-means clustering (n = 4) to these Fiber-seq

peaks and integrated frontal lobe NeuN�-specific ATAC-seq26

and histone H3K4me3 and H3K27ac24 ChIP-seq datasets into

the analysis pipeline, together with a CTCF (CCCTC binding fac-

tor) ChIP-seq dataset for theH1 neural cell line (ENCODEdataset

ENCSR822CE). Of note, Fiber-seq (F) peak-defined cluster 1

matched overwhelmingly to promoters and promoter-proximal

sequences; cluster 2 was predominantly defined by CTCF peaks

at a broader range of regulatory elements, based on ChIP-

seq signal enrichment and genomic annotation (Figure 3A).

Furthermore, NeuN� Fiber-seq peaks of clusters 1–3 together

comprised �40% of all Fiber-seq peaks and were closely

matched by corresponding signals of NeuN� ATAC- and histone

ChIP-seq datasets (Figure 3A). However, the 19,978 peaks of Fi-

ber-seq cluster 4, which account for the majority, or �60%, of

the entire population of Fiber-seq peaks (across all clusters

1–4, all peaks with coverage >10), while showing some ATAC-

seq alignments (Figure S6C), lacked a corresponding site-spe-

cific enrichment in ATAC- and ChIP-seq datasets (Figure 3A).

Interestingly, 60% of cluster 4 sequences are repetitive DNA el-

ements, which is a much larger share compared to the 2%–25%

repeat DNA contribution to clusters 1–3 (Figure S6D). This obser-

vation would suggest that our long-read single chromatin fiber

sequencing, which exceeds the base pair length of conventional

short-read libraries by two orders of magnitude, could capture

many actively regulated repeat elements at the site of specific

gene loci that otherwise would remain unmappable by conven-

tional ATAC-, histone-, and CTCF-ChIP-seq. Overall, across fi-

ber clusters 1–4, cluster 4 peaks showed significant enrichment

for repeat peaks relative to the other peak clusters, with up to

�69-fold difference in residual (chi-squared test, df = 3,

p < 2.2e16 (Figure 3B). LINE (long interspersed nuclear element),

satellite, and simple repetitive sequences account for the major-

ity of cluster 4 peaks, followed by SINEs (short interspersed

nuclear elements), LTRs (long terminal repeats), and DNA trans-

posons (Figure 3C). Representative genome browser shots

highlight the examples for FIRE peaks corresponding to the

four identified clusters (Figure 3H). These include, at single-

nucleosome resolution, active chromatin at the site of short
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retroelements, including mammalian interspersed repeats

(MIRs), an ancient SINE species that comprises 2.5% of the hu-

man genome and maximally spans 250 bp (Figure 3H).

Motif analysis and transcription factor footprinting
Importantly, MTase-based accessibility mappings generally

tend to provide far better resolution of NDRs and regulatory ele-

ments compared to hyperactive transposase, DNase digest, and

other types of nucleolytic approaches,7 which typically require

an artificial sliding-window computational step to limit peak

size to (for example) 500 bp.27 We examined this in our Hia5-

treated brain nuclei. Indeed, PFC NeuN� Fiber-seq versus

ATAC peak sizes revealed, across all peak clusters, 1–4 (Figure

3A), a consistent multi-fold decrease in Fiber-seq peak length

(median 231 bp, range 63–1,048 bp) compared to ATAC-seq

(median 1,140 bp, range 136–2,972 bp) (p < 0.00001 via Wil-

coxon rank-sum test) (Figure 3D). We then examined whether

the FIRE-called Fiber-seq MSPs marking NDRs carry TF DNA

binding motifs. We called cluster-specific Fiber-seq motifs using

the HOMER known motif pipeline with the FIRE-called peaks as

input and calculated the size of TF footprints (Table S5). Pro-

moter-dominated (>95% of peaks) cluster 1 showed strongest

enrichment for NFY and its jointly operating co-factor SP1 (Fig-

ure 3F), both critically important for oligodendrocyte survival28

and defined by a classical CCAAT and related�12-bpDNAbind-

ing motifs. Likewise, clusters 2 and 3 (Figure 3A), with a more

mixed enhancer and promoter composition, showed strong en-

richments for the pleiotropic transcriptional regulator and chro-

mosomal loop organizer CTCF and respectively for SOX9, a pro-

totype TF for neural stem cells differentiating into astrocytic

lineages,29 and NEUROD1 as a regulator of microglial survival30

(Figure 3E; Table S5).

Of note, classical DNase I hypersensitive site mapping, and Fi-

ber-seq on peripheral cell lines, reveals the physical occupancy

of a DNA-bound TF as discreet ‘‘punctuation’’ surrounded by

cleaved sequence (DNase I)31 or as a short m6A gap within an

MSP (Fiber-seq),16 reflecting nucleotide-precise binding of the
Figure 3. Fiber-seq FIRE peak-based analysis of nucleosome-depleted

(A) Fiber-seq FIRE-defined peak heatmap of PFC NeuN� nuclei population, wit

quences from PFC NeuN� open chromatin ATAC-seq, transcriptional histone m

conventional short-read sequencing.

(B) Cluster-specific enrichment scores for repeat and non-repeat sequences;

p = 2.2 3 10�16).

(C) Total peak count by type of DNA repeat and Fiber-seq cluster, as indicated.

peaks (NDRs), are overwhelmingly locating to fiber cluster 4 with only very minim

(D) PFC NeuN� Fiber-seq and ATAC-seq peak size distribution profiles; notice s

(E) Top scoring HOMER regulatory motifs to each for the four Fiber-seq peak clu

(F) Fine-grained regulatory motif footprint for NFY TF with fiber cluster-specific bi

centered in NDRs.

(G) Plots depicting the average proportion of adenines that are methylated in fibe

(top) MSP harboring a CTCF footprint and (bottom) MSP with no footprint. Arrow

positioned nucleosomes and cis actuation of flanking nucleosomal array. See als

(H) Representative hs1-T2T genome browser shots of cluster-specific genomic loc

intergenic, cluster 3 DPF3, and cluster 4 ATOC6 gene locus. (Top to bottom) PFC

H3K27ac-seq, and (orange) CTCF ENCODE neural cell line CTCF short-read-base

cell type, (black) NeuN+ Fiber-seq FIRE scores of MSPs; NeuN+ and NeuN� si

chromatin fibers are highlighted as representative examples and shown at the bott

linker DNA (examples marked by ‘‘L’’ on fiber), and single-nucleosome (‘‘n’’ on fi

promoter, and other RE, regulatory element, on fiber) (FIRE FDR, orange, 0.10 R
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TF protein. We searched for TF binding footprints in our brain

cluster 1–4 Fiber-seq peaks (Figure 3A). We counted the average

proportion of m6A/A at respective TF motifs and flanking

sequence aggregated across each peak cluster and then

computed an aggregate binding score that represented the

strength of binding at the TF binding across each cluster of

peaks (see STAR Methods). As expected from our cluster-spe-

cific TFmotif enrichments (Figure 3E), compared to all other clus-

ters, significantly higher binding scores were observed for the

NFY motif in cluster 1 (Figure 3F) and for CTCF in cluster 2 (Fig-

ure S6E). These types of sharpmotif demarcation in the center of

the cluster-specific FIRE Fiber-seq peaks, as shown for NPY and

CTCF (Figures 3F and S6E), were representative of the broader

group of top scoring TF in clusters 1 and 2 (Table S5).

Next, we asked whether the activity status of a regulatory

sequence is coupled to nucleosome positioning effects in the

surrounding chromatin. Specifically, we studied N = 1,855 clus-

ter 2 FIRE peaks, each harboring a canonical 35-bp CTCF bind-

ing motif that had been further validated in a CTCF ChIP-seq da-

taset (ENCODE H1-derived neural cells)32 (Figure 3A). Of note,

CTCF binding is strongly linked to specific motifs and typically

lacks additional co-bound TFs.33 Each of the 1,855 peaks (min-

imum of 20 single fibers/locus), resulting in a total of n = 48,489

individual chromatin fibers, was assigned to one of the following

three categories: (1) fiber with MSP harboring a CTCF footprint in

theMSP, (2) fiber with anMSP but no footprint, and (3) fibers with

a nucleosome occupying the CTCF binding motif. Remarkably,

the CTCF footprint precisely centered to the CTCF motif within

the MSP (Figures 3G and S7). However, all fibers with an MSP,

regardless of the physical presence or absence of CTCF,

showed adjacent to the MSP and motif center extremely well-

positioned nucleosomes (Figure 3G). This type of nucleosomal

phasing then became successively weaker with increasing

nucleosome-to-CTCFMSP distance within the 2 kb of sequence

surrounding the CTCFMSP (Figure 3G), a finding that is highly

consistent with related studies in dividing cell lines.34 In sharp

contrast, fibers with a nucleosome engulfing the CTCF sequence
regions (NDRs)

h k-means Fiber-seq clusters 1–4 and their alignments by corresponding se-

arks H3K4me3 and H3K27ac, and Encode H1 neural cell line CTCF ChIP-seq

note that repeat enrichment is specific for cluster 4 (chi-squared, df = 3,

Notice that retroelements, including LINEs, SINEs, and LTR-associated fiber

al contributions by clusters 1–3.

everal-fold sharper peak size in former compared to latter.

sters, 1–4 (p, Kolmogorov-Smirnov).

nding scores as indicated (***p < 1e�16, Kruskal-Wallis); note sharp footprints

rs centered on n =1,855 specific CTCF binding sites (see text), with fibers with

s point to local minima adjacent to MSP, indicating strong phasing with well-

o, as additional control, Figure S6F for fibers with a CTCF motif but no MSP.

i, with single-fiber resolution by cluster. (Left to right) Cluster 1OLIG2, cluster 2

NeuN�-specific ‘‘peak’’ landscapes for (blue) ATAC, (green) H3K4me3, (red)

d peak landscapes. Fiber-seq long-read sequencing: (brown) m5CpG tracks by

ngle DNA molecules are as indicated; green-shaded single DNA molecules/

om again at a higher (150 bp) resolution, with purple vertical rectangles marking

ber) resolution. Red/brown-colored MSPs scoring as regulatory elements (P,

q > 0.05; bright red, 0.05 R q > 0.01; dark red-brown, q % 0.01).



A

B

C D

E F G

H I

J

(legend on next page)

Cell Reports Methods 4, 100911, December 16, 2024 9

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
motif essentially lacked nucleosomal phasing (Figure S6F).

Therefore, MSPs at the site of regulatory DNA carrying a CTCF

motif are associated with an ‘‘actuation’’16 of nucleosomal posi-

tioning in the surrounding portions of the chromatin fiber, regard-

less of the physical presence of CTCF protein. This actuation is

lacking in fibers with closed (nucleosome-bound) regulato-

ry DNA.

Enrichment of brain-related variants and haplotype
phasing of single fibers from human brain
To gain first insights into potential disease-relevance of each

cluster-specific set of FIRE-defined Fiber-seq peaks/NDRs in

the non-neuronal nuclei, we computed the linkage-disequilib-

rium (LD)-score-partitioned heritability scores35 to examine the

enrichment of common genetic variants identified by genome-

wide association studies (GWASs) on 55 different brain- and

non-brain-related traits (Table S6). Interestingly, non-brain-

related autoimmune and metabolic disorders and traits such

as height did not associate with any cluster. However, we

observed strong enrichment in our enhancer-dominated cluster

3 peak set for neuropsychiatric disorders such as major depres-

sion, consistent with genetic36 and epigenomic evidence37–39 for

a disease-relevant role of multiple types of glia (Figure 4A).

Haplotypes are the combination of specific alleles along a

multi-kilobase stretch of sequence on a chromosome as a reflec-

tion of shared ancestry and LD.40 Allele-specific epigenomic dif-

ferences could impact regulatory non-coding DNA and gene

expression at these sites.41 However, haplotype-defining sin-

gle-nucleotide polymorphisms and other structural DNA variants

typically are spaced apart many hundreds of base pairs,40,42 and

haplotype resolved (epi)genomic maps are difficult to construct

from short-read libraries.43 Here, by taking advantage of long-

read DNAmolecules aligned to the T2T genome CHM13v2.0 as-

sembly, we were able to phase 94.8% of our long reads into

diploid haplotypes, de novo, without pre-existing parental
Figure 4. Nucleosomes show sequence-specific fixation proximal to a

(A) Enrichment of brain-specific traits based on the identity of GWAS-locus-speci

repetitive regions. Significant traits are labeled with * (p < 0.05) and # (p < 0.01).

(B) Volcano plot of Fiber-seq peaks with haplotype-specific differences (N = 3,708

y axis. Peaks with nominal p < 0.05 by a Fisher test are colored red (H1 high) an

(C) UCSC genome browser visualization of fiber-to-fiber variability including a sig

haplotype at the ZNF343 promoter (H1, n.s. as indicated; H2, p < 0.05, Fisher te

(D) Violin plots showing the distribution of haplotype-specific FIRE score at signific

was calculated using a paired t test (p < 1.42e�50 for both).

(E) Schematic showing the calculation of nucleosome offsets for a single NDR at a

red (FIRE) and purple (linker) and the nucleosomes positioned between them, i

nucleosome at a randomly selected reference fiber from all other nucleosomes a

(F) Boxplots showing the distribution of nucleosome offsets for the first five nuc

nucleosomes are colored purple, while all others are shown in gray. The p value

osomes to all others using Wilcoxon rank sum (p < 0.0001).

(G) Boxplots showing the distribution of nucleosome offsets for the first five nu

nucleosomal linker regions; linker-adjacent nucleosomes are shown in purple, whi

showed significant differences in offsets compared to the rest, via Wilcoxon rank

(H) Histogram showing the absolute genomic distance between each two peak

N = 1,472) co-actuated pairs of peaks.

(I) Representative UCSC genome browser capture of the PLEKHG3 promoter, w

(p < 0.05).

(J) Violin plot showing the proportion of co-actuated fibers versus total fibers acro

pairs have amedian co-actuation proportion of 0.33 with an interquartile range (IQ

with an IQR of 0.11.
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variant information, by combining an established AI-powered

variant calling information and k-mer counting pipeline (see

STAR Methods). Using the FIRE pipeline, we identified peaks

in our NeuN� fibers that showed allele-specific differences in

percentage accessibility (Fisher’s exact test, nominal p < 0.05)

and found 124, or 3.3%, of a total of 3,708 peaks called with

detectable haplotype differences (Figures 4B and 4C). As a

group, haplotype-specific FIRE scores for these 124 peaks car-

ried highly significant differences between their corresponding

haplotypes (paired t test, p < 2 3 10�50, Figure 4D). This is likely

a conservative estimate, since we are limited by the per-haplo-

type sequencing depth of 14–15 reads, which dampens our sta-

tistical power. A representative example would be the promoter

of ZNF343, a primate-specific zinc finger gene robustly ex-

pressed in human brain and estimated to bind to 200 promoters

in the genome44 (Figure 4C).

Preferential positioning of nucleosomes at regulatory
elements
Active promoters in human peripheral cells are defined by NDRs

just upstream of and 10–50 bp into the TSS, with flanking nucle-

osomes often occupying near-identical sequences across many

individual cells at the site of active and poised/paused, pro-

moters.45 The ‘‘offset,’’ defined as variability in nucleosome posi-

tioning around a unique genomic sequence, sequentially in-

creases for nucleosomes that are further removed from the

TSS NDR2,3,46 (Figure 4E). We examined this for our active pro-

moters (n = 4,544 promoters, range 133–439 bp, median 237 bp)

and, separately as a control, randomly selected internucleoso-

mal linker regions (n = 20,000, range 1–823 bp, median 53 bp)

(Figures 4F and 4G), since nucleosomes should be randomly

distributed at non-regulatory regions of the genome. Indeed,

the offset score, or the variability in sequence-specific

nucleosomal positioning across fibers for promoters of active

regulatory elements, was lowest for the �1 nucleosome, with
ccessible TSS

fic SNPs in each cluster of Fiber-seq-called peaks, excluding peaks located at

), with the difference in accessibility on the x axis and the�log10 p value on the

d blue (H2 high).

nificantly haplotype differential Fiber-seq peak and Fiber-seq reads phased for

st).

ant (top) H1-high and (bottom) H2-high peaks. The p value comparing the score

TSS region. Each row represents a fiber, with the accessible patches colored

n stylized fashion. The offset was computed by subtracting the center of the

t that position relative to the location of the NDR.

leosomes upstream and downstream TSSs with a FIRE peak. Peak-adjacent

s were computed across all distributions comparing the most proximal nucle-

cleosomes upstream and downstream centered at randomly selected inter-

le all others are shown in gray. In the randomly picked regions, no nucleosomes

sum.

s within pairs of significant (red, N = 436, p < 0.05) and not significant (gray,

hich is detected to have a significant co-actuation event with a nearby peak

ss all significant (red) and non-significant (gray) co-actuated pairs. Significant

R) of 0.15. Non-significant pairs have a median co-actuation proportion of 0.18
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sequentially higher offsets of nucleosomes farther up- and

downstream of the NDR (p < 0.0001, Wilcoxon rank sum).

When fibers with nucleosomal occupancy at TSSs were

excluded, offset was significant both for the�1 and the +1 nucle-

osome (Figures 4F and S8A). However, nucleosomes surround-

ing the random regions did not show preferential positioning at

�1 and +1 nucleosomes and no significant differences exist in

offset for any of the nucleosome positions relative to the random

regions (p = 0.28, Wilcoxon rank sum) (Figures 4G and S8B).

In addition to these sequence-specific fixations and offset of

�1 and +1 nucleosomes, MSPs at TSSs or FIRE peaks showed

strong nucleosomal phasing and then became successively

weaker with increasing nucleosome-to-TSSMSP distance (Fig-

ure S8C) and increasing nucleosome-to-FIREMSP distance

(Figures S8C and S8D), very similar to the type of nucleosomal

phasing observed atMSPs at the site of CTCFmotifs (Figure 3G).

We noted distinct phasing within the first 1,000 bp upstream of

annotated TSSs (regardless of presence or absence of a FIRE

at the TSS MSP), but this was less evident for sequence-guided

nucleosomal TSS phasing at the downstream +1 nucleosome.

This could reflect fiber-to-fiber variation in the base-pair length

of TSS-associated NDRs at the 30 (compared to 50) end of TSS

NDRs, reflecting differential RNA polymerase II and chromatin

remodeler activity. Consistent with this, when we re-computed

TSS-associated nucleosomal phasing by limiting the analysis

to fibers with a FIRE at the TSS, strong positioning effects

were observed across the first 1,000 bp both up- and down-

stream of TSS-bound MSPs, with equally strong phasing at the

�1 and +1 nucleosomes in particular (Figure S8D). In contrast,

phasing was completely absent in fibers with an inactive pro-

moter TSS due to nucleosomal occupancy (gray curves in

Figures S8C and S8D). To further validate that nucleosomes in

linker regions are more dynamic, while nucleosomes flanking

accessible promoters are held in place, we quantified nucleo-

some sliding by plotting the average encroachment of nucleo-

somes into accessible patches across single fibers, with greater

encroachment implying more dynamic positioning of nucleo-

somes across individual cells for a given region (Figures S9A

and S9B).

Co-actuation of regulatory elements on the single-fiber
level
Enhancers and repressors and related regulatory elements are

short, �100- to 1,000-bp stretches of sequence densely popu-

lated by TF binding sites, which could functionally interact with

the target gene promoter located on the same chromosome.47

According to ‘‘activity-by-contact’’ (ABC) or chromatin accessi-

bility with chromosome conformation capture mappings, a sin-

gle human bio sample could harbor 48,000 enhancer-gene

connections, with a median genomic distance of 13–16 kb be-

tween enhancer and target promoter.48,49 Because at any given

time point only a small proportion of cells in a cell population or

tissue is thought to undergo active transcription at a particular

gene,50 we would expect that a small fraction of chromatin fi-

bers of our brain nuclei could display signs of co-actuation,

or the coordinated nucleosomal depletion, of a promoter and

a regulatory element residing on the same fiber. Indeed,

after stringent statistical filtering (false discovery rate [FDR]
Fisher’s p < 0.05, see STAR Methods), we counted 386 signif-

icant co-actuation events, out of 1,842 same-fiber pairwise

regulatory element interactions (Figures 4H–4J). To determine

if these significant interactions were occurring at a rate

greater than what we expect based on random chance, we

computed the difference between the actual proportion of co-

actuated fibers and the expected proportion for significant

and non-significant peak pairs. The average proportion of co-

actuated fibers in significant peaks comparing actual versus

expected is 0.149, while in the non-significant peaks the

difference was 0.036 (p = 1.64 3 10�227, one-tailed t test)

(Figures S9C and S9D).

DISCUSSION

Here, we label NDRs and extranucleosomal linker DNA from

intact brain nuclei in situ via m6A methylation by a prokaryotic

N(6)-adenine MTase. In conjunction with amplification-free

�10-kb long-read sequencing of single DNA molecules directly

derived from the nuclei, we can map individual chromatin fibers

of the PFC on a genome-wide scale. Our study advances the

field by providing the field with a brain adapted step-by-step pro-

tocol for the cell-type-specific Fiber-seq technique, as exempli-

fied by the NeuN+ and NeuN� populations. We present an initial

nucleosome positioning map for the human brain at single-fiber

resolution and highlight some of the advances and insights from

this novel neuroepigenomic approach.

The Fiber-seq technique on brain nuclei, as presented here,

offers critical advances on scales of 0.1 to 10 kb compared to

PCR-generated short-read libraries from ensembles of DNA

molecules generated from conventional transposase-based

and other nucleolytic accessibility assays. For example, on the

100 bp scale, Fiber-seq allows resolution of individual nucleo-

somes (147 bp) and internucleosomal linker DNA on the single

chromatin fibers, which enabled us to confirm principles of

nucleosomal organization hitherto elusive to assess in complex

tissues and established only in simple eukaryotes and cells in

culture.2,3,46 For example, we confirmed the strong inverse

relation between offset (variability in nucleosome occupancy

on individual fibers) and proximity of �1 and +1 nucleosomes

to the NDR at active promoters.2,3,46 Future studies will assess

dynamic alterations in nucleosome positioning at regulatory ele-

ments in normal and diseased human brain. We expect to quan-

tify expansions and shrinkages of specific promoter NDRs at the

single-fiber level with precise base-pair distance measurements

of the +1 nucleosome to the TSS as a control point for transcrip-

tion, as reported for simple eukaryotes.51,52

The increased resolution for Fiber-seq-defined NDRs at

neuronal and non-neuronal regulatory elements compared to

ATAC-seq (Figure 3D) confirms that conventional transposase-

based nucleolytic approaches tend to be imprecise while

inflating base-pair length estimation of nucleosome-depleted

sequences.7 An illustrative example is provided by the glial nu-

cleoporin-encoding gene SEH1L,53 which, according to our

Fiber-seq mappings, is sharply compartmentalized on many

non-neuronal fibers into two neighboring NDRs, flanked by

two back-to-back nucleosomes. In contrast, in ATAC-seq,

the same genomic site produces a much broader peak with
Cell Reports Methods 4, 100911, December 16, 2024 11
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incomplete resolution of NDRs (Figure 1D).We note that our find-

ings presented here are in line with other recently developed

techniques, including the nucleosome positioning mapping in

the single-molecule adenine methylated oligonucleosome assay

(SAMOSA)54 and single DNAmolecule nucleosomal patterning in

yeast55,56 and other approaches with enzyme-mediated chemi-

cal tagging of non-nucleosomal DNA.16,55–58

We show that on the 10 kb scale, Fiber-seq allows for haplo-

type-specific resolution and assessment of co-actuation and

co-regulation of regulatory elements positioned in cis on the

same chromatin fiber. In addition, our long-read epigenomic

profiling produced site-specific localization of �20,000 NDRs

that hitherto could not be anchored to their unique location by

previous short-read sequencing-based accessibility mapping.

Among these, �60% were uniquely assigned to retrotranspo-

sons, including LINEs, SINE/ALUs, and LTR/ERVs. Of note,

earlier DNase I hypersensitivity mappings in human peripheral

cell lines had estimated similar magnitudes for retrotranspo-

son-associated open chromatin sites in the primate including hu-

man genome, but could not proceed to locus-specific annota-

tion.59 Fiber-seq allows accurate annotation of comparatively

short retroelements, including MIRs, an ancient SINE species

that comprises 2.5%of the human genome andmaximally spans

250 bp (Figure 3H). Because MIRs serve as potential docking

sites for RNA polymerases with high relevance for neurodegen-

erative disease,60,61 it should now be possible to conduct

genome-wide surveys of MIR genomic activation in cell types

at risk.

Furthermore, single-molecule long-read sequencing, with

detection of methylated CpGs together with nucleosome position

mapping (Figures 2H and 3H) could capture 89% of structural

variation that had been missed by short-read sequencing62,63

and inform about epigenetic regulation, including the potential

variability at sites associated with disease risk.

Limitations of the study and unresolved questions
One of the most remarkable findings emerging from early Fiber-

seq studies in simple eukaryotes, including yeast, is a surprising

degree of fiber-to-fiber heterogeneity, with many fibers showing

pronounced deviations from the expected stereotypic nucleo-

somal organization, together with abundant nucleosome-free

gaps in gene bodies and elsewhere in the genome.56 These ob-

servations are consistent with some of the fiber-to-fiber variabil-

ities in nucleosome positioning reported here for the human

brain, and furthermore, because each study used very different

species/input materials and different fiber labeling techniques,

technical factors are an unlikely explanation. While some of the

interfiber heterogeneities in brain may be partially resolved by

cell type, gene locus, and haplotype (Figures 2H, 3H, and 4C),

additional work will be required to gain deeper understanding

of the nucleosomal variabilities between chromatin fibers.56

This may also necessitate further optimization of the technique

specifically at sites of adenine-depleted genomic sequences

and further improvement of computational analyses, including

m6A calling.22,64 Of note, brain Fiber-seq libraries with an

m6A/A fraction in the range of 0.03–0.09 lead to computationally

predicted average nucleosomal base-pair sizes (150 and 142 bp,

respectively, for the two reference libraries presented here;
12 Cell Reports Methods 4, 100911, December 16, 2024
Figure 4B), which are most closely aligned to the 147-bp ‘‘fixed’’

model.65 Alternative m6A calling tools exist.66 Future studies

should directly compare these alternative computational tools

for m6A calling efficiencies and nucleosomal and linker DNA

size distributions.

Furthermore, the amplification-free approach for whole-

genome Fiber-seq requires, in practical terms, a significant

amount of input material (106 nuclei per assay in the present

study). Together with the fact that Fiber-seq provides single-

chromatin-fiber but not single-cell resolution, this poses a limita-

tion in case the cell type of interest is rare or if tissue is scarce.

The latter may be addressed, as shown here, by pooling multiple

samples, albeit it needs to be clarified in future investigations

how interindividual variability could increase the noise level

when working with Fiber-seq libraries generated from pooled

samples, including biological replicates.67
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-N6-methyladenosine (m6A) EMD Millipore ABE572-I, RRID:AB_2892214

Anti-rabbit IgG, HRP-linked Antibody Cell signaling technology 7074, RRID:AB_2099233

Chemicals, peptides, and recombinant proteins

D5000 ScreenTape Agilent 5067-5588

D5000 Reagents Agilent 5067-5589

SAM (32-mM) NEB B9003S

Water (nuclease free) Ambion AM9932

1 M Tris, pH 8.0 (nuclease free) Invitrogen AM9855G

5 M NaCl (nuclease free) Invitrogen AM9760G

2 M KCl (nuclease free) Invitrogen AM9640

0.5 M EDTA pH 8.0 Invitrogen AM9260G

0.5 M EGTA, pH 8.0 Alfa Aesar J60767-AE

Spermidine, 5 M Sigma 85558-5G

10% Triton X-100 (nuclease free) Sigma 93443-100ml

rBSA EMD Millipore 126609-10GM

Genomic DNA ScreenTape Agilent Technologies 5067-5365

HisTrap HP Cytiva 17524802

Streptavidin Coated 96-well ELISA plate Thermo scientific 15124

Ultra TMP-ELISA substrate Thermo scientific 34028

Critical commercial assays

SMRTBELL prep kit 3.0 Pacific Biosciences 102-141-700

SMRTBELL barcoded adapter plate Pacific Biosciences 102-009-200

AMPure PB beads Pacific Biosciences 100-265-900

Chromium GEM-X Single Cell 3’ Kit v4 16 rxns 10x Genomics 1000691

Chromium GEM-X Single Cell 3’ Chip Kit v4 4 chips 10x Genomics 1000690

Dual Index Kit TT Set A 96 rxns 10x Genomics 1000215

KAPA Library Quantification

Kit Illumina� Platforms

Roche KK4828 – 07960166001

Megaruptor 3 DNAFluid kit Diagenode E07020001

Megaruptor 3 Shearing kit Diagenode E07010003

Monarch Genomic DNA kit New England Biolabs T3010L

Software and algorithms

Python Python Software Foundation https://www.python.org/

Visual Studio Code Microsoft https://visualstudio.microsoft.com/

Adobe Illustrator Adobe Inc. https://www.adobe.com/

products/illustrator.html

Fibertools Stergachis Lab https://github.com/fiberseq/fibertools-rs

R R Core Team https://www.r-project.org/

Numpy Numpy Team https://numpy.org/

Pandas NumFOCUS Inc. https://pandas.pydata.org/

Matplotlib Matplotlib Development Team https://matplotlib.org/

Seaborn Michael Waskom https://seaborn.pydata.org/

Scipy Scipy Steering Council https://scipy.org/

Pyft Stergachis Lab https://py-ft.readthedocs.io/en/latest/
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Specimens
For Fiber-seq, we used postmortem frontal cortex, including prefrontal Area 46 and fronto-motor Area 4 using samples provided by

the Department of Pathology at Icahn School of Medicine at Mount Sinai and University of Maryland Brain and Tissue Bank. The de-

mographic variables are summarized in Table S1. The tissue collections, including their genomic assessment, were approved by the

ethics committees of the participating institutes.

METHOD DETAILS

Production of Hia5 enzyme
The complete coding sequence of Hia5 open reading frame (Haemophilus influenzae sequence GenBank file JF268249.1), with 843

bases corresponding to entire 281 amino acids of Hia5 enzyme, wasE.coli codon optimized and synthesized as gene block (IDT tech-

nologies) in pUC-IDT vector and subsequently cloned into NdeI and XhoI sites of pET30(+) expression vector (Millipore Sigma,

#69909) in frame with a C-terminal His.Tag (Figure S2A).

We empirically determined the optimal expression and production of Hia5 in E.coli T7 express (NEB, #C3013I), OD600 0.8 at 18oC,

with 0.5mM IPTG (Invitrogen, AM9464) for induction, and repeated 6-hour spins at 250-rpm, 2XYTmedium (RPI, X15640-1000). Each

Hia5 batch was purified in AKTA-Start HPLC using 5 liters of culture and 5ml HisTrap HP columns (Cytiva, 17524701). (Figure S2A).

We verified the m6Amethylation by indirect DpnI restriction digestion assay and direct anti-m6A antibody dot blot using an indepen-

dent longer PCR generated 1kb Hia5 DNA substrate (Figure S2B).

Quantitative determination of Hia5 enzyme activity
We designed a 200bp DNA Hia5 substrate that includes 28% adenine bases and is 5’ (‘‘one sided’’) biotinylated to promote linear

substrate presentation and avoid steric hindrance upon adherence to wells. 10 picomole of this substrate dissolved in 100ml of

TBS-T (10mM Tris, pH 7.5; 180mM sodium chloride; 0.1% Tween-20) was adhered to each streptavidin coated well (96-wells, clear,

preblocked by the manufacturer with SuperBlockTM Blocking Buffer; Thermo scientific #15124) for 60min at room temperature on

RoTo Mix, speed-6, followed by washing with 150ml of TBS-T for 5min. Blocking was done with 100ml/well of 5% non-fat dry milk in

TBST-T for 30min at room temperature, on RoToMix speed-6, followed by onewash of 150ml of TBS-T for 5min. Final washwas done

with 150ml of Hia5 activation buffer (15mM, pH-8.0; 15mM NaCl; 60KCL, 1mM EDTA, pH8; 0.5mM EGTA, 0.5mM, Spermidine;

0.002%Triton-X100; rBSA 0.1%; 0.8mMSAM). Substratemethylation was done at 37oC for 60minutes in a 100ml of activation buffer,

followed by 3 washes with 1x TBS-T buffer for 5min. Substrate was then incubated with rabbit anti-m6A antibody (1:1000, EMDMilli-

pore, Cat# ABE572-I-100UG) for 30min, followed by 3 washes with sodium phosphate buffer (100mM, pH 7.2, 0.1% Tween) (SPB-T)

for 10min. Incubation with secondary anti-rabbit HRP (1:2500; Cell Signaling technology, 7074S,) was done for 30min, and followed

by 3 washes with SPB-T for 10 min each. Assay detection was done with 1-Step Ultra TMBL substrate (Thermo Scientific, 34028) for

15min followed by stopping the reaction with 2M sulfuric acid. Assay was measured at 450nm (Figure S2C).

Cell type-specific Fiber-seq from human cerebral cortex
The protocol below is divided in 3 consecutive steps, starting with Hia5 adenine methylation of immunotagged and sorted nuclei,

followed by purification and size selection of high molecular weight (HMW) genomic DNA, and preparation of PacBio HiFi Whole

Genome libraries.

Adenine methylation: Nuclei were extracted from postmortem cerebral cortex gray matter, immunotagged with NeuN (neuronal

nuclear marker) for separate collection of neuronal and non-neuronal nuclei by fluorescence-activated nuclei sorting as

described68,69 (Figure 1E).

For each sample, 0.4 - 2.5 x 106 sorted nuclei (Table S1) were methylated using 230ml of Hia5 activation buffer supplemented with

themethyl-donor S-Adenosylmethionine (SAM) (0.8mM), and Triton X-100 at submicellar concentration70,71, or 0.002% (0.03mM) for

20 min at 37oC on a rotating platform (1500 rounds per minute,RPM). The Hia5 enzyme activity was stopped by adding Sodium-do-

dechyl-sulfate (SDS) to 1% final SDS concentration (Figure S2D).

DNA Purification and size selection: Next, high molecular weight gDNA was extracted from methylated nuclei using New England

biolabs Monarch Genomic DNA Purification kit (#T3010L) according to the manufacturer’s instructions. We fragmented high molec-

ular genomic DNA to 8-15 kb using the Megaruptor DNA fluid kit and shearing kit (Diagenode # E07030001) at the Megaraptor instru-

ment speed setting 40, 31 and 32. Next, the fragmented DNAwas assessed for purity with a NanoDrop ND-1000 spectrophotometer
Cell Reports Methods 4, 100911, December 16, 2024 e2
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using A260/280=1.8; A260/230>2.0 as cutoff criteria. Additional quality controls included the Qubit fluorometer together with high

sensitivity double stranded DNA assay kits, and additional size distribution checks by TapeStation, Genomic DNA ScreenTape, Agi-

lent# 5067-5365.

PacBio library generation: Next, up to 5 mg input material was processed using SMRTbell kit v3.0 including repairing and A-tailing

for 60min at 37oC, 65oC for 5min, followed by adaptor ligation at 20oC for 30min and nuclease treatment for 15min at 37oC, and size

selected again on 2.9x AMPure PB beads. Library quality was assessed for concentration (Qubit fluorometer; high sensitivity double

stranded DNA assay kit), purity (Nanodrop), size (TapeStation, Genomic DNA ScreenTape 5067-5365 and Femto pulse) (Table S1).

Methylation status was validated with m6A slot blot assay before sequencing on the Sequel-II(e) platform, followed by deeper

sequencing on Sequel II and Revio PacBio platforms for samples that passed quality controls and had sufficient material left for

the additional sequencing.

SMRT-sequencing
Sequel II: SMRTbell libraries were quantified using theQubit 1X dsDNAHS assay and the Femto Pulse. Libraries within�15%of each

other by length were pooled for preliminary sequencing of 2-4 plex SMRTcells to check methylation levels. Each pool was separately

annealed to PacBio sequencing primer v4 and bound to polymerase 2.0 for sequencing on 8M SMRTcells on the Sequel II or Sequel

IIe system, each with a 30-hour movie. After preliminary interpretation of results from the pools, chosen libraries were separately an-

nealed to PacBio sequencing primer v4 and bound to polymerase 2.0 for sequencing on individual 8M SMRTcells on the Sequel II or

Sequel IIe system, each with a 30-hour movie, at loading concentrations between 60-80pM.

Revio: Individual SMRTbell libraries that had previously been sequenced on Sequel II/IIe were separately annealed to the PacBio

Revio sequencing primer and bound to Revio polymerase for sequencing on individual 25MSMRTcells, eachwith a 24-hourmovie, at

loading concentrations between 225-250pM. Read length (as determined from SMRT-seq) was not significantly different between

the N=41 NeuN+ and NeuN- samples shown in Table S1 (mean ± S.D. kilobases); NeuN+, 11.46 ± 2.49; NeuN-, 10.97 ± 2.26,

with Welch’s t = 0.50.

HiFi data generation and preprocessing
Sequel II: data were imported to PacBio’s SMRTLink 11.1 bioinformatics tool suite for HiFi data generation. Intramolecular error cor-

recting was performed using the circular consensus sequencing (CCS) algorithm to produce highly accurate (>Q20) CCS reads, each

requiring a minimum of 3 polymerase passes. Pooled samples were afterwards demultiplexed using the PacBio lima tool in

SMRTLink 11.1 with default parameters.

Methylated (m5) CpGs are called using PacBio jasmine on the raw HiFi BAM file output (https://github.com/pacificbiosciences/

jasmine/). Methylated CpG positions must have an associated ML score above 200 to be considered a true methylation.

Revio: HiFi data were generated automatically using Revio’s on-board CCS. Methylated CpGs are automatically identified using

Revio’s on-board jasmine. Barcodes were trimmed by Revio before the data were exported to SMRTLink.

Fiber-seq data processing
The BAM file with CpG methylation and HiFi kinetics information is processed using fibertools-rs v0.4.2 to predict-m6a to call posi-

tions with methylated adenines with an false positive rate of 0.23% at the precision level of >95%22,64, and then stitch regions

depleted in methylation together to predict the size and location of nucleosomes on individual fibers. Methylated adenines must

have an ML score greater than 200 to be called. Nucleosome footprints are called on a per read basis using fibertools -add-nucle-

osome22,64 with a minimum size set to 75 bp. Methyltransferase sensitive patches (MSPs) are similarly identified using fibertools

-add-nucleosome, and are defined as regions along each fiber that are not occupied by a nucleosome footprint. Next, reads with

per-fiber chromatin information are aligned to the recently published T2TCHM13 v2.0 genome72, assembly hs1 using pbmm2

v1.13.0. Using the recently introduced Fiber-seq quality control pipeline22, we visualized the sequencing quality and methylation

level, distributions of the per-read CCS coverage, read length, m6A vs total A proportion, andMSP size were generated using python

v3.8.18 and seaborn (v0.13.2, RRID:SCR_018132). The positions of m6As, nucleosomes, MSPs, and mCpGs are extracted into a

BED12 format file using fibertools-rs extract, converted to bigBed format using UCSC-Utils bedToBigBed v2.10, and visualized

on the UCSCGenome Browser. Since PacBio Hifi reads have a median read quality >Q30, they allow for highly accurate variant call-

ing and phasing of reads into maternal and paternal haplotypes. Variants are called using three variant callers, DeepVariant v1.5.0,

sniffles (v2.2, RRID:SCR_017619), and pbsv v2.9.0. We use a combination of variants, phased using hiphase v1.2.1, and k-mers,

counted and phased using meryl andmerqury v1.373, in order to phase our reads into maternal and paternal haplotypes. If haplotype

information is available, the variant calling step is not necessary. The haplotype information is encoded in the BAM file in the haplotag

field. The variant calling pipeline that was used can be found publicly available (https://github.com/mrvollger/k-mer-variant-phasing).

Linear mixed effects model
Linear mixed effects model was analyzed in R v.4.1.0. Impact of genome-level adenine methylation on Fiber-seq computational out-

comes (Figure S3). To test for normality of m6A variable, we computed Shapiro-Wilk’s test using the shapiro.test function of the stats

v4.1.0. m6A profile were assessed using linear mixed-effect models with post-mortem interval (PMI), cell-type (NeuN), Hia5 concen-

tration (nuclei per Hia5 unit), and CCS coverage as the fixed factors, and the brain ID as a random effect. A model was fit using lmer
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function of the lme4 v1.1.27. andwas analyzed using lmerTest v3.1.3. Confidence interval was calculated using confint function of the

stats v4.1.0.N nuclei per Hia5 unit was log-transformed to be closer to a normal distribution (p<0.001, Shapiro-Wilk’s test). m6A pro-

file was assessed using linear mixed-effect models with post-mortem interval (PMI), cell-type (NeuN), Hia5 concentration (nuclei per

Hia5 unit), and CCS coverage as the fixed factors, and the brain ID as a random effect. A model was fit using lmer function of the lme4

v1.1.27. and was analyzed using lmerTest v3.1.3. Pearson’s correlation coefficient was calculated using cor function of stats v4.1.0

package. Scatterplots and histogramswere drawn using functions pairs, plot, and hist in R v4.1.0. Confidence interval was calculated

using confint function of the stats v4.1.0.We chose them6A / A proportion as the dependent variable becausem6A is fundamental for

Fiber-seq pipeline’s nucleosome calling and the regulatory element annotation22.

Identification of Fiber-seq inferred regulatory element (FIRE)
We used the recently introduced FIRE analysis pipeline, (https://github.com/fiberseq/FIRE/blob/main/docs/README.md). Briefly,

the FIRE pipeline uses a semi-supervised machine learning classification framework to classify MSPs as to whether they likely orig-

inate from accessible chromatin gene regulatory elements, or internucleosomal linker regions17. Specifically, FIRE provides a preci-

sion value for eachMSP, with higher precision values (i.e.R0.9) corresponding toMSPs that have features similar to accessible chro-

matin gene regulatory elements. In addition, the FIRE pipeline calculates aggregate FIRE scores across all reads mapping to a given

genomic position, and also does this based on haplotype if haplotype phasing information is included within the BAM file. The final

BAM file with the FIRE elements and precision scores encoded is read into python for downstream data analysis using pyft v0.4.0.

Fiber-seq peak calling
In addition, the FIRE pipeline also calculates peaks of chromatin accessibility directly from the underlying FIRE score data at a 5%

false discovery rate (FDR). Specifically, using a control dataset where each read’s mapping position has been shuffled, and null dis-

tribution of aggregate FIRE scores are calculated, which is used to compute real aggregate FIRE scores that are higher thanwould be

expected by chance. Peaks of accessibility are then identified around regions that have aggregate FIRE scores that exceed an FDR

cutoff of 5%. Peaks with fewer than 10 fibers overlapping the region were filtered out from the analysis to increase statistical power at

loci that are considered while keeping a critical mass of peaks to perform genome-wide analysis. The pseudo-bulk Fiber-seq and

short-read sequencing peaks were clustered (k-means, k=4) and visualized using deepTools (v3.5.1, RRID:SCR_016366). The

four clusters of peaks were annotated to genomic regions using R v4.1.0 and ChIPseeker v1.30.3 and visualized using ggplot2

v3.3.5. Peaks were annotated to repeats by overlapping each cluster using bedtools v2.31.0; peaks with a minimum of 25% of

the peak region overlapping a repeat are called repetitive.

Motif analysis
Motifs were identified using HOMER (v4.10, RRID:SCR_010881) Known motif calling in each cluster of fiber-seq NeuN- peaks that

were called from FIRE analysis and clustered using H3K4me3 and H3K27ac ChIP-seq data (specific to NeuN-). Motifs are visualized

(seaborn v0.13.2) by plotting the averagem6A per position at all motif sites across all fibers within each cluster of peaks.We calculate

a score to represent the size of the footprint by subtracting the total m6A proportion across themotif site of size (S) from the sumof the

maximum total score of the left and the right side across S/2 base pairs. We control for GC rich motifs, such as SP1, by considering

the accessibility in the flanking sequence and normalizing the signal in the motif region to one another. To find the p-value when

comparing groups, we calculate this score for each site that makes up the total set of regions for both sets and then compute a

Kolmogorov–Smirnov test.

Fiber-seq footprinting
Regions of accessibility signal depletion within larger MSP accessible patches (footprints) are determined in Fiber-seq by searching

for regions within MSPs that are completely devoid of methylated adenines on a single fiber-level within the footprinted region. Foot-

printing was done on canonical 35bp CTCF motif locations that are found within FIRE peaks that have CTCF signal by ChIP-seq,

cluster together by k-means clustering, and have at least 20 fibers overlapping them using fibertools-rs ft footprint (v0.4.2). The

CTCF ChIP-seq data were obtained from ENCODE H1-derived neural cells. Fibers were then classified into three categories:

(i) having a methyltransferase sensitive patch (MSP) with a footprint at the motif site, (ii) having a methyltransferase sensitive patch

(MSP) without a footprint, or (iii) having a nucleosome overlapping the locus. Fibers of each category were grouped together and the

average proportion of adenines that had anm6Awas calculated at each base and plotted centered at themotif, with a flank of 1000bp

upstream and downstream. The reading of the fiber-seq data was done with pyft (v0.0.6), the data manipulation and calculations

were performed with pandas (v2.0.3) and numpy (v1.24.4), and the plotting was done with matplotlib (v3.7.3) and seaborn (v0.13.2).

Fiber-seq Enrichr analysis
The fiber-seq peaks fromNeuN+ and NeuN- were filtered to only include those with coverage greater than 20 fibers at the peak, since

that is the lower of the two respective medians. Peaks were then annotated to gene-based genomic regions using ChIPseeker. The

peaks that were not annotated to promoters (the non-promoter peaks) were then ranked by their percent accessibility, with the high-

est percent accessibility corresponding to the highest rank. The top 1000 genes by percent accessibility annotated to non-promoter
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NeuN+ and NeuN- peaks were selected for Enrichr term enrichment analysis using the GOBiological Processes database. A p-value

of 0.05 was selected for 95% confidence in the enrichment of terms.

Fiber-seq signal difference in ATAC enhancer peaks analysis
After clustering, the peaks that make up clusters 2 and 4 from the ATAC-seq analysis are annotated as enhancer peaks. To quantify

the average difference in signal between NeuN+ and NeuN- per position in the enhancer peaks in both ATAC-seq and Fiber-seq, first

the difference in NeuN+ and NeuN- signal at each base was calculated for each peak. For ATAC-seq the RPKM normalized signal

was used and for Fiber-seq the percent accessibility, the proportion of fibers that are called as accessible at any given base. Addi-

tionally, to maintain the correct directionality of the signal difference, in the NeuN+ enhancers, negative signal was subtracted from

positive signal, while in the NeuN- enhancers, the opposite operation was performed. After computing the difference in signal for

every peak, the average difference at each position was calculated and plotted as a line plot, relative to the center of the peak.

The array generation andmanipulation was performed with python (v3.8.18) and numpy (v1.24.4) and the plots were generated using

matplotlib (v3.7.3).

The correlation of the difference in signal in Fiber-seq and ATAC-seq relative to the center of the ATAC peak was done by plotting

the average percent accessibility from Fiber-seq as a function of the average ATAC-seq counts at each position. A linear regression

was applied to compute the line of best fit and a p-value using scipy (v1.10.1). The graphs were plotted with matplotlib (v3.7.3, same

as above).

Linkage disequilibrium (LD) enrichment
We conducted LD score enrichment analysis74 to assess the enrichment of both brain-related and non-brain-related GWAS for all

peaks within four clusters after removal of peaks that overlapped with repeat elements. We limited the summary statistics for

GWAS traits to European-only version whenever it was possible. Additionally, the broad major histocompatibility complex region

(hg19: chr.6:25–35 Mb) was removed from every GWAS due to its intricate and extensive LD structure. LDSc was ran using default

parameters.

Haplotyping
Variants were called with the tools as described above in the section ‘Fiber-seq data processing’. Haplotype-specific differences

were computed at peaks that had a minimum of 10 fibers overlapping the peak in each haplotype. The difference was calculated

by subtracting the percent accessibility in haplotype 2 (H2) from haplotype (H1). In order to determine if the distribution of FIRE el-

ements across the two haplotypes was due to random chance, a Fisher test was used with the number of accessible fibers (fibers

with a FIRE element overlapping the peak) in H1 and H2 vs the number of inaccessible fibers in H1 and H2. A p-value cutoff of 0.05

was selected for 95% confidence that the distribution of FIRE elements is not due to random chance. The calculation was done with

numpy (v1.24.4) and pandas (v2.0.3), and the plot was generated using matplotlib (v3.7.3).

Co-actuation
A co-actuated site is defined as a site that shows a FIRE element with a precision valueR0.9 at two separate genomic loci but on the

same fiber, across multiple fibers. For a given set of peaks, pairs of peaks with a fiber-seq coverage (C) greater than 10 over both

regions were chosen as candidates for co-actuation. At each pair, we calculate the number of actuated elements on both sites

(B), neither site (N), the first site (A1) and the second site (A2). The proportion of co-actuated fibers at the locus is calculated by

dividing B by C. The p-value is computed using a Fisher’s exact test using the number of fibers with FIRE elements at site 1 and

2, the number of fibers with a FIRE element at site 1 or site 2, and the number of fibers with no FIRE elements at either site.

Next, for each peak pair, significant and non-significant, the actual proportion of co-actuated fibers was calculated by dividing the

number of co-actuated fibers by the total number of fibers that overlap both peaks in the pair. The expected proportion represents the

probability that both loci are open, given that the two loci are independent of one another. Therefore, the expected proportion of co-

actuated fibers for a given pair of peaks A and B, can be calculated by multiplying the proportion of accessible fibers in A by the pro-

portion of accessible fibers in B. The expected proportion is subtracted from the actual proportion to calculate the difference per

peak for each set of peaks, significant and non-significant. Then the average difference in the actual vs expected proportions is calcu-

lated and a one-tailed T-test is used to determine if the significant peaks have a greater average difference than the non-significant

peaks. The actual (A), expected (E), and difference (D) value calculations are summarized by the following equations: A = (Aopen

T

Bopen)/ Ftotal , E = (Aopen f Ftotal) 3 (Bopen f Ftotal), D = A – E. The actual and expected values for each peak are plotted separately

in two swarm plots, one per peak set, using matplotlib (v3.7.3) and seaborn (v0.13.2), with data cleaning and shaping using pandas

(v2.0.3) and numpy (v1.24.4), and computed using scipy (v1.10.1).

Nucleosome positioning
To investigate the preferential positioning of nucleosomes proximal to promoters, single-fiber nucleosome positions for fibers over-

lapping the feature are centered at the start of the region of interest. The upstream and downstream 5 nucleosomes are obtained, and

their centers are calculated. A reference fiber is chosen at random; the reference fiber nucleosome centers are subtracted from all

other centers and the position-based average is calculated, like previously described.16 These values represent the average offset of
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nucleosomes as a function of the relative nucleosome position to the regulatory elements across a set of cells for a single locus. Then

we plot a boxplot (seaborn v0.13.2) of the average offset for each nucleosome across the set of regions. The p-value is generated by

comparing the distributions of the nucleosome offsets using a Wilcoxon test pairwise between the -1 and +1 nucleosome versus all

other nucleosome positions.

Single nuclei RNA-seq data processing
A tissue block of Area 4 frontal cortex gray matter (brain ID ‘SN2a’, see Table S1) was sorted into NeuN+ and NeuN- fractions and

processed for single nuclei RNA-seq on a 10x chromium platform, then sequenced as recently described75. Sequenced fastq

files were aligned, filtered, barcoded and UMI counted using Cell Ranger Chromium Single Cell RNA-seq version 8.0.1, by 10X

Genomics with CHM13 T2T v2.0 as the human genome reference (RRID:SCR_017344)76. Each sample was filtered to retain cells

with R 1000 UMIs, R400 genes expressed, and <10% of the reads mapping to the mitochondrial genome. NeuNneg and

NeuNpos samples were merged using Seurat package (version 4.0.3, RRID:SCR_016341)77. UMI counts were then normalized so

that each cell had a total of 10,000 UMIs across all genes and these normalized counts were log-transformed with a pseudocount

of 1 using the ‘‘LogNormalize’’ function in the Seurat package. The top 2000 most highly variable genes were identified using the

‘‘vst’’ selection method of ‘‘FindVariableFeatures’’ function and counts were scaled using the ‘‘ScaleData’’ function.

Principal component analysis was performed using the top 2000 highly variable features (‘‘RunPCA’’ function) and the top 30 prin-

cipal components were used in the downstream analysis. K-Nearest Neighbor graphs were obtained by using the ‘‘FindNeighbors’’

function whereas the UMAPs were obtained by the ‘‘RunUMAP’’ function. The Louvain algorithm was used to cluster cells based on

expression similarity. The resolution was set at 0.2 for optimal clustering. Cell clusters were annotated based on expression of ca-

nonical marker genes including MOG (oligodendrocytes), PDGFRA (oligodendrocyte progenitor cells), AQP4 (astrocytes), PTPRC

(microglia), SYP (neuronal cells), SLC17A7 (Excitatory Neurons), and GAD1 (Inhibitory Neurons).

Short-read sequencing pre-processing and analysis
FASTQ files for 3 replicates each of NeuN+ and NeuN- ATAC-seq, and ChIP-seq of H3K27ac, and H3K4me3 were downloaded from

psychENCODE. Raw data for 2 replicates of CTCF ChIP-seq were downloaded from ENCODE. Reads were first evaluated for their

quality using FastQC (v0.11.8, RRID:SCR_014583) (Andrews 2010). Reads were then trimmed for adaptor sequences using Trim

Galore! (v0.6.6, RRID:SCR_011847) and aligned to the T2T-CHM13v2.0 (T2T) genome, assembly hs1, using Bowtie2 (v2.1.0,

RRID:SCR_016368) with default parameters or –X 2000 for ChIP-seq and ATAC-Seq respectively78. ATAC-seq reads aligned to

mtDN A were removed. Reads mapping to multiple genomic locations (excluding chrM) were not excluded from the alignment

and were randomly assigned to one of their highest mapping quality alignments. Picard (v2.2.4, RRID:SCR_006525) was used to re-

move duplicated reads (Picard Toolkit 2019). Post-filtering bam file for samples from the same assay and condition were merged

using SAMtools v1.17.0 merge function. Coverage tracks (bigWig) were generated from Bam files using deepTools (v3.2.1,

RRID:SCR_016366) bamCoverage with parameters –normalizeUsingRPKM –binsize 1079.

Peaks obtained from psychENCODEwere lifted over to the T2T genome from hg38 using UCSCUtilities LiftOver (version 2023-10-

17) and clustered into promoters and enhancers with deeptools k-means clustering, k=2, on the ATAC-seq and H3K4me3 and

H3K27ac ChIP-seq for each condition, NeuN+ and NeuN-. Clustered peaks were annotated to genomic regions based on gene in-

formation using R v4.1.0 and ChIPseeker v1.30.3 and visualized using ggplot2 v3.3.5. Coverage tracks in bigWig format are visual-

ized on the UCSC Genome Browser. ATAC peaks are ranked based on the average signal across the peak region; we used the top

n=45,992 peaks each for NeuN+ and NeuN- (91,984 peaks total).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests used in this study are described separately for each portion of the analysis in the sections above and indicated in the

figure legends.
Cell Reports Methods 4, 100911, December 16, 2024 e6


	Single chromatin fiber profiling and nucleosome position mapping in the human brain
	Introduction
	Results
	Cell-type-specific Fiber-seq in brain nuclei in situ
	Motif analysis and transcription factor footprinting
	Enrichment of brain-related variants and haplotype phasing of single fibers from human brain
	Preferential positioning of nucleosomes at regulatory elements
	Co-actuation of regulatory elements on the single-fiber level

	Discussion
	Limitations of the study and unresolved questions

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Experimental model and study participant details
	Specimens

	Method details
	Production of Hia5 enzyme
	Quantitative determination of Hia5 enzyme activity
	Cell type-specific Fiber-seq from human cerebral cortex
	SMRT-sequencing
	HiFi data generation and preprocessing
	Fiber-seq data processing
	Linear mixed effects model
	Identification of Fiber-seq inferred regulatory element (FIRE)
	Fiber-seq peak calling
	Motif analysis
	Fiber-seq footprinting
	Fiber-seq Enrichr analysis
	Fiber-seq signal difference in ATAC enhancer peaks analysis
	Linkage disequilibrium (LD) enrichment
	Haplotyping
	Co-actuation
	Nucleosome positioning
	Single nuclei RNA-seq data processing
	Short-read sequencing pre-processing and analysis

	Quantification and statistical analysis



