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Abstract

Objective. To investigate machine learning-based regres-

sion models to predict the postoperative apnea-hypopnea

index (AHI) for evaluating the outcome of velopharyngeal

surgery in adult obstructive sleep apnea (OSA) subjects.

Study Design. A single-center, retrospective, cohort study.

Setting. Sleep medical center.

Methods. All subjects with OSA who underwent velophar-

yngeal surgery followed for 3 to 6 months were enrolled in

this study. Demographic, polysomnographic, and anato-

mical variables were analyzed. Compared with traditional

stepwise linear regression (LR) algorithm, machine learning

algorithms including artificial neural network (ANN),

support vector regression, K-nearest neighbor, random

forest, and extreme gradient boosting were utilized to

establish the regression model. Surgical success was

defined as a ≥50% reduction in AHI to a final AHI of

<20 events/h.

Results. A total of 152 OSA adult patients (median

[interquartile range] age = 40 [35, 48] years, male/female =

136/16) were included in this study. The ANN model

achieved the highest performance with a coefficient of

determination (R2) of 0.23 ± 0.05, a root mean square error

of AHI of 10.71 ± 1.01 events/h, an accuracy for outcomes

classification of 81.3% ± 1.2% and an area under the receiver

operating characteristic of 74.6% ± 1.9%, whereas for LR

model, they were 0.094 ± 0.06, 11.61 ± 0.76 events/h,

71.7% ± 1.5% and 68.8% ± 2.9%, respectively.

Conclusion. The machine learning-based model exhibited

excellent performance for predicting postoperative AHI,

which is helpful in guiding patient selections and improving

surgery outcomes.
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Obstructive sleep apnea (OSA) is a common sleep
disorder accompanied by impairments of multiple
organ functions, such as diabetes, hypertension,

and other cardiovascular diseases.1 Although positive
airway pressure is a gold standard treatment for OSA,
many patients seek surgical treatment due to intolerance
and poor adherence.2 Velopharyngeal surgery is one of the
most commonly performed procedures.3,4 However, the
success rate of velopharyngeal surgery is limited, ranging
from 45% to 78%.5‐7 It is generally believed that
appropriate patient selection based on the prediction of
the outcome of surgery can avoid unnecessary surgical
treatment and make the surgery more effective.8,9

Most papers described various approaches to the
preoperative evaluation of potential surgical candidates,
including demography,10‐13 polysomnography (PSG),12,13

computed tomography (CT) scans of the upper airway,14,15

genioglossus activity,16,17 and sleep endoscopy.18 Friedman
et al10 proposed an anatomical staging system based on
palate position, tonsil size, and body mass index (BMI),
which are mostly used in the clinical field. Based on the
Friedman grading system, Zhang et al15 created a TCM
scoring system based on tonsil, percentage of time with
oxygen saturation below 90% (CT90), and the vertical
distance between the lower margin of the mandible and the
lower margin of the hyoid (MH). Moreover, Kim et al13

applied three machine learning algorithms to establish the
classification prediction models based on demographic and
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PSG parameters. Machine learning could find hidden
information that remains undetected by conventional
statistical analysis, thereby improving the performance of
the prediction.19 However, these models use limited
variables and only provide classification results which are
not precise because the surgical success is defined
differently: 50% or greater reduction in the apnea‐
hypopnea index (AHI) and a postoperative AHI of less
than 20 or 10 or 5.20‐22 Therefore, directly predicting
patients' postoperative AHI is meaningful for judging
whether the patient is suitable for velopharyngeal surgery.

We hypothesized that the machine learning‐based
models would more accurately predict postoperative
AHI than the traditional stepwise linear regression (LR)
model. Additionally, the models would be more efficient
than the standard Friedman staging system.

Materials and Methods

Participants and Study Design
This study is a retrospective analysis of participants who
underwent velopharyngeal surgery that consisted of the
revised uvulopalatopharyngoplasty (UPPP) with uvula
preservation (H‐UPPP) with and without concomitant
and transpalatal advancement pharyngoplasty (TA) at
the Sleep Center, Beijing Tsinghua Changgung Hospital,
from January 2018 to December 2023. The indication of
an additional TA was a collapsed or nearly collapsed
velopharyngeal airway observed during surgery after the
completion of H‐UPPP. The detailed procedures for such
two procedures had been published elsewhere.9 This study
was performed following the principle of the Declaration
of Helsinki and approved by the Ethics Committee of
Beijing Tsinghua Changgung Hospital (No. [2016]007).
All participants signed informed consent forms. Inclusion
criteria were as follows: subjects who (1) were 18 years of
age or older; (2) had been diagnosed in all subjects based
on a PSG study (AHI > 5 events/h) and typical clinical
symptoms (such as snoring, witnessed apneas, and day-
time sleepiness); (3) underwent surgery by one surgeon;
(4) underwent 3 dimensional (3‐D) CT scan, and (5)
completed postoperative standard PSG at a 3‐ to 6‐month
follow‐up. Exclusion criteria were as follows: subjects
who had (1) a history of previous oropharyngeal OSA
surgery; (2) morbid obesity (BMI greater than 40 kg/m2);
and (3) a severe coexisting lung, neurological, cardiovas-
cular, or psychiatric disorder.

PSG
PSG recordings were manually analyzed using the latest
scoring rules of the American Academy of Sleep
Medicine.23 Apnea was defined as a decrease in inspira-
tory airflow by more than 90% of baseline lasting for
more than 10 seconds. Hypopnea was defined as a
decrease in inspiratory airflow by more than 50% of the
baseline lasting for more than 10 seconds with an

associated oxygen desaturation greater than 3% or an
event‐related arousal. The average number of apneas
and hypopnea events per hour was calculated as AHI.
The nadir saturation of oxygen (NadirSpO2) and CT90
were also calculated. The sleep studies were performed
before surgery and postoperatively during follow‐up.

Physical Examination
All patients underwent preoperative physical examina-
tions conducted by a single doctor, and the following
variables were obtained for analysis: BMI, neck circum-
ference, palate position, and tonsil size. Patient BMI was
calculated as weight (kg)/height (m)2. Palate position was
evaluated according to the modified Mallampati
grade proposed by Friedman et al10; while tonsil size
was evaluated according to the Brodsky Grading Scale
proposed by Brodsky.24

CT
A 3‐D CT scan of the upper airway was performed during
wakefulness at the end of expiration using a high‐speed,
64‐channel spiral CT scanner (Brilliance 64; Philips). With
the help of technicians, the patients were positioned in a
supine and neutral position with their Frankfort plane
perpendicular to the horizontal. During the scanning
process, patients were instructed to refrain from swal-
lowing and keep awake; axial scans were then acquired
from the skull base to below the level of the vocal cords at
0.67‐mm intervals. All 3‐D‐CT data was exported to a
workstation (GE, AW4.1; Sun Microsystems) for ana-
lysis. In this study, the minimal cross‐sectional airway
area of the velopharynx (VmCSA) and minimal cross‐
sectional airway area of the glossopharynx (GmCSA), the
vertical distance between the lower edge of the mandible
and the lower edge of the hyoid (MH) in Supplemental
Figure S1, available online were measured for further
analysis. Details are provided in Supplemental Materials.

Prediction Models
The prediction pipeline is shown in Figure 1. For all
models, postoperative AHI was chosen as the dependent
variable. The possible independent variables for inclusion
in the models were chosen based on prior literature
and the recommendations given by clinicians.10,14,15,21

Thirteen variables were used for prediction models:
physical examination parameters (age, gender, BMI,
neck circumference, tonsil size, and palate position),
PSG parameters (preoperative AHI, NadirSpO2, and
CT90), and CT parameters (VmCSA, GmCSA, and
MH). The subjects were randomly divided into a training
set (70% of subjects), in which the prediction models were
derived, and a test set (30% of subjects), in which the
models were applied and verified. The parameters were
normalized in the training set and the same rules were
applied to the training set.
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Stepwise LR and five different machine learning
methods (artificial neural network [ANN], support vector
regression [SVR], K‐nearest neighbor [KNN], random
forest [RF], and extreme gradient boosting [XGBoost])
were used to predict the postoperative AHI for evaluating
the velopharyngeal surgery outcome. ANN, made of
layers of nodes, usually, an input layer, hidden layers, and
an output layer, can model highly non‐linear systems in
which the relationship among the variables is unknown or
very complex.25 SVR uses the kernel function mapping to
increase the dimension of the data, and to establish a
linear function in the high‐dimensional space to fit the
target data.26 KNN uses a weighted average of the KNNs
and then weights the reciprocal of their distances.
The KNN is the classification technique without having
to know about the distribution of the data.27 RF consists
of several decision trees in which there is a subset of
available covariates randomly selected to determine the
optimal segmentation point of the node to prevent
overfitting.28 XGBoost is a flexible and highly scalable
tree structure enhancement model where a regularization
term is added to the objective function to control the
complexity of the tree to obtain a simpler model and
avoid overfitting.29

After optimizing model parameters, we obtained the
six models of LR, ANN, SVR, KNN, RF, and XGBoost.
Details are provided in Supplemental Materials.

Statistical Analysis
All analysis was performed in Python and prediction
models were constructed with Scikit‐learning (a free and
community‐maintained toolkit for scientific computing in
Python). Responders for surgical treatment were defined as
a ≥50% reduction in AHI to a final AHI of <20 events/h.

The differences in the variables between responders and
nonresponders were compared using the Mann‐Whitney
U test. Pearson's χ2 test was used to compare categorical
variables among different groups. Preoperative AHI and
postoperative AHI were compared using the Wilcoxon
signed‐rank test. Statistical significance was set at P< .05.
Spearman correlation coefficient was used to identify
significant associations. Two error measurements, namely,
the coefficient of determination (R2) and the root mean
square error (RMSE) were used to evaluate the perfor-
mance of regression models. In general, a higher R2 value
and lower RMSE values indicate a better estimation
performance of the model. In addition, accuracy and area
under the receiver operating characteristic (AUC) for
responders were calculated for each of the regression
models for comparison. Meantime, the success rates in
the Friedman staging system (Supplemental Table S1,
available online) were calculated in the test set.

Results

Subjects
Among the 156 subjects studied, three patients and one
patient were excluded because of previous oropharyn-
geal OSA surgery and BMI > 40 kg/m2, respectively.
Therefore, a total of 152 OSA adult patients (male/
female = 136/16) were included in the final study. The
median (interquartile range) interval between surgery
and postoperative PSG was 4 (3, 5) months. The median
AHI in the preoperative analysis was 55.4 (38.2,
70.2) events/h and reduced to 11.6 (5.7, 21.8) events/h
after surgery (P < .001). A total of 110 patients (72.4%)
received H‐UPPP+TA.

The characteristics of all the subjects, responders, and
nonresponders are listed in Table 1. There were 105

Figure 1. Prediction input, modeling, and evaluation. Prediction input was the parameters from physical examination, PSG, and CT. The total

subjects (n = 152) were randomly divided into training and test sets by 7:3 ratio. The training set (n = 106) was used to derive the six

prediction models. AHI, apnea-hypopnea index; AUC, area under the curve; BMI, body mass index; CT, computed tomography; CT90,

percentage of time with oxygen saturation below 90%; GmCSA, minimal cross-sectional airway area of the glossopharynx; MH, the vertical

distance between the lower edge of the mandible and the lower edge of the hyoid; PSG, polysomnography; RMSE, root mean square error;

VmCSA, minimal cross-sectional airway area of the velopharynx.
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responders (69.1%) and 47 nonresponders (30.9%). The
responders were older and had significantly lower CT90
and longer MH than the nonrespsonders (P< .05). The
success rate in women was significantly higher than in
men (93.8% vs 66.2%, P= .024). The proportion of
Friedman stages I, II, and III were 15.8%, 36.2%, and
48.0%. The Friedman stages were not significantly
different between responders and nonresponders.

Relationship Between Clinical Parameters and
Postoperative AHI
As shown in Figure 2, gender, BMI, neck circumference,
preoperative AHI, NadirSpO2, CT90, VmCSA, and MH
showed significant associations with postoperative
AHI (P< .05).

Prediction of Postoperative AHI Based on
Demographics, PSG, and CT Parameters
Among the 152 subjects, 106 (69.7%) subjects were
randomly assigned to the training set and the remaining
46 (30.2%) were randomly assigned to the test set, which
was repeated five times. Stepwise LR selected age, tonsil
size, preoperative AHI, CT90, and MH as input variables.
The average performance of the models in the dataset is
listed in Table 2. The SVR model and ANN model
showed the highest R2 of 0.232 ± 0.03 and 0.230 ± 0.05,

respectively, while the LR model showed the lowest R2 of
0.094 ± 0.06. The ANN model and SVR model showed
the lowest RMSE of 10.71 ± 1.01 and 10.7 ± 0.96,
respectively, while the LR model showed the highest
RMSE of 11.61 ± 0.76. The ANN model showed the
highest classification performance with an accuracy of
0.8130 ± 0.0119 and an AUC of 0.7463 ± 0.0191.
The performance of the models could be explained by
the scatterplots, which show the relationship between the
observed postoperative AHI values and predicted post-
operative AHI values (Figure 3). Figure 4 shows the
histograms of the difference between predicted AHI and
actual AHI. The prediction differences were mainly
distributed from −10 to 10 events/h. In contrast to the
RF and LR, the ANN, SVR, KNN, and XGBoost tended
to underestimate AHI.

Discussion
The ANN model could more accurately predict surgical
outcomes based on physical examination (age, gender, BMI,
tonsil size, palate position, neck circumference), PSG
parameters (AHI, NadirSpO2, CT90), and CT parameters
(VmCSA, GmCSA, MH) compared with traditional step-
wise LR model. Besides, the ANN model had the highest
accuracy of 81.3%± 1.2% in all patients, whereas in the
Friedman staging system, the success rate was 83.3%, 69.1%,
and 64.4% for stage I, stage II, and stage III, respectively.

Table 1. Characteristics of All the Subjects, Responders, and Nonresponders

Characteristics All subjects (n = 152) Responders (n = 105) Nonresponders (n = 47) P

Physical examination

Age, y 40 (35, 48) 41 (37, 50) 38 (32, 45) .015*

Gender, male/female 136/16 90/15 46/1 .024*

Body mass index, kg/m2 27.0 (25.0, 29.4) 27.0 (25.1, 29.2) 26.8 (24.7, 29.4) .922

Tonsil size 2 (2, 3) 2 (2, 3) 2 (1, 3) .479

Palate position 3 (2, 3) 3 (2, 3) 3 (2, 3) .603

Neck circumference, cm 40.0 (39.0, 42.0) 40.0 (38.8, 42.0) 40.0 (39.0, 42.0) .865

PSG parameters

Preoperative AHI, events/h 55.4 (38.2, 70.2) 52.5 (37.6, 67.9) 64.7 (41.0, 76.8) .093

NadirSpO2, % 77.0 (68.3, 82.0) 78.0 (69.5, 83.0) 76 (67, 80) .243

CT90, % 10.9 (2.9, 26.5) 9.4 (2.52, 21.2) 13.6 (3.4, 42.5) .044*

CT parameters

VmCSA, mm2 69.9 (48.7, 98.0) 73.9 (52.6, 100.8) 54.0 (44.0, 94.0) .052

GmCSA, mm2 205.7 (141, 257.7) 211.5 (157.4, 259.0) 177.0 (111.5, 255.2) .088

MH, mm 13.3 (7.8, 19.3) 12.7 (7.5, 17.6) 15.7 (11.2, 24.2) .014*

Friedman stage .219

Stage I 24 (15.8%) 20 (83.3%) 4 (16.7%) -

Stage II 55 (36.2%) 38 (69.1%) 17 (30.9%) -

Stage III 73 (48.0%) 47 (64.4%) 26 (35.6%) -

Postoperative AHI, events/h 11.6 (5.7, 21.8) 7.9 (4.4, 12.9) 25.2 (22.2, 36.4) <.001*

Values are presented as median (interquartile range) or numbers (percentage). *P < .05.

Abbreviations: AHI, apnea-hypopnea index; CT, computed tomography; CT90, percentage of time with oxygen saturation below 90%; GmCSA, minimal

cross-sectional airway area of the glossopharynx; MH, the vertical distance between the lower edge of the mandible and the lower edge of the hyoid; PSG,

polysomnography; VmCSA, minimal cross-sectional airway area of the velopharynx.
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Figure 2. Spearman correlation coefficient. *P < .05. AHI, apnea-hypopnea index; BMI, body mass index; CT90, percentage of time with

oxygen saturation below 90%; GmCSA, minimal cross-sectional airway area of the glossopharynx; MH, the vertical distance between the

lower edge of the mandible and the lower edge of the hyoid; NC, neck circumference; POSTAHI, postoperative AHI; PP, palate position;

PREAHI, preoperative AHI; TS, tonsil size; VmCSA, minimal cross-sectional airway area of the velopharynx.

Table 2. Comparison of Performance Measures in Machine Learning Models and Stepwise LR Model

Models R2 RMSE Accuracy AUC

ANN 0.230 ± 0.05 10.71 ± 1.01 0.8130 ± 0.0119 0.7463 ± 0.0191

SVR 0.232 ± 0.03 10.70 ± 0.96 0.7565 ± 0.0603 0.6395 ± 0.0649

KNN 0.104 ± 0.05 11.55 ± 1.07 0.7174 ± 0.1108 0.6393 ± 0.1193

RF 0.100 ± 0.08 11.55 ± 0.90 0.6826 ± 0.0681 0.6272 ± 0.0668

XGBoost 0.178 ± 0.04 11.09 ± 1.21 0.7348 ± 0.0603 0.5921 ± 0.0584

LR 0.094 ± 0.06 11.61 ± 0.76 0.7174 ± 0.0154 0.6881 ± 0.0293

Abbreviations: ANN, artificial neural network; AUC, area under the curve; KNN, K-nearest neighbor; LR, linear regression; RF, random forest; RMSE, root

mean square error; SVR, support vector regression; XGBoost, extreme gradient boosting.
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In the Friedman staging system, the surgery success
rate in stage I approached 80%.10 However, as noted in
our study and the literature, there was no significant
difference in the response rate among stages.15,30 In
addition, the proportion of Friedman stage I was
relatively low, suggesting that compared with our model,
fewer proper candidates (15.8% of patients in Friedman
stage I) could be selected to undergo the surgery and more
than half of the remaining patients were suitable for
surgery but had not been selected for surgery in the
Friedman staging system. In contrast, our proposed
model achieved high accuracy for all patients.

Various attempts have been made to determine
predictors of success in velopharyngeal surgery. Our
previous work showed that the tonsil size, CT90, BMI,
and MH are independent predictors.9,15,30 The classic
Friedman staging system, including the BMI, tonsil size,
and tongue position, has been used to predict surgical
outcomes. The three‐dimensional radiographic research
showed that the minimum cross‐sectional area of the
airway and the length of the airway had the lowest
variation can be used to quantify the intra‐individual
variation.31 Considering the literature, physical exam-
ination, PSG, and CT parameters were chosen in this
study.

Figure 3. Distribution of the predicted AHI regarding the real AHI in LR, ANN, SVR, KNN, RF, and XGBoost. AHI, apnea-hypopnea index;

ANN, artificial neural network; KNN, K-nearest neighbor; LR, linear regression; RF, random forest; SVR, support vector regression;

XGBoost, extreme gradient boosting.

Figure 4. The histograms of the difference between the predicted

AHI and the actual AHI. AHI, apnea-hypopnea index; ANN, artificial

neural network; KNN, K-nearest neighbor; LR, linear regression;

RF, random forest; SVR, support vector regression; XGBoost,

extreme gradient boosting.
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Surgery success rate defined by AHI reduction and
postoperative AHI has traditionally been used for evalu-
ating postoperative improvement in OSA patients.
However, few studies directly predict postoperative AHI.
Choi et al12 proposed two predictive equation models for
objective outcomes after oropharyngeal OSA surgery
based on demographic parameters (age, gender, BMI,
tonsil size, palate position) and PSG parameters (AHI,
arousal index, NadirSpO2, snoring) using stepwise multiple
LR analysis. The AHI reduction ratio was explained by an
equation (adjusted R2 = 0.342). In our study, we directly
predicted postoperative AHI based on six algorithms, and
the machine learning algorithms especially ANN and SVR
performed higher performance in terms of R2 than LR
(R2 = 0.230 ± 0.05 in ANN, R2 = 0.232 ± 0.03 in SVR,
whereas R2 = 0.094 ± 0.06 in LR).

Moreover, machine learning could improve the relia-
bility, performance, and accuracy of the prediction
systems.32 Based on the definition of surgical success, the
ANN model achieved the best performance with an AUC
of 0.746, whereas it was 0.688 in LR. Our results suggested
that machine learning could find hidden knowledge that
remains undetected by conventional statistical analysis.
The ANN model was encapsulated as software and it can
be directly applied in clinical practice. Physicians can input
relevant parameters before surgery to obtain the predicted
postoperative AHI. Similar to parts of the aims of this
study, Kim et al13 developed three machine learning
classification models to predict the surgical outcome. In
this study, we developed five machine learning regression
models to predicted postoperative AHI and then obtained
the surgical outcome based on the predicted postoperative
AHI. Our results are more stable since the definition of
surgical outcome is different in the literature.20‐22 In
consistent with this study, Kim et al13 found the
gradient‐boosting model showed the best performance
when predicting surgical success. The AUC of the gradient
boosting model was significantly higher than the logistic
regression model (0.727 vs 0.627).

We acknowledge several limitations in this study. First,
a larger dataset is needed to improve the accuracy of the
prediction model. Second, the proposed model could only
be used to predict the outcomes 3 to 5 months after
surgery. The follow‐up period is an essential factor for
velopharyngeal surgery success, which decreased from
87% to 46% between the sixth and the 12th month after
surgery.33 Third, our model contained CT parameters
which may not be available in other hospitals. However,
this study still provided a valuable model that could be
widely used. Finally, other parameters such as genio-
glossus activity and sleep endoscopy were not considered
in our study.

Conclusion
The ANN model was comparable for determining the
clinical prognosis of patients with OSA and was better

than the Friedman staging model. Our proposed model
could be helpful in facilitating personalized treatment
strategies in the field of surgical efficacy prediction.
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