Skip to main content
. 2025 Jan 7;9(1):e70061. doi: 10.1002/oto2.70061

Table 2.

Comparison of Performance Measures in Machine Learning Models and Stepwise LR Model

Models R 2 RMSE Accuracy AUC
ANN 0.230 ± 0.05 10.71 ± 1.01 0.8130 ± 0.0119 0.7463 ± 0.0191
SVR 0.232 ± 0.03 10.70 ± 0.96 0.7565 ± 0.0603 0.6395 ± 0.0649
KNN 0.104 ± 0.05 11.55 ± 1.07 0.7174 ± 0.1108 0.6393 ± 0.1193
RF 0.100 ± 0.08 11.55 ± 0.90 0.6826 ± 0.0681 0.6272 ± 0.0668
XGBoost 0.178 ± 0.04 11.09 ± 1.21 0.7348 ± 0.0603 0.5921 ± 0.0584
LR 0.094 ± 0.06 11.61 ± 0.76 0.7174 ± 0.0154 0.6881 ± 0.0293

Abbreviations: ANN, artificial neural network; AUC, area under the curve; KNN, K‐nearest neighbor; LR, linear regression; RF, random forest; RMSE, root mean square error; SVR, support vector regression; XGBoost, extreme gradient boosting.