Table 2.
Models | R 2 | RMSE | Accuracy | AUC |
---|---|---|---|---|
ANN | 0.230 ± 0.05 | 10.71 ± 1.01 | 0.8130 ± 0.0119 | 0.7463 ± 0.0191 |
SVR | 0.232 ± 0.03 | 10.70 ± 0.96 | 0.7565 ± 0.0603 | 0.6395 ± 0.0649 |
KNN | 0.104 ± 0.05 | 11.55 ± 1.07 | 0.7174 ± 0.1108 | 0.6393 ± 0.1193 |
RF | 0.100 ± 0.08 | 11.55 ± 0.90 | 0.6826 ± 0.0681 | 0.6272 ± 0.0668 |
XGBoost | 0.178 ± 0.04 | 11.09 ± 1.21 | 0.7348 ± 0.0603 | 0.5921 ± 0.0584 |
LR | 0.094 ± 0.06 | 11.61 ± 0.76 | 0.7174 ± 0.0154 | 0.6881 ± 0.0293 |
Abbreviations: ANN, artificial neural network; AUC, area under the curve; KNN, K‐nearest neighbor; LR, linear regression; RF, random forest; RMSE, root mean square error; SVR, support vector regression; XGBoost, extreme gradient boosting.