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ABSTRACT Proteus mirabilis, a significant pathogenic bacterium within the Enterobac
teriaceae family, is widely distributed across various natural environments. This study 
conducted a genomic comparison analysis of 1,267 strains of P. mirabilis using extensive 
genome data from public databases. The objective was to elucidate the pan-genomic 
structure of P. mirabilis, revealing the composition and distribution of core and accessory 
gene families among different strains. Additionally, an attempt was made to construct 
a core genome multilocus sequence typing scheme specific to this species in order to 
enhance the precision of describing genetic diversity and evolutionary relationships. 
Furthermore, the study delved into the mechanisms of resistance of P. mirabilis to 
carbapenems and quinolones. Our findings underscore significant challenges posed 
by P. mirabilis in terms of antibiotic resistance, with widespread resistance observed 
particularly against beta-lactams and an increasing trend in resistance to carbapenems 
and quinolones. These results highlight the severity of P. mirabilis as a pathogen and 
underscore its rapid evolution and adaptability in developing resistance. This study 
aims to deepen our understanding of the antibiotic resistance of P. mirabilis, provid
ing important insights for the development of future antimicrobial drugs, promoting 
effective treatment and control of this pathogen, and mitigating its threat to human 
health.

IMPORTANCE The bacterium Proteus mirabilis is a common pathogenic bacterium that 
is known to cause a variety of human infections. The drug-resistant genes carried by 
P. mirabilis present a significant challenge to clinical treatment, particularly in regard to 
the organism’s notable resistance to commonly used beta-lactam and quinolone drugs. 
Furthermore, the prevalence of the urease gene cluster of P. mirabilis at the urease gene 
level may be associated with the formation of kidney stones. The objective of the study is 
to analyze the bacterium’s drug resistance, urease gene clusters, and gene distribution in 
genomes in order to facilitate the development of antimicrobial drugs and improve the 
treatment and control of P. mirabilis infections.

KEYWORDS Proteus mirabilis, cgMLST markers, drug-resistance, urease gene cluster, 
plasmid genome prediction

P roteus mirabilis is a significant pathogenic bacterium, characterized by its unique 
ability for migratory growth and population differentiation (1). As a Gram-negative 

bacterium, P. mirabilis is widespread in nature and can be isolated from a variety of 
ecological niches such as soil, water bodies, rubbish, decaying organic matter, and the 
intestinal tract of humans or animals (2). This species is capable of causing a variety of 
human infections, including wound infections, eye infections, gastrointestinal infections, 
and urinary tract infections (3, 4). P. mirabilis is one of the most common pathogens in 
hospital-acquired infections, especially in patients who have been hospitalized for long 
periods or who use medical devices such as catheters (5, 6). It has been reported that 
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infections cause between 20% and 40% of all urinary tract stones. Urinary stones are 
a common trigger for urinary tract infections caused by P. mirabilis. Urinary tract 
infections caused by P. mirabilis may lead to a series of complications, including bladder 
and kidney stones, acute pyelonephritis, and bacteremia, which can pose a serious threat 
to the patient’s health and even endanger their life (7–9).

P. mirabilis has a potent urease activity that can hydrolyze urea into ammonia and 
carbon dioxide (10, 11). It leads to the precipitation of soluble ions in the urine and the 
eventual formation of guano and carbonate apatite stones. Bacterial urease is an enzyme 
encoded by the structural genes ureA, ureB, and ureC and the accessory genes ureD, 
ureF, ureG, and ureE (12, 13). Bacterial urease is involved in the hydrolysis of urea during 
human metabolic processes, and when the environment is alkaline, the products of urea 
hydrolysis will undergo crystalline precipitation and eventually form infected stones (14).

P. mirabilis has been reported to carry a variety of resistance genes, the main common 
being beta-lactams as well as quinolones (15). The beta-lactamases produced by bacteria 
are usually classified into the types of penicillinases, cephalosporinases, broad-spectrum 
beta-lactamases, and ultrabroad-spectrum beta-lactamases (16, 17). The carbapenema
ses belong to the ultrabroad-spectrum enzyme class of beta-lactamases, and they are 
capable of breaking down a wide range of beta-lactam antibiotics, including carbape
nems. These enzymes are particularly prevalent in P. mirabilis, where the major enzyme 
types include KPC-2, NDM, and VIM (18–20). The mechanism of resistance to quinolone 
antimicrobials in P. mirabilis mainly involves mutations in the quinolone-resistant region 
of the chromosome, which is caused by point mutations in the gyrA, gyrB, and parC 
genes (21, 22). In addition, resistance to quinolone antimicrobials in P. mirabilis is also 
closely related to the resistance-nodulation-cell division (RND) antibiotic efflux pump 
mechanism (23–25).

With advances in next-generation sequencing technology, the genomic studies of 
P. mirabilis are increasing. For example, Potter et al. performed a comparative genomic 
analysis of 893 clinical strains of P. mirabilis, revealing the genomic diversity of the species 
as well as several genomic features (26). Saeb et al. performed pathogenetic genomics 
and resistance analyses of a specific isolate of SCDR1, which was found to have a variety 
of drug resistance mechanisms (27). Despite the increasing number of genomic studies 
on P. mirabilis, the overall drug resistance and urease of this species at the population 
genome level are still insufficient and need to be further explored.

In this study, we conducted a pan-genomic, resistance genomic, and urease 
comparative genomic study of P. mirabilis (1,267 strains) using data from public 
databases to reveal the overall drug resistance, composition, and distribution of urease 
genes cluster. The objective of this study is to elucidate additional information regarding 
the drug-resistance mechanism exhibited by P. mirabilis and to explore the mechanism 
of urease using bioinformatic tools in order to anticipate genetic modifications and 
mutations. We anticipate that our findings will make valuable contributions to the 
advancement of effective strategies aimed at mitigating drug resistance in P. mirabilis.

MATERIALS AND METHODS

Public genome data download and analysis

To visually illustrate the research methods and analytical processes, we have created a 
flowchart depicting the study workflow as shown below (Fig. S1). We acquired publicly 
available genomes of P. mirabilis (n = 1,311) along with associated metadata from the 
NCBI database (https://ncbi.nlm.nih.gov/). To evaluate the completeness and quality of 
these sequences, we utilized BUSCO (28) (version 5.4.6) and QUAST (29) (version 5.2.0). 
Subsequently, we selected 1,267 high-quality genomes for further analysis after rigorous 
quality control. Gene annotation of the P. mirabilis genomes was conducted using Prokka 
(30) (version 1.14.6).
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Pangenome and phylogenetic tree analysis of P. mirabilis

We employed 1,267 strains of P. mirabilis in GFF format obtained from Prokka for 
pan-genome analysis using Roary (31) (version 3.13.0). Subsequently, pan-genome and 
core genome maps were generated using the create_pan_genome_plots.R script. The 
core genome multiple alignment produced by Roary was used to construct a core 
genome multilocus sequence typing (cgMLST) (32) phylogenetic tree with FastTree (33) 
(version 2.1.11), which was visualized using the iTOL (interactive tree of life) website (34) 
(https://itol.embl.de/). Two-by-two genome comparison ANI values were obtained using 
FastANI (35) (version 1.34) and visualized as heatmaps.

Drug-resistant genes prediction of P. mirabilis

We employed Resistance Gene Identifier (36) (perfect, stringent mode; version 5.1.1) to 
predict antibiotic resistance genes from the coding sequences of 1,267 P. mirabilis strains 
against the Comprehensive Antibiotic Resistance Database (https://card.mcmaster.ca/). 
Subsequently, statistical and functional analyses were conducted on the predicted 
resistance genes, and their visualization was achieved using heatmaps.

Plasmid sequences prediction of P. mirabilis

We conducted plasmid sequence prediction for 1,267 P. mirabilis strains using Plasmer 
(37) (version 23.04.20). Subsequently, we integrated these data with previously predicted 
drug resistance information, resulting in the identification of 8,133 plasmid genomes 
associated with drug resistance in P. mirabilis. Finally, we utilized the Proksee (38) online 
tool (https://proksee.ca) for annotation and visualization of the plasmid genomes.

RESULT

Basic information of P. mirabilis genomes

We downloaded 1,311 genome sequences of P. mirabilis from the NCBI database. We 
evaluated the completeness and quality values of these genome sequences with Busco 
and Quast and finally selected 1,267 high-quality sequences (completeness > 95% and 
contigs number < 1,000). Among the high-quality strains, we found that the number of 
contigs ranged from 1 to 688, and the maximum value of N50 was 4,372,742 bp and 
a minimum value of 10,660 bp, with an average genome size of about 4,021,165 bp. 
The above 1,267 genomes were annotated by Prokka, in which the average number of 
mRNAs per strain was 3,735. Based on the above analysis, we believe that these genomes 
are qualified and can be analyzed subsequently (Table S1).

Pan-genomic analysis and phylogenetic tree construction based on cgMLST 
markers in P. mirabilis

We performed a pan-genomic analysis of P. mirabilis (Table S2[A]). We found that the P. 
mirabilis genomes contained 43,940 gene families, of which there were 2,093 core genes 
(frequency ≥ 95%), accounting for 4.76%, 2,273 shell genes (15% ≤ frequency < 95%), 
and 39,574 cloud genes (0% ≤ frequency < 15%), accounting for 5.17% and 90.06%, 
respectively. The pan-genome map of P. mirabilis (Fig. S2) indicates an open conforma
tion, with its size expanding as more genomes are analyzed. This expansion is directly 
linked to the increasing number of emerging gene families within the pangenome.

Since there is no ST typing in P. mirabilis genomes, we developed the cgMLST genes 
of this species. Based on the cgMLST markers (Table S2[B]), we constructed the phyloge
netic tree of 1,267 P. mirabilis genomes. The tree showed that there was no obvious 
clade within the population, as shown in Fig. S3, and some of the strains were more 
widely distributed in continents and had higher diversity. Subsequently, we analyzed 
1,267 genomes by ANI (Fig. S4), and the hierarchical clustering based on ANI values 
showed that there were three subspecies of P. mirabilis, and the intragroup similarity was 
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more than 98%. However, the origin of strains in the different clades based on ANI is also 
diverse and not significantly clustered.

Drug-resistant genes prediction in P. mirabilis

We obtained 50 kinds of potential drug-resistant genes profiling of P. mirabilis by RGI. 
As shown in Fig. 1, the proportion of beta-lactam antibiotic resistance was as high 
as 57.46% (Table S3), of which, carbapenems as four-generation beta-lactam antibiot
ics likewise showed ultra-high frequency. Among the 1,267 genomes of P. mirabilis, 
the total percentage of carbapenem antibiotic resistance was as high as 29.50% for 
NDM beta-lactamase, IMP beta-lactamase, OXA beta-lactamase, KPC beta-lactamase, and 
VIM beta-lactamase, among which NDM beta-lactamase (NDM-1,5,7) had the highest 
proportion of about 9.55%, IMP beta-lactamase (IMP-4,6,27) and OXA beta-lactamase 
(OXA-23,48,58) were the next highest, accounting for 7.50% and 6.70%, respectively, and 
KPC beta-lactamase (KPC-2,3,6) and VIM beta-lactamase (VIM-1,4) with 5.05% and 0.63%, 
respectively (Table 1).

Subsequently, we predicted quinolone-resistant genes based on the RGI results. 
According to the previous reports (39–41), point mutations (gyrA, gyrB, and parC genes) 
and plasmid-mediated genes (qnrA, qnrC, qnrD, qnrS, and aac(6')-Ib-cr) can produce 
quinolone resistance. There are several major mechanisms of quinolone resistance in 
our study, as shown in Table 2, with the most common being the gyrB point mutation 
resulting in quinolone resistance. Point mutations on gyrB associated with quinolone 
resistance are the substitution of aspartic acid for glutamic acid at position 466 and 
the substitution of serine for tyrosine or phenylalanine at position 464, with a total 
count of 309 occurrences. In 1,267 strains of P. mirabilis, there were 20 mutations in the 
chromosome gyrA gene, of which 18 mutations were closely associated with quinolone 
resistance. These mutations include the substitution of serine for isoleucine or arginine 
at position 83 and the substitution of glutamic acid for lysine at position 87. In addition, 
no parC gene mutations associated with quinolone resistance were detected in the 
RGI results. We also found that qnrA, qnrS, qnrD, and aac(6')-Ib-cr accounted for 0.24%, 

FIG 1 Heatmap of 50 potential drug-resistance genes in P. mirabilis. In 1,267 P. mirabilis strains, antibiotic resistance genes were predicted using RGI (version 

5.1.1), drug resistance patterns were analyzed using statistical and functional methods, and the abundance information was visualized through heatmaps. In the 

figure, two types of highlighted annotation font colors are used, with red font indicating the type of carbapenem-resistance mechanism and blue font indicating 

the type of quinolone antibiotic resistance mechanism.
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2.4%,10.7%, and 16.5%, respectively. In 1,267 strains of P. mirabilis, the aac(6')-Ib-cr (N = 
333), qnrA (N = 6), and qnrD (N = 156), qnrS (N = 57) genes were located on plasmids, and 
another 54 aac(6')-Ib-cr genes were located on chromosomes (Table S4).

Urease gene cluster genome structure and evolutionary tree analysis

We revealed that urease genes usually exist in the form of gene clusters in the genome 
of P. mirabilis, which contains three structural genes (ureA, ureB, and ureC) and other 
auxiliary genes (ureD, ureE, ureF, and ureG) and regulatory genes (ureR). We found that 
the urease gene clusters of P. mirabilis belong to class I of the five types of urease gene 
clusters reported (42), as shown in Fig. 2. In addition to containing the structural genes 
(ureA, ureB, and ureC) and auxiliary genes (ureD, ureE, ureF, ureG, etc.) that are already 
present in class I. P. mirabilis also added regulatory genes (ureR). What’s more, the copy 
number of urease gene cluster in P. mirabilis revealed that some genes have multiple 
copies in one genome, such as ureB and ureF.

We also constructed an evolutionary tree of urease by using the single-copy genes 
(ureA, ureC, ureD, and ureE). As shown in Fig. S5, we figured out that there are three 
obvious clusters in the single-copy consistent evolutionary tree. Then, we further 
screened the drug resistance information with the tree. We found that the strains that 
are associated with carbapenem resistance or quinolone resistance are dispersed and not 
significantly enriched in the three clusters.

Plasmid genome prediction and analysis of P. mirabilis

We predicted the plasmid sequences by Plasmer and finally screened 8,133 plasmid 
sequences associated with drug resistance (Table S5). Among them, 210 plasmids 
were related to carbapenem resistance, and 554 plasmids were related to quinolone 
resistance. As shown in Fig. 3, we selected five representative plasmids for sequence 
genome visualization, in which two types of drug resistance both carbapenem resistance 
(NDM beta-lactamase) and quinolone resistance in Fig. 3A through D and carbapenem 
resistance in Fig. 3E. Statistically, the genome sizes of each plasmid genome (A–E) are 
5,420, 6,195, 6,163, 10,001, and 6,343 bp, and their GC contents were 51.4%, 65.0%, 
65.1%, 61.7%, and 54.2%, respectively. In this study, we validated all plasmids based on 
the NCBI NR database. One originated from P. mirabilis, while the rest were from other 
species (Escherichia coli and Pseudomonas aeruginosa). Two plasmids were identified as 
having the same type (Escherichia coli strain 190 plasmid unnamed1)(Table 3). Further 
analysis revealed that out of the five plasmids, three were classified as p6061604, 
pPA2047, and pHFK418, while the remaining two plasmids were unnamed.

TABLE 1 Prevalence of carbapenem-resistance genes among 1,267 strains of P. mirabilis

Carbapenem-resistant organisms No. of strain Detection rate

OXA beta-lactamase (OXA-23,48,58) 86 6.70%
NDM beta-lactamase (NDM-1,5,7) 121 9.55%
IMP beta-lactamase (IMP-4,6,27) 95 7.50%
KPC beta-lactamase (KPC-2,3,6) 64 5.05%
VIM beta-lactamase (VIM-1,4） 8 0.63%
Total count (de-duplicated) 374 29.50%

TABLE 2 Prevalence of quinolone-resistance determinants among 1,267 strains of P. mirabilis

Quinolone resistance No. of strain Detection rate

Triclosan-resistant gyrA 20 1.58%
Fluoroquinolone-resistant gyrB 1,263 99.68%
Quinolone-resistance protein (qnr) 178 14.05%
RND antibiotic efflux pump 1,267 100.00%
Major facilitator superfamily antibiotic efflux pump 1,266 99.92%
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DISCUSSION

Proteus, a typical member of the Enterobacteriaceae family, is widely distributed in 
nature and can be found in a wide variety of environments. They live through putrefac
tion and colonize the body under favorable conditions as facultative pathogens causing 
a variety of human infections, including wounds, eye, gastrointestinal, and urinary tract 
infections. As the most common pathogen in the genus, P. mirabilis is widely distributed 
in the natural environment and mammalian intestinal tract and is, therefore, worthy of 
in-depth study at the genomic level (43).

In this study, a pan-genomic analysis was performed based on the genome of 1,267 
strains of P. mirabilis publicly available online, which showed a total of 2,093 core 
gene families, accounting for 4.76% of the total number of genes. The pan-genomic 
map showed an obvious open conformation, which indicates that P. mirabilis has a 
high degree of genomic plasticity and adaptability, which means that the species can 
adapt and respond rapidly to different environments through horizontal gene transfer, 
recombination, and mutation. In addition, since there is no ST typing for P. mirabilis, 
we also tried to construct cgMLST markers for this species in this study. The traditional 
MLST markers can be used to determine the genetic relationship between strains and 
compare the genetic diversity of bacteria. However, due to the limitation of the sequence 
length of MLST markers, they often do not have sufficient resolution to distinguish the 
genetic diversity of bacterial populations. CgMLST, as a novel molecular marker, can be 
used to identify and compare the genetic diversity of bacteria using genome-wide data 
rather than just the sequences of specific loci. CgMLST provides a more comprehensive 
and detailed analysis of the genetic diversity of bacteria and can be used to provide a 
higher resolution, which is more accurate than MLST (32). This new marker allows for a 
more complete characterization of the genetic diversity and evolutionary relationships of 
bacterial strains.

In recent years, with the misuse of antibiotics, there have been increasing reports 
of drug resistance in P. mirabilis, and its resistance is also on the rise (44). Based on 
previous studies, most of the drug resistance mechanisms of P. mirabilis are mainly 
focused on some individual cases, and multiple drug resistance mechanisms have not 
been evaluated at the population level. In this paper, we focus on the detailed analysis 
of carbapenem and quinolone resistance in P. mirabilis. Beta-lactam antibiotics are the 
most commonly used class of antibiotics in clinical anti-infective therapy, and with the 

FIG 2 Structure of urease gene clusters in P. mirabilis compared to other bacteria. The illustration depicts a comparative analysis of urease gene clusters 

across various bacterial taxa, represented by an array of gene maps with arrows indicating the direction of transcription. Unique color coding facilitates the 

identification of individual genes within each cluster. The clusters adjacent to the gene sequences are categorized into Types I through V based on their 

compositional and sequential structure.

Research Article Microbiology Spectrum

January 2025  Volume 13  Issue 1 10.1128/spectrum.00992-24 6

https://doi.org/10.1128/spectrum.00992-24


widespread use of these drugs and the evolution of pathogenic bacteria, the problem 
of drug resistance of pathogenic bacteria has arisen. In our study, the incidence of 
beta-lactam resistance in P. mirabilis was 57.4%, and carbapenems in particular showed 
similarly high resistance (29.50%). In addition, the number of quinolone antimicrobial 
drugs in recent years has also increased year by year. In the present study, a higher 
frequency of quinolone resistance (qnr gene detection rate: 13.34% and drug-resistant 
loci rate: 25%) was also found in P. mirabilis. The prediction of plasmid sequences of 
P. mirabilis was carried out using the pre-developed tool Plasmer. In total, we found 
more than 8,000 plasmid fragments associated with drug resistance, which indicates 
that the drug resistance situation in this species has been very serious, and most of 
the resistance is mediated by plasmids. In particular, the presence of more than 700 
plasmid fragments for quinolone resistance and carbapenem resistance suggests that 
P. mirabilis has become very severe in terms of resistance to first-line antibiotics. We 
filtered five complete plasmids for genomic annotation analysis and found that most 
of these plasmids were from common pathogens such as Escherichia coli, suggesting 
that there may be a large number of gene exchanges between P. mirabilis and these 
common pathogens, and a large number of resistance genes of this strain may also 

FIG 3 The circular representation map of plasmid. The image presents circular charts of bacterial plasmids annotated with drug-resistance genes. In A–D, two 

types of drug resistance are denoted: carbapenem resistance (NDM beta-lactamase) and quinolone resistance. (E) Depicts solely the carbapenem resistance.

TABLE 3 The predicted plasmids of P. mirabilis

ID Annotation Genome length GC content

JAIFRA010000038.1 Escherichia coli strain 2016061604 plasmid p6061604-KPC 5,420 51.40%
DAIFPI010000089.1 Escherichia coli strain 190 plasmid unnamed1 6,195 65.00%
DAJQUG010000355.1 Escherichia coli strain 190 plasmid unnamed1 6,163 65.10%
DACXYO020000033.1 Pseudomonas aeruginosa strain 2047 plasmid pPA2047 10,001 61.70%
JAODOZ010000037.1 P. mirabilis strain HFK418 plasmid pHFK418-NDM 6,343 54.20%
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have been transferred from these common pathogens. In clinical microbiology, Klebsiella 
pneumoniae, Staphylococcus aureus, Enterococcus faecalis, and Pseudomonas aeruginosa 
have attracted widespread attention due to the presence of ultra-high levels of multi-
drug resistance and are also known as “superbugs.” Our results show that the same trend 
of multidrug resistance exists in P. mirabilis, and we suggest that this species may be a 
new superbug that poses a serious threat to the treatment of infections.

Previous studies have shown that P. mirabilis can produce urease with very high 
activity, thus indirectly causing kidney stone formation. The structure of urease gene 
clusters from different bacterial sources varies, and they differ in the number and order of 
genes. In this paper, by studying the urease gene cluster of P. mirabilis, we found that the 
P. mirabilis gene cluster belongs to class I that has been reported. The structural genes 
for urease of P. mirabilis are trimeric protein structures formed by γ, β, and α subunits 
encoded by ureA, ureB, and ureC but do not possess urease activity. The auxiliary proteins 
encoded by the genes ureD, ureE, ureF, and ureG assist in the activation of most bacterial 
ureases and are encoded by the auxiliary genes ureD, ureE, ureF, ureG, respectively. The 
regulatory gene ureR, a member of the AraC/XylS family of transcriptional regulators, 
activates the expression of the urease gene cluster in the presence of urea (45). Urease 
activation is essentially a process of metal assembly of nickel ions with urease proteins. 
Although the lack of functional validation may limit our further accurate understanding 
of the function of the gene clusters in P. mirabilis, a screen of the urease gene clusters 
in the species revealed that most of the strains carry such gene cluster, suggesting the 
importance of this function.

Conclusion

This study employed a comprehensive genomic approach to elucidate the notable 
genetic diversity of P. mirabilis. A cgMLST marker and evolutionary tree were established, 
indicating the bacteria’s adaptability and capacity to flourish in diverse environments as 
a consequence of its evolutionary history of mutations and adaptations.

Furthermore, the study focused on the drug resistance of P. mirabilis, with a specific 
emphasis on carbapenems and quinolones. The plasmid analysis identified resistance 
genes, indicating that this bacterium may prove to be a challenging target for antibiotic 
treatment, which could complicate infection management in clinical settings.

Finally, the urease gene cluster of P. mirabilis was investigated, and it was found 
to have a high frequency at the level of urease genes. The pervasive presence of the 
urease gene cluster in P. mirabilis underscores its pivotal role in bacterial physiology and 
elucidates the direct correlation between these gene clusters and urease activity, as well 
as their potential involvement in the formation of kidney stones.

In conclusion, the comparative genomic analysis of P. mirabilis in this study demon
strated the genetic diversity, drug resistance, and urease gene characteristics of this 
bacterium. It is therefore imperative to reinforce the prevention and control of this 
bacterium and the rational use of antibiotics in order to mitigate its impact on human 
health. Further studies on the resistance and pathogenic mechanisms of P. mirabilis may 
facilitate the development of new treatment strategies and control measures.
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