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Abstract 

Autism spectrum disorder (ASD) is characterized by difficulties in social interaction, communication challenges, 
and repetitive behaviors. Despite extensive research, the molecular mechanisms underlying these neurodevelop-
mental abnormalities remain elusive. We integrated microscale brain gene expression data with macroscale MRI 
data from 1829 participants, including individuals with ASD and typically developing controls, from the autism brain 
imaging data exchange I and II. Using fractal dimension as an index for quantifying cortical complexity, we identi-
fied significant regional alterations in ASD, within the left temporoparietal, left peripheral visual, right central visual, 
left somatomotor (including the insula), and left ventral attention networks. Partial least squares regression analysis 
revealed gene sets associated with these cortical complexity changes, enriched for biological functions related to syn-
aptic transmission, synaptic plasticity, mitochondrial dysfunction, and chromatin organization. Cell-specific analyses, 
protein–protein interaction network analysis and gene temporal expression profiling further elucidated the dynamic 
molecular landscape associated with these alterations. These findings indicate that ASD-related alterations in cortical 
complexity are closely linked to specific genetic pathways. The combined analysis of neuroimaging and transcrip-
tomic data enhances our understanding of how genetic factors contribute to brain structural changes in ASD.
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Introduction
Autism Spectrum Disorder (ASD) is a complex neu-
rodevelopmental disorder characterized by a wide range 
of symptoms, including difficulties in social interaction, 
communication challenges, and repetitive behaviors [1]. 
The etiology of ASD is multifactorial, involving both 

genetic and environmental factors [2, 3]. Genetic factors 
are estimated to contribute significantly, between 64 and 
93%, to the development of autism [3]. Neuroimaging 
studies have provided valuable insights into the neurobi-
ological basis of ASD, revealing alterations in brain struc-
ture and function [4–6]. One area of particular interest 
is cortical changes, as individuals with ASD often exhibit 
abnormalities in cortical morphology [7]. Understanding 
the molecular changes of the brain in ASD is essential to 
deciphering the neurobiological underpinnings of ASD.

Brain structure can be conceptualized by assessing the 
intricacy of its surface shape. One of the most promising 
measures is the cortical complexity, which can be meas-
ured through the quantification of fractal dimension (FD) 
[8, 9]. Madan C. R. suggested that fractal dimensional-
ity is the more useful single measure because it simul-
taneously accounts for shape-related characteristics and 
serves as a general-purpose measure of structural com-
plexity [10]. Cortical complexity, as opposed to measures 
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relying on integral Euclidean geometry, offers a promis-
ing method to study the inherent irregularities of cerebral 
geometry by accounting for the irregular, and fractal con-
volutedness of cerebral surfaces, thus providing a more 
suitable approach to capture the natural geometry of the 
brain [11–14]. Notably, cortical complexity analysis offers 
greater sensitivity in characterizing structural changes 
compared to conventional volume with small variances 
and less gender effects [15–17].

Cortical complexity undergoes dynamic changes 
throughout brain development and aging, increasing 
during intrauterine and postnatal phases until adoles-
cence and subsequently declining steadily during adult-
hood [18–21]. Hedderich et  al. showed decreases in 
cortical complexity between premature-born adults and 
full-term controls as a reflection of regionally disturbed 
neurodevelopmental processes due to premature birth 
[20]. One interesting study revealed that interindividual 
differences in cortical structure are not only strongly cor-
related with age, but also can robustly be used to predict 
age (a combination of cortical thickness and FD showed 
as the best predictors) [18]. In the recent years, cortical 
complexity measurement demonstrated as a neuroim-
aging biomarker with high  classification accuracy, for 
brain tumor diagnosis using machine learning [22] and 
as an input for brain-computer interface [23]. Moreover, 
changes in structural complexity of the cerebral cortex 
also have been associated with neuropsychiatric diseases 
[24–26]. Complexity of white matter is also associated 
with higher fluid cognitive ability [27] and cognitive abil-
ity in patients with Alzheimer’s dementia [28].

Few studies have identified altered cortical complex-
ity in individuals with ASD compared to neurotypical 
controls. Zhao et al. found a significant reduction in the 
FD of the right cerebellar cortex in ASD relative to typi-
cally developing boys [29]. Increased cortical complexity 
was reported in the right fusiform gyrus of the ASD and 
attention-deficit/hyperactivity disorder (ADHD) cohort 
in comparison to the ASD-only cohort [30].  However, 
these studies have been limited by small sample sizes 
and/or quantitative characterization of the entire cortex.

Understanding the structural properties underlying 
cortical complexity is crucial, as these properties are 
deeply rooted in genetics. Recent advances in transcrip-
tome imaging analyses have opened new opportunities 
for understanding how spatial variations on the molecu-
lar transcriptomic scale relate to the macroscopic neu-
roimaging phenotypes by establishing linkages between 
MRI-based brain measurements and genetic samples 
obtained from postmortem brains [31, 32]. This approach 
involves mapping gene expression data from the Allen 
Human Brain Atlas (AHBA) and neuroimaging maps 
to a common space, such as a parcellated brain atlas 

[33]. Neuroimaging-derived phenotypes are then cor-
related with the expression levels of thousands of genes 
in each brain region/network using multivariate statis-
tical methods like partial least squares (PLS) regression 
[34]. Romero-Garcia et al. reported a robust association 
between differences in cortical thickness during child-
hood and genes involved in synaptic transmission path-
ways, which are known to be downregulated in the 
postmortem ASD cortex [35]. One recent study identified 
macroscale changes in cortical networks in autism, fur-
ther established how macroscale structural connectome 
alterations in autism relate to microcircuit dysfunction 
[36]. Of most interest for neurodevelopmental disorders 
is understanding the molecular basis of disorders — to 
ask, "what causes the differences?" rather than merely 
"what is different?".

In this context, we sought to bridge gaps by examin-
ing alteration of cortical complexity in ASD using large 
MRI data with 1829 participants, aged between 6.5 and 
64 years, from the Autism Brain Imaging Data Exchange 
(ABIDE) I and II. Moreover, given the tight relationship 
between cortical structure and gene expression [37], we 
leveraged brain-wide transcriptomic data from AHBA to 
identify molecular correlates of ASD-related neuroanat-
omy irrespective of regional specific neuroanatomical 
differences.

Methods and materials
Participants
A schematic overview of the study design and analy-
sis pipeline is shown in Fig.  1. The structural MRI data 
used in this study were obtained from the ABIDE I and 
II projects [38, 39]. All data collection procedures were 
approved by the local Institutional Review Board. Subject 
inclusion criteria were as follows: (1) complete whole-
brain coverage, (2) good image quality (see follows), and 
(3) sites with more than 10 subjects in each group after 
meeting the above criteria. Finally, a total of 1829 sub-
jects (ABIDE I: 460 patients with ASD and 515 typically 
developing controls (TDCs) from 15 sites and ABIDE II: 
379 patients with ASD and 475 TDCs from 13 sites) were 
included in our study. Descriptive statistics for datasets 
are in the Supplementary Material.

Image quality control included two steps: (1) each 
image was visually inspected for obvious artifacts due 
to head motion; (2) check the quality control report 
generated by the Computational Anatomy Toolbox 
(CAT12) manually, images were excluded if their 
weighted average image quality rating (IQR) was lower 
than 70 and volumes with low mean homogeneity 
(below two standard deviations from the sample mean) 
were again visually inspected for artefacts. Additional 
information about the subjects for each site is provided 
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in Table 1. Further information on data acquisition and 
site-specific details (i.e., protocols, test batteries used, 
and scanning parameters) is available at the ABIDE 
website (https:// fcon_ 1000. proje cts. nitrc. org/ indi/ 
abide/).

Magnetic resonance imaging data pre‑processing
T1 images were manually set the origin at the anterior 
commissure, then were processed using the CAT12 
toolbox (version 1980, Structural Brain Mapping, Jena 
University Hospital, Jena, Germany) implemented in 
SPM12 (version 7771, Institute of Neurology, London, 
UK). We employed the default parameters of CAT12 
for this pre-processing procedure. All the T1-weighted 
images were corrected for bias-field inhomogeneities, 
then segmented into gray matter, white matter, and 
cerebrospinal fluid and spatially normalized using the 
DARTEL algorithm [40]. The final resulting voxel size 
was 1.5 × 1.5 × 1.5 mm.

For surface-based morphometry, CAT12 toolbox 
computes multiple surface parameters, including FD 
[41]. These surface parameters of the left and right 
hemispheres were separately resampled and smoothed 
with a 20-mm FWHM Gaussian kernel. The software 
parcellated the cortex into 400 regions of interest (ROI) 
using the Schaefer atlas 17 networks for surface meas-
ures [42]. We then averaged the FD value from each 
ROI in each participant for further analyses.

Mega analysis
As the ABIDE datasets are multicentric with hetero-
geneous acquisition parameters across sites, raw FD 
values were harmonized between sites using Com-
Bat harmonization to remove site-related variability 
while preserving the biological effects (e.g., age and 
sex) [43]. Independent two-sample t-tests were per-
formed between ASD and TDCs groups to identify 
cortical complexity changes related differences. All sta-
tistical analyses were performed using R software (ver-
sion 4.2,  https:// www.r- proje ct. org/), and a threshold 

of p < 0.05, False Discovery Rate (FDR) corrected, was 
applied.

Meta analysis
To account for differences in scanners, acquisitions and 
sample characteristics, statistical analysis was conducted 
using a prospective meta-analytic technique, where 
each site is initially treated as an independent study and 
results are pooled to define significance. Effect sizes were 
computed as standardized mean differences (Cohen’s d) 
using Hedges’g as estimator. The between-study variance 
τ2 was estimated using the restricted maximum likeli-
hood method, from which we computed the proportion 
of variance imputable to heterogeneity. Computations 
were performed using R (https:// www.r- proje ct. org) with 
the packages meta and metafor [44]. We report statistical 
significance for an α level of 0.05.

Gene expression data processing
Gene expression data were obtained from the AHBA 
(http:// human. brain- map. org). The AHBA comprises 
the normalized expression data of 20,737 genes repre-
sented by 58,692 probes taken from 3702 brain tissue 
samples from six donors (one female and five males, 
aged 24–57  years) [32]. A newly proposed pipeline for 
transcription-neuroimaging association studies based on 
AHBA data was used in this study [33]. Only genes that 
were consistently expressed across donors (i.e., average 
inter-donor correlation ≥ 0.5) were considered for our 
analyses. To correct for donor-specific effects, scaled 
robust sigmoid (SRS) normalization was used to ensure 
equivalent scaling of expression values for each donor. 
After this procedure, the expression values were more 
comparable across donors. Finally, we obtained a normal-
ized gene expression matrix of 400 × 15,633 (ROI × gene) 
[42]. The detailed preprocessing steps are described in 
Supplementary Material.

Identifying transcriptomic correlates of cortical complexity 
changes in ASD
To identify genes whose expression was inferentially 
correlated with ASD-related alterations, we used a 

Fig. 1 Overview of the analysis pipeline. A Neuroimaging data processing. Structural MRI data were obtained from the Autism Brain Imaging Data 
Exchange (ABIDE). Fractal dimension (FD) was computed for each MRI to quantify cortical complexity. To account for site-specific variations, ComBat 
harmonization was applied. The cortical complexity values across 400 regions of interest (ROIs) were extracted. B Transcriptomic Data. Tissue 
samples were mapped to individual MRIs based on gene expression profiles. These samples were assigned to 400 cortical regions to construct 
a gene expression matrix, correlating gene activity with specific brain regions. C Imaging Transcriptomics Analysis. A case–control t-map 
was acquired by assessing differences in cortical complexity values between ASD and typically developing controls (TDCs) groups. The correlation 
between cortical complexity and gene expression was assessed using Partial Least Squares Regression (PLSR) analysis. D Gene Function Annotation. 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to elucidate functional pathways. 
Additionally, protein–protein interaction (PPI) networks and temporal-specific expression patterns were examined

(See figure on next page.)

https://www.r-project.org/
https://www.r-project.org
http://human.brain-map.org
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Fig. 1 (See legend on previous page.)
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PLS regression, a multi-variate technique account-
ing for inherent shared topological structure between 
brain-derived neuroimaging phenotypes and gene 
expression. Significant genes were obtained by regress-
ing each gene against our t-statistical maps and using a 
one-sample t-test to determine whether the slopes were 
different from 0. Bootstrapping (1000 resamples)  was 
performed to determine the stability of gene loadings, 
with  z-scores  computed for each gene and  Benjamini–
Hochberg False Discovery Rate (BH-FDR) correc-
tion  applied for multiple comparisons. To correct for 
multiple comparisons, the procedure was repeated 
by randomly rotating our maps using 1000 spin per-
mutations, which were compared with the original 
t-statistic to assess gene significance. We then ranked 
all genes according to their z score weights to the PLS 
components.

From the ranked PLS gene list, genes with Z score more 
than 1.96 or less than -1.96 were selected (P < 0.05). These 
are denoted as PLS + and PLS-, representing genes most 

positively and negatively associated with FD changes in 
ASD patients.

Gene enrichment analyses
We employed the Metascape software to perform Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) Pathways analysis (https:// metas cape. 
org/) [45]. GO was used to determine their biological 
functions including molecular functions (MFs), biologi-
cal processes (BPs), and cellular components (CCs) [46]. 
KEGG was used to identify related biological pathways 
[47].

We employed Specific Expression Analysis (SEA) 
[48] to assess the potential over-representation of corti-
cal complexity changes related genes in three specific 
domains, namely cell types, brain regions, and develop-
mental stages. This analysis incorporated a specificity 
index probability (pSI), offering insights into the enrich-
ment levels of genes within specific terms compared to 
others [49]. The transcriptional profiles for brain devel-
opment were sourced from the BrainSpan Atlas of the 
Developing Human Brain (http:// www. brain span. org/). 
All enrichment analyses were executed using Fisher’s 
exact tests, and BH-FDR correction was applied to 
account for multiple comparisons, ensuring a stringent 
threshold of significance (q < 0.05) for gene functional 
annotations.

We used TissueEnrich R package [50] and cell type 
specific expression analyses (CSEA) tools (http:// dough 
ertyt ools. wustl. edu/ CSEAt ool. html) [49] to conduct tis-
sue, cell type, and temporal specific expression analyses. 
These specific expression analyses could help to deter-
mine the specific tissues, cortical cell types, and devel-
opmental stages in which the FD alteration related genes 
were overrepresented. Fisher’s exact tests were used to 
assess the significance of the above-mentioned enrich-
ment analyses. Multiple testing was corrected using the 
BH-FDR correction with a corrected P value of 0.05.

We constructed PPI networks form the up and down 
regulated gene sets using STRING version 10.5, with 
the highest confidence value of 0.9 [51]. Hub genes were 
defined by the top 1% of the node degree in the PPI net-
works. Additionally, the Human Brain Transcriptome 
database (http:// hbatl as. org/) was used to characterize 
the spatial–temporal expression trajectory of hub genes 
with the highest node degree.

Results
Case–control differences
Mega analysis revealed significant alterations (P < 0.05, 
FDR corrected) in cortical complexity between individu-
als with ASD and TDCs in several key brain networks 
(Fig.  2A). The case–control difference pattern from the 

Table 1 Distribution of participants across different sites in 
ABIDE I and II datasets

BIDE, Autism Brain Imaging Data Exchange; ASD, autism spectrum disorder; 
TDC, typically developing controls; BNI, Barrow Neurological Institute; CALTECH, 
California Institute of Technology; CMU, Carnegie Mellon University; EMC, 
Erasmus University Medical Center Rotterdam; GU, Georgetown University; IP, 
Institut Pasteur and Robert Debré Hospital; IU, Indiana University; KKI, Kennedy 
Krieger Institute; LEUVEN, University of Leuven; MAX_MUN, Ludwig Maximilians 
University Munich; NYU, New York University Langone Medical Center; OHSU, 
Oregon Health and Science University; OLIN, Institute of Living at Hartford 
Hospital; PITT, University of Pittsburgh School of Medicine; SBL, Social Brain Lab 
BCN NIC UMC Groningen and Netherlands Institute for Neurosciences; SDSU, 
San Diego State University; SU, Stanford University; TRINITY, Trinity Centre 
for Health Sciences; UCD, University of California Davis; UCLA, University of 
California, Los Angeles; UM, University of Michigan; USM, University of Utah 
School of Medicine; YALE, Yale Child Study Center, Yale School of Medicine

ABIDE I ABIDE II

Site ASD TCD Site ASD TCD

CALTECH 18 19 BNI 29 29

CMU 14 13 EMC 20 22

KKI 20 32 GU 40 49

LEUVEN 29 33 IP 15 30

MAX_MUN 22 32 IU 18 20

NYU 75 102 KKI 52 150

OHSU 13 15 NYU 66 27

OLIN 16 15 OHSU 37 55

PITT 29 27 SDSU 32 25

SBL 14 14 SU 21 21

TRINITY 23 25 TRINITY 18 20

UCLA 50 42 UCD 14 12

UM 53 75 USM 17 15

USM 57 43

YALE 27 28

Total 460 515 Total 379 475

https://metascape.org/
https://metascape.org/
http://www.brainspan.org/
http://doughertytools.wustl.edu/CSEAtool.html
http://doughertytools.wustl.edu/CSEAtool.html
http://hbatlas.org/
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meta-analysis (Supplementary Fig.  1) was remarkably 
similar to that derived from the mega-analysis (spatial 
similarity: r = 0.95, p < 0.0001) (Fig.  2B). Notable differ-
ences were observed in the left temporoparietal network, 
and in the left peripheral visual network. Additionally, 
significant changes were found in the right central vis-
ual network, the left somatomotor network, particularly 
within the insula, and the left ventral attention network 
(Fig. 2C).

Brain gene expression profiles associated with cortical 
complexity changes
We investigated the relationship between brain-wide 
gene expression maps and cortical complexity changes 

in ASD using a PLS regression analysis. The first and 
third PLS components of ABIDE I and the first com-
ponent of ABIDE II were extracted based on their high 
statistical significance (P < 0.05), embodying linear 
combinations of weighted gene expression scores asso-
ciated with the t-statistical map (Fig. 3, Supplementary 
Table  1 listed the full gene terms before the Z score 
cut-off ). Subsequently, upregulated and downregulated 
gene sets were meticulously extracted from the first 
and third components of ABIDE I, along with corre-
sponding gene sets from the first component of ABIDE 
II. We combined the  first and third components  from 
ABIDE-I with the  first component  from ABIDE-
II due to their  high spatial similarity and biological 

Fig. 2 Case–control differences in cortical complexity. A Unthresholded T-maps of cortical complexity differences for the ABIDE I and ABIDE II 
datasets. These maps illustrate the full range of t-values representing cortical complexity differences between individuals with autism spectrum 
disorder (ASD) and typically developing controls (TDCs). Warmer colors (red) indicate regions with increased cortical complexity, and cooler colors 
(blue) represent decreased cortical complexity in ASD compared to TDCs. B Spatial correspondence between the mega- and meta-analysis case–
control difference maps. The scatter plot displays the correlation between the t-values from the mega-analysis (x-axis) and meta-analysis (y-axis). 
The histograms along the axes show the distributions of t-values for each analysis, indicating a strong linear relationship (r = 0.95, p = 1.02e−198). 
C Schaefer brain networks displaying regions with significant cortical complexity alteration in ASD. The regions include: LH_TempPar_4 
(temporoparietal network), LH_SomMotB_Ins_1 (somatomotor network including the insula), RH_VisCent_ExStr_10 (central visual network), LH_
VisPeri_ExStrSup_1 (peripheral visual network), and LH_SalVentAttnB_PFCi_2 (ventral attention network)
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relevance.  While these components capture  orthogo-
nal aspects of variance. Intersections of upregulated 
and downregulated genes were determined, resulting 
consolidated lists capturing genes associated with up 

regulated genes (denoted as URGs) and down regulated 
genes (denoted as DRGs) related to cortical complex-
ity changes in ASD, forming the basis for subsequent 
enrichment analyses.

Fig. 3 Differential gene expression analyses. A PLS component analysis. The plot depicts the p-values of PLS components for ABIDE I (blue) 
and ABIDE II (red) datasets, indicating the statistical significance of each component. B Venn Diagrams of Up- and Down-Regulated Genes. The 
left shows the overlap of up-regulated genes between ABIDE I and ABIDE II datasets across different PLS components, while the right illustrates 
the overlap of down-regulated genes between the two datasets. C The plot shows the correlation between case–control values and PLS1 
scores for ABIDE I. D The plot shows the correlation between case–control values and PLS3 scores for ABIDE I. E The plot depicts the correlation 
between case–control values and PLS1 scores for ABIDE II. ABIDE, Autism Brain Imaging Data Exchange; PLS, partial least squares
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Gene enrichment analyses
Enrichment analyses were mostly focused 
on  URGs,  while  DRG terms  are detailed in the  Supple-
mentary Table 1 for comprehensive coverage. Our analy-
sis revealed significant enrichment of URGs in several key 
biological processes, including modulation of synaptic 
transmission, signaling, and nervous system processes. 
Additionally, URGs exhibited enrichment in cellular 
components such as the mitochondrial membrane and 
respirasome, and in molecular functions including elec-
tron transfer activity and inorganic molecular entity 
transmembrane transporter activity. Meanwhile, DRGs 
showed significant enrichment in biological processes 
associated with chromatin organization and regulation of 
cellular response to stress. Furthermore, DRGs exhibited 
enrichment in cellular components such as the centro-
some and Golgi membrane, and in molecular functions 

including histone binding and molecular adaptor activ-
ity. Notably, our analysis also identified an association of 
DRGs with neurodegeneration pathways, as revealed by 
KEGG analysis. Figure 4A, B showed representative gene 
enrichment terms for URGs (see Supplementary Table 2 
for full list).

Tissue and cell type specific expression
The URGs and DRGs related to cortical complexity 
changes in ASD exhibited specific expression patterns 
in brain tissue, including in the cerebral cortex (Fig. 4C 
and Supplementary Fig. 2, 3). SEA of adult brain regions 
demonstrated significant expression of the identified 
gene sets in key brain regions, including the cerebellum, 
cerebral cortex, thalamus, and hippocampus. Moreover, 
cell type SEA revealed higher expression levels in spe-
cific neuronal populations, such as Pnoc+ neurons in 

Fig. 4 Functional enrichment and expression analysis. A Dot plot shows enriched gene ontology (GO) terms of up regulated genes (URGs). 
B Dot plot illustrates enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of URGs. C Lollipop chart indicates the tissue-specific 
expression patterns of the identified URGs. D Line plots show the temporal expression patterns of RPS2 across different developmental stages. 
E Line plots show the temporal expression patterns of STAT1 across different developmental stages. BP, biological process; CC, cellular components; 
MF, molecular function; OFC, orbital prefrontal cortex; DFC, dorsolateral prefrontal cortex; VFC, ventrolateral prefrontal cortex; MFC, medial prefrontal 
cortex; M1C, primary motor (M1) cortex; S1C, primary somatosensory (S1) cortex; IPC, posterior inferior parietal cortex; A1C, primary auditory (A1) 
cortex; STC, superior temporal cortex; ITC, inferior temporal cortex; V1C, primary visual (V1) cortex
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the cortex and cholinergic neurons in the striatum (Sup-
plementary Fig.  4, 5). Additionally, developmental gene 
expression analysis indicated that URGs were expressed 
in the brain from late fetal development onward, across 
various brain regions including the cortex, and subcor-
tex (hippocampus, striatum, thalamus), whereas DRGs 
exhibited expression from early to mid-fetal development 
onward, across several brain regions including the cortex 
and subcortex (amygdala, thalamus).

PPI networks, hub genes, and temporal specific expression
We constructed networks of known interactions between 
proteins encoded by the two gene sets (Supplementary 
Fig. 6, 7). For the URGs, the resulting network comprised 
889 nodes and 966 edges, significantly more than the 654 
edges expected by chance, with an average node degree 
of 2.17 (PPI enrichment P-value < 1.0e−16). Similarly, for 
the DRGs, the resulting network consisted of 492 nodes 
and 93 edges, surpassing the expected 73 edges, with an 
average node degree of 0.378 (PPI enrichment P-value 
0.0151). For detailed information on the constructed net-
work see Supplementary Table 3.

Hub genes were identified as those within the top 1% of 
the node degree in each PPI network. In total, we iden-
tified 9 and 5 hub genes involved in the PPI networks 
constructed by the URGs and DRGs, respectively (Sup-
plementary Fig.  8). Here, we characterized the spatial–
temporal expression trajectory of two hub genes with the 
highest node degree for each gene set, namely RPS2 for 
the URGs and STAT1 for the DRGs (Fig. 4).

Discussion
We explored the molecular underpinnings of cortical 
complexity alteration by integrating microscale brain 
gene expression with macroscale MRI data from multi-
scanner large datasets. We identified significant altera-
tions in cortical complexity between individuals with 
ASD and TDCs in several key brain regions, including 
the left temporoparietal network, left peripheral visual 
network, right central visual network, left somatomotor 
network (particularly within the insula), and left ven-
tral attention network.  The first and third PLS compo-
nents of ABIDE I and the first component of ABIDE II 
explain a significant proportion of variance in these cor-
tical complexity alterations. We extracted two gene sets 
that positively (URGs) and negatively (DRGs) associated 
with the alteration of cortical complexity in ASD relative 
to the TDCs. These genes were significantly enriched for 
biological functions and pathways. Specific expression 
analyses revealed that these cortical complexity changes 
related genes were expressed in brain tissue, particu-
larly in cortical neurons, across various developmental 

periods. Additionally, PPI analysis revealed that these 
genes could construct a PPI network with 14 hub genes.

Several significant alterations in cortical complex-
ity between individuals with ASD and TDCs have been 
identified in our study. The left temporoparietal network, 
which is crucial for integrating sensory and cognitive 
information, showed significant alterations in individu-
als with ASD. The observed differences in this region may 
underlie some of the core deficits in social interaction 
and communication seen in ASD. Previous research has 
indicated abnormal functional connectivity in the tempo-
roparietal junction in ASD, which is associated with dif-
ficulties in understanding others’ perspectives and social 
cues [52, 53]. Significant changes were also found in both 
the left peripheral visual network and the right central 
visual network. Alterations in these networks suggest 
potential disruptions in visual processing pathways in 
ASD, which may contribute to the atypical experiences 
and perceptual processing often reported in individuals 
with ASD [54, 55].

The left somatomotor network, particularly within the 
insula, exhibited significant changes. The insula plays a 
vital role in sensorimotor integration and emotional pro-
cessing [56]. This finding aligns with previous studies that 
have reported atypical insular activity and connectivity 
in ASD, associated with sensory overresponsivity and 
difficulties in emotional awareness [57]. The left ventral 
attention network, involved in executive functions and 
attentional control, also showed significant alterations. 
Changes in this network may contribute to the executive 
function deficits and attentional dysregulation observed 
in ASD [58, 59]. Previous studies have demonstrated that 
individuals with ASD often exhibit difficulties in shifting 
attention and managing distractions, which are linked to 
abnormalities in the ventral attention network [60, 61].

One plausible explanation for the observed cortical 
complexity alterations in multiple brain regions in ASD 
compared to TDCs is aberrant neurodevelopment. It has 
been suggested that during brain development, individu-
als with ASD may experience disruptions in neuronal 
proliferation, migration, and cortical organization, lead-
ing to atypical cortical complexity patterns [62]. Studies 
have reported abnormalities in gene expression, neuronal 
connectivity, and synaptic pruning in ASD, which could 
contribute to alterations in cortical morphology [63, 64]. 
Additionally, the prenatal disruptions in brain develop-
ment could underlie the cortical complexity alterations 
observed in our study.

Another potential explanation is altered neuronal 
connectivity in individuals with ASD. Diffusion tensor 
imaging studies have consistently reported disruptions 
in white matter tracts and connectivity patterns in ASD 
[65]. The disruption of white matter connectivity may 
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directly account for the cortical complexity changes, 
given that tension along axons in the white matter is the 
primary driving force for cortical folding [66]. Interest-
ingly, alterations in grey matter cortical complexity have 
been suggested to be secondary to axonal damage in 
the white matter [67]. These alterations in connectivity 
could affect the development and organization of corti-
cal networks, thereby influencing cortical complexity 
[68]. Nicastro and his collogues proposed that changes in 
cortical complexity may depend on the extent of struc-
tural impairment affecting the pial surface. A decrease in 
complexity is more likely if alterations in the pial surface 
reduce the folding area, while an increase in complex-
ity would be expected if the change involves an increase 
in sulcal depth [69]. Moreover, both environmental and 
genetic factors could contribute to the observed altera-
tions in cortical complexity. Prenatal and perinatal envi-
ronmental factors, such as maternal immune activation 
and exposure to toxins, have been implicated in the eti-
ology of ASD and could influence cortical development 
[70]. Numerous genetic studies have identified risk genes 
associated with ASD, many of which are involved in neu-
rodevelopmental processes and synaptic function [71, 
72].

Given the heterogeneity in autism imaging findings [2], 
it is pertinent to ask how genetic risk for autism is asso-
ciated with variability in cortical complexity changes. In 
our study, the enrichment of URGs involved in chemi-
cal synaptic transmission and excitatory postsynaptic 
potential aligns with previous research implicating syn-
aptic dysregulation in ASD pathology [35, 63]. Synaptic 
processes play a critical role in ASD, where aberrant syn-
aptic function is associated with impaired communica-
tion between neurons and disrupted network dynamics 
[73]. Previous investigations have identified disruptions 
in trans-synaptic signaling as a common theme in ASD, 
potentially impacting information processing and con-
nectivity within neural networks [74]. Synaptic plasticity, 
a fundamental aspect of learning and memory, has been 
extensively studied in the context of ASD, with evidence 
suggesting that aberrations in plasticity mechanisms con-
tribute to cognitive and behavioral phenotypes associ-
ated with the disorder [75, 76].

Researchers have established the involvement of a 
wide array of genes in nervous system processes associ-
ated with neurodevelopmental disorders [77, 78]. Fur-
thermore, our study revealed the enrichment of genes 
associated with mitochondrial components, such as the 
mitochondrial membrane, respiratory chain complex, 
and respirasome, suggesting a potential link between 
altered cortical complexity and mitochondrial functions 
in ASD. There is a growing body of evidence highlight-
ing mitochondrial dysfunction as a contributing factor in 

the pathophysiology of ASD [79]. This association is par-
ticularly relevant, given the crucial role of mitochondria 
in synaptic transmission, neuronal plasticity, and overall 
neuronal health [80].

Neurodegeneration pathways encompass a wide array 
of cellular processes, including protein aggregation, oxi-
dative stress, mitochondrial dysfunction, and synaptic 
dysfunction, among others. The identification of neuro-
degeneration pathways enriched among URGs associated 
with cortical changes in ASD suggests potential shared 
molecular pathways between ASD and neurodegenera-
tive disorders such as Alzheimer’s disease, Parkinson’s 
disease, and Huntington’s disease. The identification of 
GO terms associated with electron transfer activity, par-
ticularly involving the NADH dehydrogenase complex, 
and oxidoreduction-driven active transmembrane trans-
porter activity within our transcriptomic analysis hints 
at putative implications for cellular energetics and redox 
homeostasis [81, 82]. These observations show a plau-
sible role for the identified genes in modulating funda-
mental metabolic pathways crucial for sustaining cellular 
function and homeostasis within the cerebral cortex.

We observed significant enrichment of DRGs in chro-
matin organization and remodeling, processes critical 
for regulating gene expression patterns during neurode-
velopment and essential for proper neuronal differentia-
tion and maturation. [83, 84]. Additionally, chromosome 
segregation defects and impaired stress response mecha-
nisms have been implicated in various neurodevelop-
mental disorders, including ASD [85, 86]. Dysregulation 
of these molecular functions can impact gene expression 
profiles and contribute to the observed changes in neu-
ronal connectivity and synaptic function associated with 
cortical complexity changes in ASD.

Our study has some limitations worth noting. The 
ABIDE datasets used in this study did not consistently 
report comorbid psychiatric, genetic, or neuropsychi-
atric conditions across participants. Despite combining 
large datasets from ABIDE I and II and identifying PLS 
components with significant p-values, further validation 
is needed. The challenge of characterizing the specificity 
of identified associations remains, as the spatial expres-
sion pattern of certain gene categories may cause them 
to appear significantly enriched. Additionally, the use of 
gene expression data from only six postmortem adult 
brains in the AHBA, with right hemisphere data avail-
able from just two donors. This limited sample size may 
reduce the generalizability of our findings. Imaging tran-
scriptomics can identify molecular correlates of corti-
cal complexity variations, but further investigation is 
required to understand individual brain differences. The 
whole-brain gene expression data were derived from 
only six postmortem adult brains, with right hemisphere 
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data from only two donors. This limited sample size con-
strains strong assertions about gene expression stability 
across human brains.

In summary, we identified cortical complexity altera-
tions in ASD compared to TDCs and explored the under-
lying genetic determinants. We identified genes and 
transcript expression changes in ASD that occur across 
the cerebral cortex, affecting many neural cell types and 
specific biological processes. As we seek to gain a deeper 
understanding of cortical complexity changes in ASD, 
future approaches that integrate different sources of bio-
logical data and more specific methods to determine how 
ASD risk genes affect the brain structure will be essential.
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