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ITS amplicon sequencing revealed that rare taxa of tea 
rhizosphere fungi are closely related to the environment and 
provide feedback on tea tree diseases
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ABSTRACT The rhizospheres of plants and soil microorganisms are intricately 
interconnected. Tea trees are cultivated extensively on the karst plateau of Guizhou 
Province, China; however, the understanding of the interactions among fungal com­
munities, community taxa, and diseases impacting tea tree in the soil rhizosphere is 
limited. Our aim is to offer insights for the advancement of modern agriculture in 
ecologically fragile karst tea gardens, as well as microbiomics concepts for green and 
sustainable environmental development. This study utilized the internal transcribed 
spacer high-throughput sequencing technology to explore the symbiotic relationship 
between rhizosphere fungi and plant disease feedback in multiple tea estates across the 
Guizhou Plateau. The ecological preferences and environmental thresholds of fungi were 
investigated via environmental variables. Furthermore, a correlation was established 
between different taxa and individual soil functions. Research has indicated that tea 
leaf blight disrupts symbiotic connections among fungal groups. For various taxa, we 
found that numerous taxa consistently maintained core positions within the commun­
ity, whereas rare taxa were able to stabilize due to a high proportion of positive 
effects. Additionally, abundant taxa presented a wider range of environmental feedback, 
whereas the rare taxon diversity presented a stronger positive association with the soil 
Z score. This study contributes to our understanding of the importance of rare taxa in 
plant rhizosphere soil processes. Emphasis should be placed on the role of rare taxa in 
pest and disease control within green agriculture while also strengthening systematic 
development and biogeographical research related to rare taxa in this region.

IMPORTANCE In this study, based on internal transcribed spacer high-throughput 
sequencing, fungal communities in the rhizosphere soil of tea trees and their interactions 
with the environment in karst areas were reported, and the symbiotic relationships of 
different fungal taxa and their feedback to the environment were described in detail 
by using the knowledge of microbial ecology. On this basis, it was found that tea tree 
diseases affect the symbiotic relationships of fungal taxa. At the same time, we found 
that rare taxa have stronger cooperative relationships in response to environmental 
changes and explored their participation in soil processes based on fungal trait sets. This 
study will provide basic data for the development of modern agriculture in tea gardens 
and theoretical basis for the sustainable prevention and control of tea tree diseases.

KEYWORDS rhizosphere fungi, rare taxa, cooccurrence network, individual soil 
function, tea tree, karst

T he population characteristics of ecosystems often include a high concentration 
of abundant taxa (AT) groups, a large number of rare taxa (RT), and low niche 

occupancy rates (1), which are widespread from the macro population to the micro world 
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(2, 3). Previous studies have shown that identifying the diverse distribution patterns, 
relationships, and functional properties of AT and RT in various natural ecosystems 
(4, 5) and social phenomena (6) is always possible. Therefore, exploring the interac­
tion between AT and RT and their involvement in environmental processes can help 
researchers understand microbially driven ecological processes and functions.

Microbial communities participate in soil processes and geochemical cycles (7) and 
are essential for maintaining ecosystem stability (8). With constant advancements in 
the microbial sequencing technology, studies on the interaction mechanisms between 
distinct microbial groups and their coupling with the environment have become popular. 
Recent studies have shown that bacterial diversity and specific bacterial groups are 
key driving factors for soil multifunctionality in temperate arid and semiarid moun­
tain ecosystems (9). The interaction between pathogenic and mycorrhizal fungi in soil 
networks can explain the coexistence of aboveground and underground biological 
communities in forest ecosystems (10). In eukaryotes, fungi are very different from 
bacteria in prokaryotes, such as filamentous fungi that grow on hyphae and are larger 
in size (11). Certain types of fungi in the soil infiltrate plant tissues through plant roots 
or spread at the spore level, forming extensive symbiotic relationships with host plants 
(12, 13). Moreover, fungi play a fundamental ecological role in mediating plant mineral 
nutrition and alleviating nutrient limitations in other organisms and constitute a key 
group in ecological restoration research in ecologically fragile areas. The high physiologi­
cal and morphological plasticity of fungi can improve the availability of soil nutrients and 
the absorption of crop nutrients along environmental gradients (14). However, there is 
limited research on the rich and rare taxa in agricultural ecosystems in ecologically fragile 
areas, such as karst areas, and little is known about the interaction mechanisms of rare 
taxa in soil fungal communities and their interactions with abiotic factors.

Tea is the oldest and most popular caffeinated beverage worldwide, with tremendous 
economic, therapeutic, and cultural significance (15). The Guizhou Plateau has a long 
history of tea tree (Camellia sinensis) cultivation (16, 17), with unique karst landforms, 
diverse climates, and abundant precipitation, which effectively protect tea tree resources 
in this region (18). Colletotrichum camelliae is a phytopathogenic fungus that causes 
brown blight in tea trees (19). This disease results in significant production and economic 
losses to the yield of some sensitive cultivated tea varieties (20). Currently, there are few 
studies on the rhizosphere fungi of tea gardens in karst areas affected by disease, and it 
is not clear how different taxa of fungi interact with each other and how they participate 
in environmental processes. It is understood that disease-induced changes in plant 
performance can trigger a series of indirect changes in the rhizosphere environment, 
significantly affecting the composition and assembly mechanism of the rhizosphere 
microbial community (21). Owing to the low ecological carrying capacity of karst regions 
(22), the transformation of traditional agriculture to a modern agricultural development 
model is particularly urgent (23), and green and sustainable agricultural measures need 
to be further optimized. Therefore, theoretical studies on the diversity of rhizosphere 
fungi in tea trees and their interactions are particularly important.

This study aimed to examine (i) the composition and diversity of rhizosphere fungal 
communities under the influence of tea brown blight disease, (ii) the occupancy and 
co-occurrence relationships of different fungal taxa, (iii) the ecological preferences of 
abundant and rare taxa groups and their response to the environment, and (iv) the 
relationships between different fungal taxa and individual soil functions. The research 
results provide support for the geographical distribution of soil microorganisms in tea 
gardens in karst areas and for green prevention and control in the future.

RESULTS

General distribution patterns of different fungal taxa

We first described the fungal community and its diversity and evaluated the abundance 
occupancy relationship of different fungal taxa, as well as the differences in fungal 
species in the rhizosphere soil between healthy and diseased tea trees. After rigorous 
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data processing (flattening the sequencing data and filtering out OTUs with reads less 
than 20 to reduce the ground error caused by low-frequency OTUs in subsequent 
analysis), 1091 OTUs belonging to 14 phyla, 34 classes, 70 orders, 127 families, and 
199 genera were identified. At the phylum level, the top three phyla in terms of relative 
abundance were Ascomycota (51.05%), Basidiomycota (23.69%), and Mortierellomycota 
(3.99%), with the exception of unclassified OTUs, and the composition of the main fungal 
phyla was generally consistent within a given species (GSP: given species; GSP includes 
abundant taxa [AT], intermediate taxa [IT], and rare taxa [RT]) (Fig. S1 to S3). For the 
GSP, the richness of the categorical ordinals annotated as RT > IT > AT was as expected, 
and a large portion of the OTUs were classified as RT (62.33%), whereas AT accounted 
for 10.17% of the total OTUs (Table 1). The abundance occupancy relationship can be 
used to generate supporting hypotheses for core microbiome members from microbial 
data sets, prioritizing these taxa for subsequent research. The abundance–occupancy 
relationship (Fig. 1) indicated that RT had a stronger positive correlation than the other 
taxa (RT > IT > AT), with all ATs occupying more than 50% of the loci. At 100% occupancy 
sites, there was only one OTU of RT, whereas AT occupied the vast majority of 100% of 
the sites. The α diversity data revealed that tea leaf blight affected the fungal community 
diversity, but this effect was not significant (Fig. S4).

Orthogonal partial least squares discriminant analysis (OPLS-DA) is a multivariate 
statistical analysis method mainly used for classification and feature selection, which 
can effectively identify the key variables that affect group classification. Using OPLS-DA, 
we investigated differences in different fungal taxa in the rhizosphere soils of healthy 
and diseased tea trees. The results indicate that in AT, differential statistical screening 
identified a downregulated OTU (t test, P < 0.05) (Fig. S5a), and the OPLS-DA score 
better distinguished between healthy and diseased soil samples (R2Y = 0.863, Q2Y = 
0.204), explaining 86.3% of the classification information (Fig. S5b). The permutation test 
revealed that the slopes of the two fitting lines were positive (R2 = 0.79 and Q2 < 0), 
indicating a certain degree of overfitting (Fig. S6d). Notably, RT screened more OTUs (Fig. 
S6a), which had a certain degree of overfitting in OPLS-DA (Fig. S6b and d). At the same 
time, the distance between samples was smaller, but there were more species dispersion 
values and less aggregation than in AT (Fig. S5c and S6c).

Rhizosphere fungal ecological co-occurrence network analysis

Cooccurrence networks were used to analyze the potential interaction relationships of 
the GSP. AT had more nodes and links than RT (Table S1). The average weighted degree, 
graph density, and average clustering coefficient of AT were greater than those of RT 
(Table S2; Fig. 2). Notably, the species in RT presented a more positive (95.23%) tendency 
toward cooperation. Compared with AT, RT results in a larger and more complex network 
topology with an increase in the number of links and nodes (Fig. 2b). From the perspec­
tive of the topological structure at the phylum level, the AT network exhibited ladder-
like characteristics, where dominant species dominated (Fig. 2c). Although Ascomycota 
accounted for 40.59% of RT, there was no dominant tendency, and its topological center 
parameters were not significantly different from those of Basidiomycota (Fig. 2d).

The fungal co-occurrence network can reveal the ecological relationships between 
fungal communities and speculate on the interactions between species. Here, we 
constructed a fungal network using correlation coefficients |r| > 0.65 and P < 0.05 to 
characterize the interaction relationships between GSPs (Table S2; Fig. 3a). In fungal 
communities, there are extensive positive correlations (positive) between different taxa 

TABLE 1 Quantitative statistics of different taxa of tea rhizosphere fungi at various taxonomic levels

Taxa OTUs Phylum Class Order Family Genus

Whole 1091 14 34 70 127 199
AT 111 3 8 20 34 41
IT 300 9 20 43 67 76
RT 680 14 34 62 109 137
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(AT, IT, and RT), with a high proportion of 95.23% between IT and RT, but the proportion 
of positive correlations between RT and AT is the smallest (Table 2; Fig. 3b). Notably, 
although RT has a large group, its cooperative relationship with AT is weaker than that 
between IT and AT (links: 1198 < 1372), whereas there is a broad connection between 
IT and RT (links: 3950). From the perspective of topology, the position of AT as the 
dominant species was not reflected in the topology data, and its difference from that 
of IT was not significant. However, the topology data for RT were significantly related to 
both AT and IT (Fig. 3c). Under the influence of tea leaf blight, there was a downwards 
trend in the positive correlation links in the fungal network, and the main topological 
data were lower than those in the healthy sample network (Table S3).

Response of different fungal taxa to the environment

In order to clarify the relationship between soil fungi and the environment, we not 
only measured the hydrogen (pH), electrical conductance (EC), and soil organic matter 

FIG 1 Abundance‒occupancy relationships between abundant taxa and rare taxa from the tea tree rhizosphere. The Spearman correlation coefficient (R) was 

used to quantify the strength and direction of these relationships, with *** indicating statistical significance at P < 0.001.

Research Article Microbiology Spectrum

January 2025  Volume 13  Issue 1 10.1128/spectrum.01889-24 4

https://doi.org/10.1128/spectrum.01889-24


(SOM) that are closely related to soil quality, but also emphasized the mutual relation­
ship between soil available nutrients (quick-acting phosphorus, available potassium, 
and alkaline hydrolyzed nitrogen) and fungal communities. To obtain information on 
potential traits, we attempted to define the ecological preferences of each OTU via 
Spearman’s correlations between fungal taxa and environmental variables (Table 3). 
Fungal community traits were acquired via the “Hmisc” package in R. Here (Fig. 4), 
both AT and RT presented similar phylogenetic diversities, although they were domina­
ted by Basidiomycota, Ascomycota, and Mortierellomycota. Among them, AT included 
12 genera of fungi, including Saitozyma, Fusarium, and Trichoderma, whereas the RT 
group included nine genera of fungi. Moreover, the correlation between rare taxonomic 
groups and the environment was slightly greater than that between AT (ecological 
preference point RT: 50 > AT: 42) and the environment. Notably, both AT and RT had 
identical ecological preferences for OC (negative) and AK (positive) in terms of their 
OTU traits (Fig. 4). In RT, except for OTUs that did not display ecological preferences, 

FIG 2 Analysis of the co-occurrence network and the topological structure based on the GSP of tea rhizosphere fungi. (a) Network relationships of AT: 

each node’s size corresponds to its degree or the number of connections; the color of connections between two nodes represents a positive (red) or a 

negative correlation (green) displaying the top three ranked phyla; (b) network relationships of AT displaying the top two ranked phyla; (c and d) Rich and 

rare classification group network topology data (degree, betweenness centrality, eigenvector centrality, and closeness centrality) box plots, Wilcoxon test for 

difference analysis, * means P < 0.05.
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the ecological preferences of the other OTUs for pH (native) and EC (positive) were 
completely consistent (Fig. 4b).

To identify the environmental thresholds for fungal communities in relation to each 
variable, we assessed the accumulating Z+ (positive response species generated by 
changes along environmental gradients) and Z− (negative response species generated 
by changes along environmental gradients) points of change via the “TITAN2” package 
(Fig. 5 and 6). We did not add IT and RT here to eliminate the interference caused 
by the “double zero problem.” The results revealed that the response of reducing taxa 
to EC enrichment lagged behind that of increasing taxa, whereas the process of AK 
enrichment had the opposite effect. The overall responses of most species to the various 
environmental gradients were consistent (Fig. 5). Moreover, the distribution maps of 
negatively and positively responsive species along the environmental gradient revealed 
that the gradient changes in pH and OC caused an increase in negatively responsive 
species, whereas EC and AK showed opposite trends (Fig. 6). Notably, all the response 
species, with the exception of the unidentified OTUs, belonged to Ascomycota and 
Basidiomycota, and OTU000059 (unclassified) and OTU000095 (Ascomycota) responded 
to all the environmental variables (Table S4; Fig. 6).

We further evaluated the relationships between GSP diversity (α and β diversities) and 
individual soil functions (Table S6; Fig. 7 and 8). By evaluating the relationships between 

FIG 3 Analysis of the co-occurrence networks and topological data differences for GSP. (a) Network analysis reveals relationships both within and across GSPs. 

A link represents a significant (FDR-corrected P < 0.05) and strong (Spearman’s |r| > 0.65) connection; (b) the number of links within and between GSPs; and (c) 

analysis of differences in the network topology indicators between GSPs using the Wilcox test for significance testing. *** indicates P < 0.001.

TABLE 2 Statistical analysis of the correlation between different taxa (GSP) of tea rhizosphere fungi

GSP Total links Positive links Negative links Positive correlations (%)

AT-AT 435 356 79 81.84
AT-IT 1372 1073 299 78.21
AT-RT 1198 919 279 76.71
IT-IT 2121 1741 380 82.08
IT-RT 3950 3255 695 82.41
RT-RT 4132 3935 197 95.23
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α diversity and individual soil functions through an overall sample analysis (N = 20), 
we found a significant negative correlation between soil pH and both AT (R2 = 0.212, P 
< 0.05) and RT (R2 = 0.203, P < 0.05). Soil EC, an important indicator, was significantly 
positively correlated with both AT (R2 = 0.312, P < 0.05) and RT (R2 = 0.212, P < 0.05). 
Interestingly, the RT α diversity was also significantly positively correlated with soil AP (R2 

= 0.389, P < 0.01) and AK (R2 = 0.226, P < 0.05) and significantly negatively correlated with 
soil OC (R2 = 0.205, P < 0.05). However, there was no significant correlation between the 
IT (P > 0.05) and individual soil functions. From the β diversity perspective, only RT had a 
significant negative correlation with soil AP (R2 = 0.389, P < 0.05), whereas the other GSPs 
were not significantly correlated with individual soil function.

DISCUSSION

Tea tree diseases lead to the emergence of indicator species in different taxa 
of rhizosphere fungi

Soil is an essential biological matrix in nature, and plant root exudates that are released 
into the soil can affect soil properties. Rhizosphere and ectorhizosphere soils were the 
first to respond to this phenomenon because it was proved that root exudates from 
plants can enhance the abundance of beneficial taxa for specific plant species, thereby 
affecting the composition and function of soil microorganisms (24). This study revealed 
that the available nutrient content was affected by tea tree diseases. The AP and AK 
contents of healthy samples were slightly lower than those of diseased samples (Table 
S1) possibly because tea tree diseases cause poor absorption of nutrients that cannot be 
utilized. Moreover, certain pathogenic microorganisms can also consume nutrients in the 
soil, leading to nutrient imbalance. This phenomenon has also been observed in previous 
studies (25). Importantly, unhealthy tea tree soil frequently becomes acidified (Table 
S1), which directly changes the soil environment and leads to changes in the beneficial 
microbial population (26). These changes are not conducive to the reproduction of 
beneficial microorganisms but accelerate the emergence of other harmful fungi (27, 28). 
This indicates the importance of management methods based on modern agriculture 
as a basic concept by utilizing ecological principles and methods. Consequently, the 
stability of ecosystems and the sustainability of agricultural production can be achieved. 
Organic fertilizers, pesticides, and biological control methods can be used to improve 
the soil quality, protect the ecological environment, promote biodiversity, and enhance 
the quality of agricultural products, further reflecting the irreplaceability of soil as a 
biological substrate.

Ascomycota and Basidiomycota were the main phyla of fungi belonging to GSP 
(Fig. S1 to S3), indicating that fungal taxa have a certain degree of stability at rela­
tively high levels and are not affected by tea tree diseases. In GSP, compared with 
that in IT, the proportion of Ascomycota in AT generally decreased, whereas that of 
Basidiomycota generally increased. Some members of the phylum Basidiomycota form 
mycorrhizal fungi in symbiosis with plants (29), which is beneficial for crop cultivation. 

TABLE 3 Ecological preferences between different taxa of fungi and environmental variables (fungal community traits)a

Tax/Env pH EC OC OP AP AK

+ NA − + NA − + NA − + NA − + NA − + NA −

AT OTUs 16 72 23 25 71 15 5 83 23 21 71 19 19 90 2 19 88 4
Average −0.0631 0.0901 −0.1622 0.0180 0.1532 0.1351

IT OTUs 46 167 87 85 172 43 20 215 65 37 206 57 43 252 5 61 219 20
Average −0.1367 0.14 −0.15 −0.6667 0.1267 0.1367

RT OTUs 69 487 124 121 513 46 42 550 88 43 545 92 48 614 18 78 565 37
Average −0.0809 0.1103 −0.0676 −0.0721 0.0441 0.0603

Total OTUs 131 / 234 231 / 104 67 / 176 101 / 168 110 / 25 158 / 61
aFor example, the positive and negative correlations of OUT with pH were defined as acid- or alkaline-preferred correlations. “+” is denoted as “1” in the data set representing 
a positive correlation; “NA“ is denoted as “0“ in the data set representing no correlation; and “−” is denoted as "−1" in the data set representing a negative correlation; “/” 
means that the indicator is not applicable here.
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Some basidiomycetes can cause diseases in forests and garden plants (30), resulting 
in economic losses. The abundance‒occupancy relationship is a critical indicator for 
studying fungal community relationships as a core or host-specific group. A greater 
abundance of AT had a wider distribution, whereas a lower occupancy rate of RT 
implied a greater elimination risk (Fig. 1). Previous studies support this viewpoint (31). In 
addition, OPLS-DA demonstrated (Fig. S5 to S6) that tea tree diseases have a significant 
effect on fungal communities, and AT screening revealed that the genus Penicillium was 
significantly present in the affected samples (M). Penicillium belongs to the heterotrophic 
aerobic type, which can cause plant Penicillium disease, causing the formation of large 
areas of disease spots in plants and plant death in severe cases (32). In RT, two families, 
namely, Bulleribasidiaceae and Phyllosticaceae, were present in the diseased sample (M), 
and Phyllosticaceae can cause plant leaf blight (33).

Compared with nonfungi, fungi have relatively high symbiotic rates

Microbial network relationships are driven by multiple factors, such as crossfeeding, 
legacy effects, and environmental filtering (34). Microorganisms often exist in symbiotic 
forms that are conducive to the construction of complex ecological networks (35). Our 

FIG 4 Correlations between GSPs (AT and RT) and the environment of fungi in the rhizosphere soil of tea trees. (a and b) Phylogenetic relationships and 

environmental preferences of the top 25 OTUs in terms of the relative abundance in AT and RT. The neighbor-joining method was used to construct the 

phylogenetic tree. Taxa that are genus-level assignable are shown; those that are not are displayed as OTU IDs.
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results revealed a relatively positive correlation in the RT (95.23%) network, and the 
significance test of the topological structure revealed that AT still played a core role in 
the community (Table S2; Fig. 2). Previous studies on the network relationships of soil 
microbial communities in the Hexi Corridor region of China have shown that most of the 
network links within the taxa are positively correlated (36), which is consistent with our 
findings.

RT is crucial for the construction of microbial networks and serves as an indicator 
of the evolution of soil processes and vegetation succession (4, 5). In this study, we 
found that the internal connections between the RT taxa were the closest and mostly 
positive (Fig. 3a and b). Studies have shown that rare taxa have important ecological 
functions, including element cycling, pollutant degradation, and host health (37). There 
were fewer connections between AT and RT, and the proportion of negative correlations 
was greater than that between the other groups (Table 2). RT was located at the center 
of the network and tended to cooperate with the intermediate taxa (IT) (Fig. 3a and b). 
The reasons for their lower cooperation with AT are partly their abundance‒occupancy 
relationships (Fig. 1) and partly the key role that they may be playing in enhancing 
the stress resistance of fungal communities, as well as maintaining their structure and 
stability (38). The key role of RT is self-evident. Generally speaking, abundant and rare 
taxa exhibit different responses to environmental changes, while rare taxa are more 
sensitive (39). Studies have shown that RT with flexible and diverse taxa can improve 
the selection efficiency of key taxa rather than relying solely on the input of new 
microbial taxa under environmental interference (40). Notably, tea leaf blight increased 
the negative correlation between species of different taxa in the fungal network, and the 
topological structure became loose (Table S3). This means that the resource competi­
tion between taxa caused by plant diseases intensifies, thereby disrupting community 
stability.

FIG 5 Response curves of the fungal AT-negative responsive species (Z−) and -positive responsive species (Z+), indicating the total scores along environmental 

gradient mutation points. All community members' z scores are displayed. The green symbols represent the rising taxa (Z+), whereas the violet symbols 

represent the declining taxa with increasing environmental gradient (Z−).
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Environmental response of abundant and rare taxa

Soil microbes have significant ecological functions in the soil nutrient cycle and 
plant mineral nutrition (41). However, because of their susceptibility to environmen­
tal changes, external environmental changes frequently result in changes in variety 
and community structure (42, 43). Here, we discuss the ecological preferences of soil 
microorganisms for the external environment. First, we observed that, compared with RT 
(19.75%) (Table S5), AT (28.68%) exhibited a broader ecological preference for environ­
mental variables. This can also explain why, compared with RT, AT has greater adapta­
bility to environmental changes and can effectively utilize a wider range of resources. 
Research on other agricultural ecosystems supports this view (31). Interestingly, among 
the top 25 OTUs in terms of the relative abundances of AT and RT, the response of 
RT to the environmental variables was slightly greater than that of AT (Fig. 4). This 
phenomenon can be explained by the efficient selection of RT, which can stabilize it in 
the community and increase its occupancy rate, rather than by continuously updating 

FIG 6 Distribution of the negatively and positively responsive species in communities along environmental gradients. OTUs that have been identified as genera 

are represented by their genus names; otherwise, the OTU ID is displayed.

FIG 7 Relationships between AT (a), IT (b), and RT (c) α diversity (Chao 1 index) and individual soil function (N = 20). The lines represent the fitted linear ordinary 

least squares (OLS) model. The red and black lines denote statistically significant (P < 0.05) and nonsignificant (P > 0.05) relationships, respectively. Note: “**” 

means P < 0.01; “*” means P < 0.05.
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RT through environmental intervention. In addition, the response traits of the AP and 
AK preferences in fungal communities are relatively conserved (Table S5; Fig. 4), and 
previous studies have shown that root exudates can affect soil available nutrients 
during plant growth stages (44). Therefore, revealing the ecological preferences of fungal 
communities for available nutrients can be used to evaluate the effects of soil feedback 
on plant growth. Soil microorganisms affect the transformation and supply of nitrogen 
and other nutrients. An environmental threshold analysis revealed more negatively 
responsive species along the pH gradient in AT compared with positively responsive 
species (Fig. 5 and 6). This is due to the fact that tea trees are well-suited for acidic soil, 
and environments with excessively high or low pH levels hinder nutrient absorption (45, 
46). A reasonable pH (4.0–4.8) is beneficial for improving disease resistance.

This study focuses on the relationships between GSP and the individual soil functions 
of different environmental variables (Fig. 7 and 8). Standardized Z-scores for the 
environmental parameters revealed that individual soil functions and fungal α diver­
sity differed surprisingly across taxa, as supported by similar studies on bacteria and 
fungi (9, 47). There are several possible explanations for this phenomenon. First, the 
linear relationship between fungal community diversity and individual soil functions 
depends on the proportion of positive and negative species that respond to environ­
mental gradients. Our ordinary least squares fitting trend was consistent with the 
environmental threshold analysis, which explains this issue. Second, as the relative 
abundance and occupancy of species increase, certain species with specific functions 
in relatively high-abundance taxa (AT and IT) may play a reduced role in the community, 
and the active cooperation of RT gradually increases the community stability. Another 
explanation is that AT and plant roots compete for scarce nutrients, especially in 
karst areas where nitrogen and phosphorus limitations were more prominent in our 
study. This hypothesis is supported by previous research (48). In addition, this phenom­
enon indicates that the relationships between different fungal taxa and individual soil 
functions manifest as differences in the ecological niche complementarity and stochastic 
processes of community ecology (49).

From the perspectives of fungal involvement in co-occurring network construction 
and soil ecological functions, the interaction between rare fungal groups is crucial 
for determining the community composition and maintaining the ecosystem multifunc­
tionality (50). Our research has found that species within rare taxa have more posi­
tive interactions, indicating the importance of species interactions within rare fungal 

FIG 8 Relationships between AT (a), IT (b), and RT (c) β diversity (Bray‒Curtis distance) and individual soil function (N = 20). The lines represent the fitted linear 

ordinary least squares model. The red and black lines denote statistically significant (P < 0.05) and nonsignificant (P > 0.05) relationships, respectively. Note: “*” 

indicates P < 0.05.
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subpopulations in supporting ecosystem function and stability (51). In addition, the 
cooperation of rare taxa may play a crucial role in their survival in tea garden soil (acidic). 
Most fungi characterized by hyphal growth are interconnected and form a network 
through hyphae, providing timely feedback on environmental changes, which helps 
share resources and coordinate microbial activities (52). Therefore, closely monitoring 
the cooperation between rare fungal groups can provide solutions for environmental 
disturbances, including plant diseases and extreme weather events, and enhance the 
resilience of microbial communities, even soil quality (53).

Conclusions

Our study mainly focused on disease-mediated fungal changes in the rhizosphere soil 
of tea trees in karst tea garden ecosystems, as well as the interaction mechanisms of 
different fungal taxa and their responses to the environment. Our results provide reliable 
evidence that tea tree diseases increase fungal species richness but decrease fungal 
diversity, and that the distance between samples is significantly different. The results 
also revealed that the abundance of AT is closely related to its core position in the 
community, while the positive relationship between RT enables it to be stable in the 
community rather than being input from the external environment, which helps us focus 
on RT in maintaining plant root health. Importantly, RT has a more linear relationship 
with environmental variables, which also means that it plays a positive role in soil 
processes and their interactions with plants, especially in karst areas where carbon and 
nitrogen limitations are more prominent. In this study, we particularly emphasized the 
symbiotic relationship between RT and its response to the environment. The study of 
rhizosphere soil in tea gardens in karst areas via a large-scale geographic analysis will 
contribute to understanding the biogeographic pattern of RT and its relationship with 
the environment as a reference for the refined management of modern agriculture in 
karst areas.

MATERIALS AND METHODS

Study sites

This study was conducted in a tea garden (26°51′75″N, 106°38′38″E, and 27°08′47″N, 
107°35′16″E) in the Qianzhong Karst Plateau area in 2023 during a period of high 
incidence of tea tree diseases (June). The study area is located in the highland area 
of the dissolved mound depression, with typical subtropical humid tea garden ecosys­
tems. Four sampling sites were set up in Qingzhen City (QS) and Weng’an County (WS), 
covering both the healthy (H) and diseased (M) areas of the tea gardens, with five 
biological replicates set up at each site and basically the same cultivation history and 
species in all the tea gardens (Fig. S7).

Sample collection

All four sampling sites were located in areas with a relatively rich vegetation diversity. 
Sampling sites H and S were selected according to the actual tea tree incidence. The 
sampling sites, where the vegetation communities were relatively well established, were 
chosen to minimize the impact of human activities and animal infestation. Four sampling 
points (four points × each point sampled via the five-point method) were chosen. Each 
biological replicate consisted of a mixture of rhizosphere soils from a single mini-sample 
plot (1 m × 1 m), with a distance of at least 50 m between each sampling plot.

After the samples were prepared according to the sample plot and sample point 
setup, we collected rhizosphere and ectorhizosphere (for the determination of soil 
environmental factors) soil samples from healthy and diseased tea trees for subsequent 
analyses on the basis of microbial sequencing via internal transcribed spacer (ITS) 
sequencing and determination of soil chemical properties, respectively. The disinfection 
of the shovels and medical scissors with 75% alcohol and of the sampling equipment 
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and the replacement of medical gloves were required for each sampling session. The 
rhizosphere soil samples used for field collection were as follows: (1) the root system 
of the tea tree was cut; the attachments were shaken in time; and 1 mm of attached 
soil was retained; and (2) 50 mL centrifuge tubes were filled, and the samples were 
stored in a liquid nitrogen tank to bring them back to the laboratory for spare parts. 
Ectorhizosphere soil collection: after the tea tree roots were obtained, excess soil was 
manually shaken from the roots and thoroughly homogenized to form a mixed sample 
representing the ectorhizosphere soil (a 2 mm-diameter mesh sieve was used to filter the 
impurities, gravel, and apomictic material from the ectorhizosphere soil). Rhizosphere 
soil was extracted from field-collected roots in the laboratory. The roots were placed in a 
50 mL centrifuge tube and washed with 3 mL of phosphate-buffered saline at 180 rpm 
for 20 min to remove the soil from the root surface. The mixture was subsequently 
centrifuged at 4000 rpm for 20 min; the supernatant was removed; and the sediment 
was collected for extraction. The ectorhizosphere soils were dried naturally, and then 
chemically characterized.

Determination of soil chemical properties and functional assessment

The soil organic matter (SOM) content was assessed using an external heating 
method with potassium dichromate, while the alkali diffusion method was employed 
for determining the soil alkali-hydrolyzable nitrogen (AN). For the assessment of 
soil available phosphorus (AP), sodium bicarbonate leaching combined with molybde­
num–antimony colorimetry was utilized, and ammonium acetate leaching, followed by 
atomic absorption spectrometry, was applied to detect soil available potassium (AK). The 
pH and the electrical conductivity (EC) of a soil–water slurry at a 1:2.5 weight-to-volume 
ratio were measured according to established protocols (54). The results are presented 
in Table S7. In this study, six soil indicators (pH, EC, SOM, AN, AP, and AK), which are 
good indicators of tea tree soil productivity, fertility, and other factors in tea gardens, 
were used to assess individual soil functions. The relationships between biodiversity and 
soil functioning have been characterized in previous studies via single functions (55), 
turnover (56, 57), averaging (58), and single thresholds (59). Individual soil functions were 
quantified via Z-score conversion (9).

Meta-second-generation amplicon

DNA extraction and PCR amplification

DNA was extracted from the target soil samples via HiPure Soil DNA Kit (Magen, 
Guangzhou, China) according to the manufacturer’s instructions. The fungal ITS1 region 
was amplified via the primer pair ITS1 F KYO2 (5′-TAGAGGAAGTAAAAGTCGTAA-3′)/ITS86R 
(5′-TTCAAAGATTCGATGATTCAC-3′) (60). The related PCR reagents were purchased from 
New England Biolabs (USA).

Illumina sequencing

The amplification product quality was assessed via 2% agarose gel, and the PCR products 
were purified via AMPure XP Beads (Beckman, CA, USA) and quantified via Qubit 3.0. The 
sequencing libraries were constructed via Illumina DNA Prep Kit (Illumina, CA, USA). The 
library quality was checked via ABI StepOnePlus Real-time PCR System (Life Technologies, 
Foster City, CA, USA). The qualified libraries were pooled via PE250 mode of NovaSeq 
6000 for online sequencing. The raw sequences were submitted to the NCBI Sequence 
Read Archive (accession number PRJNA1036117).

Bioinformatics analysis

FASTP (version 0.18.0) for filtering raw data (61) and FLASH (version 1.2.11) for sequence 
splicing (clean reads [62] were merged into tags at a minimum overlap of 10 bp and a 
maximum mismatch rate of 2% threshold), tag filtering with reference to Qiime’s (63) tag 
quality control processes (64), and UPARSE (version 9.2.64) for clustering dechimeras (65).
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Data processing

OTUs containing fewer than 20 reads were discarded to avoid random effects in RT 
identification (30, 35). All samples were rigorously standardized prior to the analysis. On 
the basis of previous studies (66), we defined taxa on the basis of the relative abundance 
of fungal OTUs: i) OTUs with a relative abundance of more than 0.1% of the total number 
of sequences were defined as “abundant” taxa (AT); ii) OTUs with relative abundances 
below 0.01% were defined as “rare” taxa (RT); and iii) OTUs with a relative abundance 
between 0.01% and 0.1% were considered “intermediate” taxa (IT).

The abundance–occupancy relationship was used to explain the diversity changes 
and the spatial distributions of different taxa, where the occupancy calculation formula is 
as follows (67):

Occupancy = NsitesS, H
NsitesH

where S is the OTU; H is the habitat; and occupancy represents the ratio of the 
number of samples with S (NsitesS, H) appearing in the OTU (S) in habitat H to the total 
number of samples with H (NsitesH).

Orthogonal partial least squares-discriminant analysis (OPLS-DA) was used to perform 
a differential analysis on samples via the “ropls” package (68). A permutation test was 
performed for external verification. The “reshape2” package was used for the cooccurring 
network analysis of fungal taxa (use = “pairwise,” method = “Spearman,” adjust = “FDR,” 
alpha = 0.05; correlation threshold: r = 0.65, P = 0.05). MEGA 11 was used to process 
the OTU sequences and construct the phylogenetic treesconstructed via the neighbor-
joining method (time = 1000). To obtain potential traits, Spearman from the “Hmisc” 
package was used to calculate the correlation between the relative abundance of rare 
or abundant OTUs and environmental variables, determine the ecological preferences of 
each OTU (69), and form a fungal community trait data set. A chiplot (https://www.chi­
plot.online/) was used to construct a heatmap of the OTU ecological preferences and 
phylogenetic trees. The ecological threshold of a community under specific environmen­
tal gradients is quantified (minSplt = 3) via the “TITAN2” package (70). The physical and 
chemical properties of the soil were used to calculate the individual soil functions, and a 
scale function was used for data standardization. The Z-score calculation formula for the 
ecosystem parameters (single indicators) is as follows:

Zij = xij − λj /δj
where Zij is the Z-score of the ecosystem (single indicator) parameter j in plot i, with 

a range of i between 1 and 20 and a range of j between 1 and 6; xij is the numerical 
value of the ecosystem (single indicator) parameters; λj is the average value of the j-th 
ecosystem (single indicator) parameter at 20 sampling points; and δj is the standard 
deviation of the average value of the j-th ecosystem (single indicator) parameter at 20 
sampling points.
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