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Abstract 
The aging population has led to a global issue of osteoarthritis (OA), which not only impacts the quality of life for patients but also 
poses a significant economic burden on society. While biotherapy offers hope for OA tr eatment, curr entl y av aila b le tr eatments ar e 
una b le to delay or pr ev ent the onset or pr ogr ession of OA. Recent studies have shown that as nanoscale bioactive substances that 
mediate cell communication, exosomes from stem cell sources have led to some breakthroughs in the treatment of OA and have 
important clinical significance. This paper summarizes the mechanism and function of stem cell exosomes in delaying OA and looks 
forward to the development prospects and challenges of exosomes.
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Introduction 

As the population ages, the prevalence of patients with os- 
teoarthritis (OA) is on the rise, with > 240 million people world- 
wide curr entl y affected [ 1 , 2 ]. OA is a m ultifaceted degener ativ e 
condition c har acterized by the deterior ation of joint cartila ge and 

inflammation, leading to impaired joint function and limited mo- 
bility [ 3 , 4 ]. The management of OA presents significant clinical,
societal, and economic challenges [ 5 ]. Being a complex disease in- 
fluenced by various factors, OA affects both weight-bearing and 

non-weight-bearing joints and is closely associated with obesity 
[ 6 ]. Giv en the gr owing n umber of indi viduals affected by OA, the 
pr e v ention and treatment of this condition have become impor- 
tant medical and social priorities. 

The aim of OA treatment is to reduce symptoms , dela y joint 
degener ation, and impr ov e patients ′ quality of life. Treatment pri- 
marily focuses on preventing cartilage wear and tear. It is divided 

into conserv ativ e tr eatment and sur gical tr eatment [ 7 ]. Sur gical 
tr eatment is r ecommended for patients who do not respond well 
to conserv ativ e tr eatment. In r ecent years, r esearc hers hav e been 

searc hing for tar gets to effectiv el y tr eat OA by inhibiting joint 
structur al dama ge and ac hie ving long-term impr ov ement [ 8–10 ]. 

All cells r elease extr acellular v esicles (EVs), including exo- 
somes, whic h ar e involv ed in cell-to-cell comm unication and hav e 
various physiological functions [ 11 , 12 ]. Exosomes play a crucial 
r ole in r egulating envir onmental homeostasis , affecting diseases ,
and promoting processes such as tumor growth, migration, and 

tissue repair [ 13–16 ]. They contain active substances like mRNA,
miRN A, DN A, and proteins, and are found in almost all body fluids.
Exosomes serve as potential therapeutic targets and have shown 

potential in stem cell ther a py [ 17 , 18 ]. They participate in inter- 
cellular signal tr ansduction, tar get specific cells, r egulate the mi- 
cr oenvir onment, and pr omote tissue r egener ation. Additionall y,
exosomes deriv ed fr om differ ent cell sources ar e implicated in the 
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e v elopment and onset of OA disease [ 19–21 ]. The field of exo-
ome r esearc h is r a pidl y adv ancing and holds significant clinical
r ansformation potential. Ther efor e, this study aims to investigate
he mechanisms and challenges of exosomes in OA, as well as the
urrent state of research in this area. 

athogenesis of OA 

A is a slowly progressing disease that affects the joint tissue,
articularly as individuals age . T he incidence of OA tends to in-
r ease with a ge . T he de v elopment of OA is influenced by various
actors such as biomechanics, biochemistry, mutations in inflam- 

atory genes, and immunological factors. These factors interact 
ith each other, leading to a cascade of degener ativ e r eactions.
s a result, patients with OA experience characteristic changes in

he cartilage of their joints, affecting all joint structures [ 22 ]. En-
ironmental factors also play a significant role in the pathogene- 
is of OA, including obesity, metabolic syndrome, dietary changes,
nd lack of exercise [ 23 ]. OA is a multifactorial total joint disease,
 har acterized by the alteration of joint cartila ge thr ough complex
athological mechanisms. In addition to affecting the cartilage,
A also impacts the synovial, subc hondr al, ligament, and m us-
le tissues surrounding the joint. This complex disease involves 
nflammation, metabolic disorders, and fibrosis (Fig. 1 ) [ 24 ]. The

aintenance of joint cartilage primarily relies on cartilage cells 
nd the extracellular matrix (ECM). An important factor in the
e v elopment and pr ogr ession of OA is the increased decompo-
ition metabolism in the articular cartilage ECM [ 25 ]. The main
r oteins in cartila ge ECM ar e type II colla gen and a ggr egated pr o-
eoglycans, and the synthesis of ECM forms the foundation for

aintaining joint cartilage function [ 26 ]. 
T he syno vial membrane , which consists of synovial

acr opha ges and synovial fibroblasts, is responsible for secreting
ublished 26 November 2024 
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Figure 1. OA is a multifactorial disease affecting the entire joint and its 
pr ogr ession involv es complex pathological mec hanisms . T he figure 
highlights the pathological changes occurring in the joint’s cartilage, as 
well as the alterations in the synovial membrane, subchondral bone, 
ligaments, and surrounding muscles. (Created with BioRender.com). 
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oint fluids that lubricate cartilage [ 27 , 28 ]. In patients with
dvanced knee OA, apoptotic cells accumulate in the syn-
 vial membrane , which can disrupt the important homeostatic
unction of synovial macr opha ges and result in the buildup
f apoptotic cells [ 29 ]. Synovial inflammation in synovial cells
an be mediated by mitochondrial dysfunction and damage-
elated molecular patterns [ 30 ]. A number of different tissues
r cells communicate with exosomes thereby maintaining the
omeostasis of the intra-articular environment or mediating the
e v elopment of OA [ 31 ]. 

Se v er al pr o-inflammatory cytokines play a significant r ole in
he de v elopment of OA. Cytokines that ar e found at ele v ated le v els
n OA joint tissues include interleukin (IL)-1 β, IL-6, tumor necrosis
actor (TNF)- α, monocyte chemotactic protein (MCP)-1, vascu-
ar endothelial growth factor (VEGF), and interferon-inducible
rotein (IP)-10. These pro-inflammatory factors inhibit matrix
ynthesis by stimulating matrix degradation enzymes, thereby
r omoting cartila ge degr adation, whic h leads to pr ogr essiv e joint
estruction and remodeling [ 32 , 33 ]. Matrix degradation enzymes

dentified in OA joints include a ggr ecanase and collagenases, both
f whic h ar e members of the matrix metallopr oteinase (MMP)
amily, as well as various serine and cysteine proteases . T he degra-
ation of the matrix in early OA may be attributed to MMP-3 and
 ggr ecanase, particularl y the a disintegrin and metalloproteinase
ith thrombospondin motifs 5 (ADAMTS-5). This degradation of
 ggr egated pr oteogl ycans is follo w ed b y incr eased colla gen ac-
i vity [ 34 ]. Ad ditionall y, certain gr owth factors typicall y stim ulate
he production of both matrix and pro-inflammatory factors. For
nstance, tr ansforming gr owth factor- β (TGF- β) and bone mor-
hogenetic protein 2 (BMP-2) can promote osteoblastic formation
nd lead to subc hondr al scler osis . T hese pro-inflammatory me-
iators and anabolic factors are produced locally by cells within
he affected tissues, including c hondr ocytes in the synovial mem-
rane , syno vial fibroblasts , immune cells , inflammatory cells in
he perijoint fat, and cells in the bone [ 35 ]. Consequently, certain
 ytokines and gro wth factors are implicated in the pathogenesis
f OA, suggesting that they may r epr esent potential ther a peutic
argets for delaying the progression of the disease. 

xosomal therapy 

xosomes, as a ther a peutic hotspot, hav e shown gr eat potential
n recent years in the field of joint disease pr ogr ession. They par-
icipate in disease physiology and pathology processes by regulat-
ng intercellular communication [ 36 ]. The specific role and mech-
nism of exosomes in OA differ from other biological treatments.
xosome treatment of OA aims to protect chondrocytes from ex-
essiv e death, r educe inflammation, maintain cartila ge matrix
etabolism, and regulate angiogenesis and subchondral bone re-
odeling [ 37 ]. 

har acteristics, separ a tion, and identifica tion of 
xosomes 

xosomes ar e pr esent in all biological fluids and are secreted by
ll cells . T hey ha ve the potential to tr ac k disease pr ogr ession [ 38 ,
9 ]. The study of exosomes initially focused on clotting. In the
940s, Chargaff and West conducted research on blood clotting in
ew York and discovered a ‘granular part’ that settled at 31000 g
ith high clotting potential [ 40 ]. In the 1980s and 1990s, this sub-

tance was identified as a biological entity with enzymatic and
unctional potential [ 41 ]. The term ‘exosome’ was first mentioned
n four biomedical articles published in PN AS betw een 1970 and
973 [ 42–45 ]. These articles described the transfer of transformed
NA fr a gments between Drosophila or Phlebocytes cells. Howe v er,

he association of DNA with the lipid bilayer was not mentioned
n the liter atur e, so they cannot be easil y explained as an early
escription of EVs from the exosomes studied [ 46 ]. Since the late
980s , exosomes ha v e been consistentl y r eferr ed to as EVs origi-
ating in the intracellular system [ 47–49 ]. The field of exosomes
as r a pidl y expanded since the earlier r esearc h on electr on mi-
r oscopy and bioc hemistry in the 1940s–80s. Numer ous studies
ave confirmed the findings of the early pioneers in this field, in-
icating that exosomes play a crucial role in intercellular commu-
ication. 

The potential for exosomal transformation is being explored
or its ability to dia gnose, pr ovide pr ognosis, and tr eat diseases.
esearc hers ar e particularl y inter ested in understanding the
egulation of exosomes in various biological processes and dis-
ases [ 50 , 51 ]. Exosome-based ther a py offers adv anta ges suc h as
nti-aging and anti-inflammatory effects, as well as a lo w er risk
f tumor formation and immune rejection compared to stem
ell-based ther a py. This pr ovides hope for ‘cell-fr ee’ tissue r egen-
r ation. In r ecent years, ther e has been a significant incr ease in
he study of osteopathic degener ativ e diseases, with exosomes
xpected to contribute new therapeutic ideas for the treatment
f patients with OA in the future [ 52 ]. 

xosomal characteristics 

Vs are small vesicles that are released from cells into the extra-
ellular space . T hey consist of v arious types of v esicles that dif-
er in terms of their biogenesis pathwa y, size , and composition.
Vs are characterized by lipid bilayers and cannot be replicated.
hey do not contain functional nuclei [ 53 ]. The current definition
f an EV subtype, called an exosome, is a small EV 30–150 nm
n size, produced by the multivesicular endosome pathway [ 54 ].

ultiv esicular bodies under go matur ation fr om the endosome as
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Figur e 2. T he mechanism of exosome secretion. Exosomes are formed through inw ar d budding of the cell membrane, resulting in the formation of 
endosomes . T hese endosomes are then produced through the MVE pathway and subsequently fuse with the cell membrane, leading to exocytosis. The 
term ‘exosome’ is used to describe these vesicles as they are released into the extracellular environment. (Created with BioRender.com). 

 

 

 

q  

P  

t
c  

H  

t  

b  

s  

a

u
t  

a
o  

a  

i  

d  

b
l  

w
a  

m
 

v  

l
s  

t  

a  

c  

d  

c
p  

q  
their membranes bud inw ar d in the cavity of the tube, forming 
vesicles. When these vesicles are released into the extracellular 
envir onment, they ar e r eferr ed to as exosomes (Fig. 2 ) [ 49 , 55 ]. 

Exosomes play a crucial role in various physiological and 

pathological processes, including antigen presentation, regulation 

of tumor growth and migration, and tissue re pair. The y also of- 
fer unique adv anta ges in earl y disease dia gnosis and tar geted 

drug treatment [ 56 , 57 ]. Intercellular communication through ex- 
osomes is observed in all organisms, ranging from bacteria to 
plants and animals [ 58–60 ]. These exosomes transport proteins,
lipids, and RNA, facilitating communication between different cell 
types and influencing both normal and pathological conditions 
[ 61 ]. 

Exosome separ a tion and identifica tion 

With the r a pid de v elopment of biotec hnology, exosomes hav e 
gained significant r esearc h v alue and pr ospects. Consequentl y,
it becomes crucial to isolate high-purity exosomes from vari- 
ous biological fluids. Se v er al methods hav e been de v eloped for 
exosome separation, taking into account factors such as size,
shape, density, and surface protein of the exosome [ 62 ]. These 
methods include high-speed centrifugation, ultr afiltr ation, im- 
m unophilic ca ptur e, c har ge-neutr alized pol ymer pr ecipitation, di- 
mensional r esistiv e c hr omatogr a phy, and micr ofluidic tec hniques 
[ 63 ]. Among these, ultracentrifugal separation is considered the 
classical method, which can be further categorized into den- 
sity gr adient ultr acentrifugal separ ation and differ ential ultr acen- 
trifugal separ ation. Differ ential ultr acentrifugation, also known 

as simple ultracentrifugation or precipitation, is one of the com- 
monly emplo y ed tec hniques for exosome separ ation. 

The principle of differ ential ultr a-centrifugation is based on 

the separation of different extracellular components of fluid 

samples using centrifugal forces, which separates them se- 
uentially according to their density, size, and shape [ 64 , 65 ].
r e vious studies hav e extensiv el y used differential ultracen-
rifugation to isolate exosomes from various sources, including 
ell media, serum, saliva, urine, and cer ebr ospinal fluid [ 66–70 ].
o w e v er, these methods still have limitations such as being

ime-consuming, r equiring imm unoma gnetic bead ca ptur e, and
eing costly [ 71 ]. Further refinement is needed to enhance the
tudy and application of exosomes, considering the adv anta ges
nd disadv anta ges of these methods. 

Validation of exosomes after separation is commonly assessed 

sing various identification techniques . T hese techniques include 
r ansmission electr on micr oscopy (TEM), nanoparticle tr ac king
nalysis (NTA), and size distribution and shape characterization 

f isolated exosomes [ 72 , 73 ]. TEM technology is well-established
nd has been extensiv el y used in exosome studies , pro viding ev-
dence for the presence of vesicular structures [ 74 ]. While stan-
ard light scattering NTA does not provide information about the
iochemical composition or cellular origin of vesicles, fluorescent 
abeling can be emplo y ed for vesicle analysis [ 75 ]. Furthermore,
estern blot (WB) identification of exosome surface markers such 

s CD9, CD63, CD81, HSP70, and TSG101 is also a commonly used
ethod for exosome identification [ 76 , 77 ]. 
Ho w e v er, these methods possess both adv anta ges and disad-

 anta ges . For instance , TEM can effectiv el y observ e the mor pho-
ogical structure of exosomes and provide information on particle 
ize distribution. Ho w e v er, due to the complexity of TEM opera-
ions and the high demands of sample pr epar ation, it is not suit-
ble for the r a pid measur ement of lar ge numbers of samples. NTA
an detect the size and concentration of exosomes, offering high
etection speed and r esolution. Ne v ertheless, its oper ation is intri-
ate, making it challenging to distinguish between contaminated 

roteins and exosomes, and its results may be influenced by the
uality of the camera used. WB is a commonly emplo y ed method
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Figur e 3. Exosomes pla y a crucial role in the physiolog ical and patholog ical pr ocesses of OA by r egulating intercellular comm unication. They ac hie v e 
this by reducing the inflammatory response, influencing the ECM, safeguarding c hondr ocytes a gainst excessiv e cell death, r egulating the imm une 
system, inhibiting abnormal blood vessel growth, promoting cell migration and proliferation, and alleviating OA pain symptoms. (Created with 
BioRender.com). 
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or exosome detection, with the adv anta ge of matur e tec hnology
hat allows for qualitative and quantitative analysis of marked
roteins. Ho w ever, WB has notable dra wbacks , including a com-
lex and time-consuming identification pr ocess, v ariability in the
etection of marker proteins based on cell type, and its unsuitabil-

ty for detecting exosome marker proteins in biofluids. Flow cy-
ometry can analyze the size of exosomes by targeting them with
pecific antibodies or fluorescent d yes. Ad ditionally, other tech-
iques such as scanning electron microscopy, atomic force mi-
r oscopy, adjustable r esistance pulse sensing, dynamic light scat-
ering, resistance pulse sensing, enzyme-linked Immunosorbent
ssay, fluor escence activ ated cell sorting, as well as micr ofluidic
nd electr oc hemical biosensors, can also be emplo y ed to detect
xosomes [ 78 ]. To ensure the reliability of exosome test results, it
s often necessary to utilize multiple methods in conjunction with
ach other to evaluate the extracted exosomes. 

 he mec hanism of OA trea tment with 

xosomes 

he disease process of OA is a complex one , in volving various fac-
ors such as cartilage damage, inflammation of the synovial mem-
r ane, degener ation of ligaments and synovial membr anes, r e-
odeling of the inferior cartilage bone, and changes in the struc-

ure of the joint capsule, surrounding muscles , nerves , and local
at pads [ 79 ]. Researchers are continuously exploring the underly-
ng pathological mechanisms of OA and developing new strategies
o inhibit its pr ogr ession. Hyperc hondr ocyte death, ECM degr ada-
ion, synovial inflammation, neov ascularization, nerv e inv asion,
nd subc hondr al r emodeling ar e common pathological manifes-
ations observed during the development of OA [ 80–82 ]. 

These pathological changes interact to promote the occur-
ence of OA. While some exosomes of cellular origin (stem cells,
 hondr ocytes , etc.) ma y ha v e a positiv e effect on OA, ther e ar e
thers (immune cells, inflamed synoviocytes, diseased subchon-
ral osteoblasts, etc.) that have a negative effect and contribute
o the persistent pathogenesis of OA. The exact mechanism of
ction of exosomes of r egener ativ e or r epar ativ e cell origin in the
reatment of OA is not yet fully understood. Ho w ever, numerous
tudies have demonstrated that exosomes can slo w do wn the
r ogr ession of OA by inhibiting pathological responses through
olecular communication between chondrocytes . T his includes

educing the inflammatory response, regulating ECM, protecting
 hondr ocytes fr om excessiv e cell death, imm une r egulation,
nhibiting abnormal angiogenesis, promoting cell migration and
r olifer ation, and impr oving symptoms of OA pain (Fig. 3 ). 

educing the inflammatory response 

uring the pr ogr ession of OA, cartila ge degener ates as a r esult of
nflammation. This inflammation leads to pathological changes in
he cartilage of the joints, triggering the secretion of inflammatory
actors . T hese factors then worsen the damage to the cartilage tis-
ue through signaling pathwa ys , ultimately impacting the OA pro-
ess . Exosomes ha ve been found to play a crucial role in the biolog-
cal pr ogr ession of OA disease [ 83 ]. Researc hers hav e identified T
ymphocytes and macrophages as the primary inflammatory cells
nvolved in OA [ 84 ]. Activation of macrophages results in the re-
ease of pro-inflammatory factors, while fibroblast-like synovio-
ytes and c hondr ocytes, stim ulated by these pro-inflammatory
actors, contribute to the degradation of the ECM [ 85 ]. Synovial

acr opha ges r elease pr o-inflammatory cytokines, gr owth factors,
nd enzymes in response to irritation during inflammatory con-
itions. Macr opha ges play a r ole in stim ulating angiogenesis, r e-
ruiting leukocytes and lymphocytes, promoting fibroblast pro-
ifer ation, and secr eting pr oteases . T hese pathological processes
ontribute to joint dama ge [ 86 ]. Additionall y, oxidativ e str ess acti-
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Table 1. Mechanism of inhibition of OA inflammatory response by exosomes. 

Source of 
exosomes 

Main target 
molecule or pathway Effect Reference 

BM-MSC miR-147b Inhibition of inflammatory reaction by suppressing the NF- κB pathway [ 92 ] 
HS-MSC miR-129–5p Inhibition of IL- 1 β mediated c hondr ocyte inflammatory response [ 93 ] 
AD-MSC miR-147b Inhibition of inflammatory reaction by suppressing the NF- κB pathway [ 94 ] 
BM-MSC miR-9–5p Reduced le v els of inflammatory factors (IL-1, IL-6, TNF- α, and CRP) [ 95 ] 
SFC miR-126–3p Inhibition of the expression of IL-1 β, IL-6 and TNF- α [ 96 ] 
SFC miR-214–3p Inhibition of the expression of IL-1 β, IL-6 and TNF- α [ 97 ] 
SMSC miR-212-5p Inhibition of inflammation by targeting ELF3 [ 98 ] 
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v ates pr o-inflammatory pathways and triggers inflammatory re- 
sponses and c hondr ocyte a ging, whic h acceler ate the degr ada- 
tion of cartilage ECM during the onset of OA [ 87–89 ]. Inflamma- 
tory molecules, such as pro-inflammatory cytokines, secreted by 
OA are crucial mediators in the disruptive processes involved in 

OA pathophysiology . Specifically , IL-1 β and TNF play a significant 
role in controlling the degeneration of the cartilage matrix in the 
joints, leading to cartilage destruction and local joint inflamma- 
tion. Ther efor e, they ar e the primary tar gets of tr eatment str ate- 
gies [ 90 , 91 ]. 

MicroRN A (miRN A) is a regulator of cellular processes, and 

miRNA (miR) in exosomes plays a crucial role in intercellular 
signaling. Kim et al . discov er ed that bone marr ow-mesenc hymal 
stem cell (BM-MSC) exosomes treated with IL-1 β and TNF- α exhib- 
ited significantly enhanced anti-inflammatory activity in SW982 
cells of OA. Mor eov er, the MSC exosome trigger ed by IL-1 β op- 
er ates thr ough the inhibition of miRNA, such as miR-147b, via 
the NF- κB pathway [ 92 ]. Qiu et al . reported that exosomes de- 
riv ed fr om human synovial-MSCs (HS-MSCs) and carrying miR- 
129–5p effectiv el y r educed the inflammatory r esponse and a pop- 
tosis of c hondr ocytes after OA tr eatment. Conv ersel y, the absence 
of miR-129–5p in HS-MSC-exosomes (HS-MSC-Exos) intensified IL- 
1 β-mediated c hondr ocyte inflammatory r esponse and a poptosis 
[ 93 ]. In another study, Chang et al . demonstrated that exosomes 
deriv ed fr om low-oxygen cultur ed adipose-deriv ed stem cells (AD- 
SCs) alleviate inflammation and slo w do wn the pr ogr ession of 
OA by reducing inflammatory cytokines [ 94 ]. Jin et al . injected 

miR-9–5p-containing exosomes derived from BM-MSCs into rat 
OA models to e v aluate the le v els of inflammatory factors (IL-1,
IL-6, TNF- α, and CRP) and the o xidati v e str ess dama ge index. The 
results sho w ed that exosomes containing miR-9–5p w ere able to 
reduce inflammation [ 95 ]. Furthermore, some researchers discov- 
er ed that miRNA deliv er ed by exosomes fr om r at synovial fibr ob- 
last cells (SFCs) inhibits the expression of IL-1 β, IL-6, and TNF- α,
ther eby impr oving c hondr ocyte inflammation and cartila ge tissue 
degeneration [ 96 , 97 ]. Zhang et al . found that exosomes derived 

from synovial MSCs (SMSC) ov er expr essing miR-212–5p can ef- 
fectiv el y inhibit c hondr ocyte degener ation and inflammation by 
targeting ELF3 [ 98 ]. T hus , miRNAs in exosomes can reduce the in- 
flammatory response of chondrocytes through intercellular sig- 
nalling, ther eby alle viating the pr ogr ession of OA (Table 1 ). 

Regula ting breakdo wn and synthesis of ECM 

ECM not only provides a physical scaffold for cell embedding, but 
also r egulates v arious cellular pr ocesses, suc h as gr owth, migr a- 
tion, differentiation, survival, homeostasis, and morphogenesis 
[ 99 ]. In the context of OA, the destruction of the cartilage ECM and 

the disruption of homeostasis are of increasing importance. Under 
normal physiological conditions, the ECM and c hondr ocytes m u- 
tuall y nourish eac h other, with a balanced synthesis and degr a- 
ation of ECM. Ho w e v er, in OA c hondr ocytes, ther e is an imbal-
nce wher e ECM degr adation exceeds synthesis, leading to sig-
ificant reductions in collagen and protein polysaccharides [ 100 ].
his ECM damage directly contributes to the worsening of the dis-
ase. During the pr ogr ession of OA, v arious molecular pathways
n the joints malfunction, affecting the metabolic homeostasis of 
one ECM and causing structural disruption and deterioration of 

ts biomechanical properties [ 101 ]. 
Xia et al . found that miR-125a-5p-enriched BMSCs-Exo could 

romote the migration of chondrocytes and remodelled ECM 

hr ough the upr egulation of COL II, a ggr egated pr oteogl ycans, and
O X 9, as w ell as the downregulation of MMP-13 [ 102 ]. Exosomes
eriv ed fr om human embryonic stem cell-induced MSCs (ESC-
SCs) injected into joints reduced cartilage damage and matrix 

egradation in DMM models by increasing COL II expression and
educing ADAMTS 5 expression [ 103 ]. These exosomes play a ther-
 peutic r ole in OA by balancing the synthesis and degr adation
f cartilage ECM. Wang et al . found that SMSC has the potential
o mitigate damage induced by OA. In mouse models, miR-155–
p-Exos promoted the proliferation and migration of OA chondro- 
ytes and enhanced ECM secretion by targeting runt-related tran- 
cription factor 2 (Runx 2) [ 104 ]. Tao et al. found that exosomes
ecreted by SMSC after miR-140-5p ov er expr ession can activ ate
es-r elated pr oteins(YAP) via alternativ e Wnt signaling pathwa ys ,
hich enhances the proliferation and migration of joint chondro- 

ytes in vitro without compr omising ECM secr etion. In in vivo ex-
eriments, SMSC-140-Exos successfull y pr e v ented OA in r at mod-
ls [ 105 ]. T hus , miRNAs in exosomes can exert a ther a peutic effect
n OA through intercellular signalling, which in turn balances the
ynthesis and degradation of cartilage ECM (Table 2 ). 

rotection of chondrocytes from excessi v e death 

nhibiting apoptosis 
uring OA, there is a significant increase in cartilage cell apopto-
is, which scontributes to the further degradation of cartilage tis-
ue [ 106 ]. Wang et al . conducted a study showing that exosomes
eriv ed fr om adipose tissue-deriv ed MSCs (AD-MSCs) can aid in
artila ge r egener ation by r educing a poptosis and r egulating in-
ammatory acti vity. Ad ditionally, the y found that miR-486–5p-
odified exosomes can inhibit endoplasmic r eticulum (ER) str ess,

ecr ease cartila ge cell a poptosis, and pr omote matrix r egener a-
ion [ 107 ]. Xu et al . demonstrated that curcumin-sensitized AD-
SC-derived exosomes can effectiv el y r educe o xidati v e str ess and
 hondr ocyte a poptosis in OA cartila ge . T hese findings indicate
reat potential in the r ecov ery of joint cartila ge dama ge in OA
atients [ 108 ]. Autophagy and apoptosis are closely related, with
utophagy being able to inhibit apoptosis and help maintain cel-
ular stability. In most cases, autophagy inhibits apoptosis or in-
reases the stress threshold required to induce apoptosis [ 109 ].



6 | Wang et al. 

Ta ble 2. Regulating breakdo wn and synthesis of ECM in OA. 

Source of 
exosomes 

Main target 
molecule or pathway Effect Reference 

BM-MSC miR-125a-5p Upregulated COL II; aggregated proteoglycans and SOX 9 and downregulated 
MMP-13; r esha ped ECM migr ation 

[ 102 ] 

ESC-MSC Unknown Increased COL II and reduced ADAMTS 5 expression; reduced matrix 
degradation 

[ 103 ] 

SMSC miR-155-5p ECM secretion is promoted by targeting Runx 2 [ 104 ] 
SMSC miR-140-5p Enhances the pr olifer ation and migration of chondrocytes without 

compromising ECM secretion 
[ 105 ] 

Table 3. Protection of chondrocytes from different forms of death in OA. 

Source of 
exosomes 

Main target 
molecule or pathway Effect Reference 

AD-MSC miR-486-5p Suppression of ER stress can reduce IL-1 β-induced apoptosis [ 107 ] 
AD-MSC Unknown Inhibition of apoptosis of articular cartilage cells in mice [ 108 ] 
OA mouse 
serum 

Unknown ATF4 ov er expr ession in OA-Exo pr omotes autopha gy of c hondr ocytes and 
inhibits their apoptosis 

[ 110 ] 

IPFP-MSC miR100-5p Inhibition of mTOR enhances autophagy levels in chondrocytes to regulate 
apoptosis 

[ 111 ] 

BM-MSC miR-326 Targeting of HDAC3 and ST A T1//NF- κB p65 to inhibit pyroptosis of 
c hondr ocytes and cartilage 

[ 115 ] 

BM-MSC Unknown Reduced c hondr ocyte ferr optosis and pr e v ented OA pr ogr ession via 
disruption of the METTL3–m6A–ACSL4 axis 

[ 121 ] 
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ang et al . discov er ed that activ ating tr anscription factor 4 (ATF4)
s crucial for c hondr ocyte pr olifer ation and bone formation. Intr a-
rticular injection of ATF4-OA-Exo partially restores autophagy
nd inhibits c hondr ocyte a poptosis [ 110 ]. Wu et al . found that ex-
somes derived from the infrapatellar fat pad (IPFP) MSCs signif-
cantl y enhance autopha gy in cartila ge cells by inhibiting mTOR,
eading to reduced apoptosis and enhanced matrix synthesis to
egulate the progression of OA [ 111 ]. 

nhibiting cell pyroptosis and ferroptosis 
yroptosis is a regulated form of cell death that may be associ-
ted with risk factors for OA. It is involved in cartilage degener-
tion, syno vial changes , and OA-induced pain [ 112 ]. Pyroptosis is
ediated by NLRP3 inflammators and caspase-1 signaling. In a

tudy in rats, inhibiting NLRP3-mediated inflammation r elie v ed
he OA process [ 113 , 114 ]. Xu et al . discovered that BMSC-Exos can
eliver miR-326 to chondrocytes and cartilage. Targeting HDAC3
nd ST A T1/NF- κB p65 to inhibit cartila ge and pyr optosis impr ov ed
A [ 115 ]. 

Ferroptosis is a form of non-apoptotic cell death that relies on
r on. It is c har acterized by the inactiv ation of glutathione per ox-
dase 4 and the accumulation of reactive oxygen species [ 116 ].
ecent studies have shown that chondrocytes undergo ferrop-
osis in the presence of inflammation and iron overload, which
romotes the development of OA. Furthermore, chondrocyte fer-
 optosis pr omoted articular cartila ge MMP-13 expr ession and in-
ibited collagen II expression [ 117–119 ]. Kong et al . discov er ed
hat exosomes from OA fibroblast-like synoviocytes containing

iR-19b-3p promote cartilage ferroptosis and injury by target-
ng ferr optosis-r elated factors suc h as SLC 7A11 [ 120 ]. Cheng et
l . conducted a study using BMSC-Exos and an iron apoptosis in-
ibitor to intervene in an OA rat model. They found that BMSC-
xos r educed c hondr ocyte ferr optosis and pr e v ented the pr ogr es-
ion of OA by disrupting the METTL3–m6A–ACSL4 axis [ 121 ]. T hus ,
xosomes can protect chondrocytes from excessive death by in-
ibiting forms of cell death such as apoptosis , pyroptosis , and iron
eath, ther eby alle viating the pr ocess of OA (Table 3 ). 

mmunomodulation 

 growing body of research indicates that the immune system
lays a role in the pr ogr ession of OA. Various factors, such as ge-
etics, metabolism, and mec hanical str ess, can cause dama ge to
he cartilage . T his dama ge r esults in the r elease of specific au-
oantigens, which then trigger an immune response [ 122 ]. Stud-
es have shown that there is infiltration of monocytes in the OA
yno vial tissue , primarily consisting of CD3 + T cells [ 123 , 124 ].
acr opha ges , T cells , and B cells are the k e y immune cells in-

olved in controlling the inflammatory process and immune re-
ponse in OA [ 125 ]. These immune cells infiltrate the joint tis-
ues and release cytokines and chemokines from different types
f cells present in the joints . T his leads to the activation of com-
lement systems and the release of cartila ge-degr adation factors,
uch as MMP and prostaglandin E2, which further contribute to
he damage of joint cartilage [ 126–130 ]. 

Ragni et al . discovered that BMSCs secrete several leukocyte
 hemokines. BMSC inter acts with the abundance of activated im-
une cells in OA tissues and reduces the pro-inflammatory state

hrough the action of different leukocyte subpopulations. [ 131 ].
d ditionally, exosomes deri ved from BMSCs regulate the immune
 esponse by contr olling the activ ation and differ entiation of T
ells, inhibiting B cell function, and reducing the release of in-
ammatory mediators [ 132 ]. Zhang et al . demonstrated that EVs
r om BMSC hav e an imm unomodulatory effect on the r egener a-
iv e imm une phenotype . T hese EVs can decrease the infiltration
f M1 macr opha ges by attr acting M2 macr opha ges to infiltr ate OA
artilage defects and synovial membranes, thereby reducing the
xpression of IL-1 β and TNF- α [ 133 ]. Similarly, Zheng et al . found
hat exosomes derived from primary chondrocytes contain more
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Table 4. Inhibition of OA by immunomodulation. 

Source of 
exosomes 

Main target 
molecule or pathway Effect Reference 

BM-MSC Unknown Regenerating the immune phenotype reduces the infiltration 
of M1 macr opha ges 

[ 133 ] 

Primary 
c hondr ocyte 

Unknown Restor e mitoc hondrial dysfunction and polarize macr opha ge 
response to w ar d an M2 phenotype 

[ 134 ] 

UC-MSC miR-122–5p , miR-148a-3p , miR-486–5p , 
miR-let-7a-5p, miR-100–5p 

The polarization of M2 macr opha ges is facilitated by the 
PI3K-Akt signaling pathway 

[ 135 ] 

Table 5. Inhibition of abnormal angiogenesis in OA. 

Source of 
exosomes 

Mainly target 
molecule or pathways Effect Reference 

BM-MSC Unknown Reduced CD31hiEmcnhi vessel activity in the subchondral bone [ 141 ] 
Hypo-ADSC Unknown Inhibition of abnormal H-vessel formation [ 142 ] 
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imm une-r elated pr oteins and can pr e v ent the de v elopment of OA 

by restoring mitochondrial dysfunction and promoting a shift in 

macr opha ge r esponse to w ar ds the M2 phenotype [ 134 ]. Li et al.
found that EVs from human umbilical cord-MSCs (HU-MSCs) may 
promote M2 macrophage polarisation by delivering k e y proteins 
and modulating the miRNA-mediated PI3K-Akt signalling path- 
way, whic h impr ov es imm unomodulation [ 135 ]. Exosomes play a 
significant role in the immune response through various path- 
wa ys , particularly in the regulation of synovial macrophages. In 

OA, macr opha ges may polarize to a pro-inflammatory M1 pheno- 
type . Con v ersel y, M2 macr opha ges can inhibit inflammation in OA 

and promote cartilage repair by secreting arginase-1 (Arg-1), IL-10 
and TGF- β. Exosomes derived from stem cells of diverse origins 
ma y alleviate syno vitis and mitigate cartila ge degener ation by ini- 
tiating the transcription of functional genes associated with M2 
macr opha ges, ther eby pr omoting their polarization and inhibiting 
the infiltration of M1 macr opha ges into the syno vium. T hus , tar- 
geting macr opha ge polarization may r epr esent an effectiv e str at- 
egy for modulating inflammatory processes to prevent and reduce 
the pr ogr ession of OA. Despite these findings, ther e ar e still man y 
uncertainties regarding the interaction between MSC-derived EVs 
and immune cells related to OA, which require further exploration 

(Table 4 ). 

Inhibiting abnormal angiogenesis 

Angiogenesis and adequate blood supply are crucial for bone for- 
mation, and OA has the potential to disrupt normal angiogenesis 
[ 136 , 137 ]. Hypoxia in c hondr ocytes plays a key role in gene expres- 
sion related to angiogenesis in cartilage models. Given that hy- 
poxia promotes angiogenesis in various contexts, hypoxia, in the 
absence of mesenchymal condensation, is gener all y consider ed 

the primary regulatory factor for angiogenesis associated with in- 
tr amembr ane osteogenesis [ 138 ]. Inhibition of cartilage osteoge- 
nesis is also linked to a significant decrease in vascular invasion 

[ 139 , 140 ]. Wang et al . conducted a stud y where the y isolated BM- 
SCs and their exosomes from mice . T hey disco vered that modi- 
fying exosomes derived from an MSC source with TGF- β1 helps 
maintain the micr ostructur e of the subc hondr al bone in OA mice,
inhibits abnormal angiogenesis, and pr ovides pr otection a gainst 
OA-induced pain and bone loss [ 141 ]. Similarly, Zhao et al . found 

that hypoxia-treated exosomes deriv ed fr om ADSCs (Hypo-ADSC- 
Exos) can normalize non-coupling bone remodeling and abnormal 
-type angiogenesis in the subc hondr al bone, ther eby impr ov-
ng the pr ogr ession of lumbar facet joint osteoarthritis (LFJOA)
 142 ]. Ther efor e, inhibiting abnormal angiogenesis in the cartilage

embrane may be one of the strategies to relieve the develop-
ent of OA (Table 5 ). 

romoting cell migr a tion and prolifer a tion 

uring the earl y sta ges of OA, r esearc hers initiall y tar geted carti-
age cells for therapeutic intervention due to increased cell prolif-
r ation, matrix pr otein synthesis, and the presence of proteases
nd cytokines [ 143 ]. Exosomes containing growth factors and
CM-r elated pr oteins play a crucial r ole in pr omoting c hondr o-
yte pr olifer ation and differ entiation, as well as regulating colla-
en fibrosis and matrix synthesis. As OA progresses, chondrocyte 
igration and proliferation are hindered, but exosomes can still 

acilitate cell migration and proliferation [ 144 ]. 
Liu et al . discov er ed that lncRNA-KLF 3-AS 1, deriv ed fr om ex-

somes of human MSCs (hMSCs), facilitates the pr olifer ation of
A c hondr ocytes and the expression of cartilage-forming genes

hrough the miR-206/GIT 1 axis . Furthermore , the expression of
MP13 and its upstream regulator, RUNX 2, is suppressed [ 145 ].
dditionall y, in r at OA models, r esearc hers observ ed that exoso-
al KLF 3-AS 1 from hMSCs promotes cartilage repair and chon-

r ocyte pr olifer ation, while inhibiting IL-1 β can induce a poptosis
f cartilage cells [ 146 ]. 

One study demonstrated that EVs secreted by BMSCs not only
r omote cartila ge formation but also inhibit hypertrophic differ-
ntiation of cartilage cells. Other factors in the BMSC secretion
roup also aid in controlling the proliferation of OA chondrocytes
 147 ]. Pr olifer ation occurr ed mor e r a pidl y with incr easing doses of
V, and when a certain dose was r eac hed it was sufficient to in-
uce c hondr ocyte migr ation [ 148 ]. Nguyen et al . discov er ed that
GF- β-sensitized umbilical cord MSCs (UC-MSCs) can enhance 

he effect of EVs on OA c hondr ocyte migr ation. Furthermor e, the
istribution of miRNA in EVs is an important factor that may in-
uence c hondr ocyte pr olifer ation and migr ation [ 149 ]. Addition-
ll y, some r esearc hers hav e found that EVs pr oduced by MSCs can
 egulate pr oteins involv ed in c hondr ocyte adhesion, migr ation,
nd pr olifer ation [ 150 , 151 ]. Shao et al . found that BMSC-deriv ed
xosomes pr e-tr eated with par athyr oid hormone enhance their
her a peutic effect on r epairing OA c hondr oc ytes b y inhibiting the
xpr ession of pr o-inflammatory cytokines. Furthermor e, they can
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Table 6. Promoting cell migration and proliferation. 

Source of 
exosomes 

Main target 
molecule or pathway Effect Reference 

HM-MSC LncRNA-KLF 3-AS 1 Chondr ocyte pr olifer ation is facilitated by the miR-206/GIT 1 axis [ 145 ] 
HM-MSC LncRNA-KLF 3-AS 1 Pr olifer ation of c hondr oc ytes w as pr omoted in a r at OA model by KLF 3-AS 1 [ 146 ] 
BM-MSC Unknown Secr eted fibr oblast gr owth factor 1 can pr omote the pr olifer ation of 

c hondr ocytes 
[ 147 ] 

UC-MSC Unknown TGF- β sensitization promoted cartilage cell migration [ 149 ] 
BM-MSC Unknown Enhancement of IL-1 β induced pr olifer ation and migration of OA chondrocytes. [ 152 ] 

Table 7. Mechanisms to reduce joint pain symptoms. 

Source of 
exosomes 

Main target 
molecule or pathway Effect Reference 

BM-MSC Unknown Regulating the upregulation of CGRP and iNOS in DRG tissue to reduce 
inflammatory pain and neuropathological pain in OA rats. 

[ 162 ] 

BM-MSC Unknown Elimination of abnormal CGRP-positive nerves and abnormal H-angiogenesis 
in LFJ subc hondr al bone to r elie v e pain. 

[ 163 ] 

UC-MSC miRNA-29a-3p Impr ov e the pain and central sensitization of advanced OA through LncRNA 

H19/microRNA-29a-3p/FOS axis. 
[ 164 ] 
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romote the migration, proliferation, and formation of cartilage
atrix in OA c hondr ocytes [ 152 ]. T hus , exosomes deriv ed fr om

tem cells may promote chondrocyte proliferation and differenti-
tion through their secretion of growth factors, ECM-related pro-
eins, and thus OA c hondr ocytes pr olifer ation and cartila ge for-

ation, ther eby r elie ving OA (Table 6 ). 

mprovement of OA joint pain symptoms 

he symptoms of joint pain in OA ar e typicall y caused by damage
o the cartilage [ 153 , 154 ]. While the primary changes in OA occur
n the articular cartila ge, ther e ar e v arious structur al c hanges ob-
erved in the cartilage , bone , and syno vial tissue of OA joints [ 155 ,
56 ]. The bone and synovial membranes may stimulate neuronal
ensitization, leading to painful sensations during normal activi-
ies [ 157 ]. Additionally, inflammatory mediators activate and sen-
itize nociceptors, which is the main cause of pain in OA. In the
dv anced sta ges of the disease, c hr onic pain r esulting fr om bone
riction can lead to mobility loss and psychological impairment
 158 , 159 ]. 

Exosomes play a role in the pain process of OA, and therapy
ith MSC exosomes can alleviate joint pain symptoms and

mpr ov e joint function [ 160 ]. Calcitonin gene-related peptide
CGRP) is typically involved in transmitting nocice pti ve signals
nd sensitizing pain in the peripheral nerve and spinal cord.
euronal injury in the dorsal root ganglia (DRG) is a significant
ause of neuropathic pain and pain sensitization [ 161 ]. By con-
rolling inflammation and improving cartilage function, it may
e possible to r elie v e pain in OA patients. He et al . discov er ed that
her a py with BM-MSC-Exos significantly reduced the increased
xpression of CGRP and iNOS in DRG tissue of OA rats, leading
o a reduction in joint pain. Furthermore, exosomes decrease
nabolic factors such as COL2A1 and ACAN, while increasing
he breakdown metabolic factors such as MMP13 and ADAMTS5.
hese mec hanisms pr omote the r epair of cartila ge matrix in the
A model, thereby alleviating pain [ 162 ]. 

Li et al . investigated the use of BMSC exosomes in treating
FJOA mice . T hey disco v er ed that these exosomes could alle viate
oint pain by eliminating abnormal CGRP-positiv e nerv es and ab-
ormal H-type angiogenesis in LFJ cartila ge [ 163 ]. Similarl y, Yang
t al . demonstrated that UC-MSCs could relieve OA joint pain
n rats by utilizing exosome LncRNA H19 to regulate advanced
A pain through the miRNA-29a-3p/FOS axis [ 164 ]. Furthermore,
SC-derived exosomes were found to restore damaged tissue in

emporomandibular joint osteoarthritis (TMJOA) cartilage, effec-
iv el y tr eating dysfunction and pain associated with TMJOA [ 165 ].
hang et al . also observed that MSC exosomes repaired TMJOA

n r at models, r esulting in pain suppr ession, degener ation r educ-
ion, inflammation reduction, enhanced matrix expression, and
mpr ov ed structur e of the lo w er cartila ge bone, ultimatel y aiding
n joint r estor ation and r egener ation [ 166 ]. Ther efor e, exosomes
ecreted by stem cells may r elie v e joint pain caused by OA by reg-
lating neurons and nociceptors. Ho w ever, the molecular mecha-
ism of exosome involvement in pain has not yet been fully clar-

fied and further r esearc h is needed to fully understand the value
f exosomes (Table 7 ). 

ther mechanisms 

n addition to the aforementioned mechanisms, studies have
emonstrated that Wnt 3 is an upregulated molecule following
cute cartilage injury, contributing to the long-term r egener ation
f cartila ge [ 167 ]. Mor eov er, exosomes can deliv er functional ac-
ive molecules to joint tissue , pro viding long-lasting protection.
he tr ansforming gr owth factor TGF- β and BMP ar e critical r egu-

atory factors in cartilage formation [ 168 , 169 ]. BMP plays a signif-
cant role in protecting cartilage from inflammation or trauma by
nga ging v arious r ece ptor combinations to acti v ate distinct intr a-
ellular signaling pathwa ys . Furthermore , the loss of BMP-related
eceptor function leads to diminished internal repair of damaged
artila ge. Giv en that TGF- β is essential for cartilage homeostasis,
argeting it may represent a viable treatment option. Studies have
ndicated that TGF- β3 and BMP-6 can induce pluripotent stem
ells to enhance cartilage formation, potentially mitigating the
r ogr ession of OA. Pr e-activ ating MSCs with TGF- β enhances the
her a peutic potential of exosomes in OA. By le v er a ging the bene-
ts of stem cells, TGF- β3, and BMP-6, it is possible to maintain car-
ilage homeostasis and delay OA progression. T herefore , admin-
stering MSC-derived exosomes as combined vectors of TGF- β3
nd BMP-6 may offer a novel approach to preventing OA progres-
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sion [ 170 ]. Additionally, to enhance the targeting and functional- 
ity of stem cell-derived exosomes, engineering these exosomes for 
OA treatment is a promising strategy. The engineering prepara- 
tion methods for exosomes primarily include parent cell pr etr eat- 
ment, drug carrier optimization, and surface modification. Ge- 
netic or phenotypic modifications of parent cells can enhance the 
exosome’s function as a highly targeted drug carrier, thereby im- 
proving drug efficacy [ 171 ]. Furthermore, the pathophysiological 
changes in hypochondral bone represent a critical process in the 
pr ogr ession of OA, with exosome-mediated hypoc hondr al bone r e- 
modeling identified as one of the k e y ther a peutic mec hanisms.
Some r esearc hers hav e demonstr ated that gr oups tr eated with 

BM-MSC-Exos exhibit higher epiphyseal and subc hondr al bone 
volume, along with reduced bone degradation. This effect may be 
linked to the ability of stem cell exosomes to induce the expres- 
sion of mature joint cartilage cell markers, such as type II collagen 

and a ggr egated pr oteogl ycans, while concurr entl y decr easing the 
expression of catabolic markers associated with decomposition 

metabolism (MMP-13, ADAMTS 5) and inflammation (iNOS) [ 172 ].
In another study, r esearc hers utilized an exosome injection model 
deriv ed fr om dental pulp stem cells in mouse knee joint OA. Their 
findings indicated that exosomes from dental pulp stem cells ef- 
fectiv el y impr ov ed abnormal hypoc hondrial r econstruction, in- 
hibited the de v elopment of bone sclerosis and osteoderms, and 

r educed cartila ge degr adation and synovial inflammation [ 173 ]. 

Others treatments for OA 

Tr aditional trea tment of OA 

OA is a pr e v alent degener ativ e joint disease, with tr aditional 
treatment options encompassing both conservative and sur- 
gical a ppr oac hes. Physiother a py and medication are common 

conserv ativ e tr eatment modalities that may be effectiv e when 

applied in the early stages of the disease [ 174–177 ]. When con- 
serv ativ e tr eatments pr ov e ineffectiv e, sur gical interv ention is 
typicall y consider ed. For man y patients, sur gical tr eatment can 

significantl y alle viate knee pain, impr ov e joint mobility, and 

enhance ov er all quality of life [ 178 ]. The most pr e v alent sur gical 
modalities include minimall y inv asiv e arthr oscopic sur gery and 

joint replacement, with the choice of procedure tailored to the 
patient’s specific condition [ 179 ]. Although arthroscopy is advanc- 
ing r a pidl y and becoming incr easingl y common, some patients 
may r equir e joint r eplacement sur gery within 2 y ears follo wing 
arthr oscopic pr ocedur es [ 180 , 181 ]. Furthermor e, intr aoper ativ e 
malpr actice can potentiall y dama ge articular cartila ge, con- 
tributing to the early onset of OA [ 182 ]. Intra-articular injections 
of medications such as corticosteroids and anesthetics can ef- 
fectiv el y alle viate symptoms in patients with early OA, providing 
pain relief and restoring transient joint function; ho w ever, the ef- 
ficacy and safety of long-term use remain uncertain. Additionally,
intra-articular drug injections do not r e v erse the pr ogr ession of 
OA by eliminating pathogenic factors or promoting cartilage re- 
gener ativ e r epair [ 183 , 184 ]. Consequentl y, ther e is an urgent need 

to identify and implement mor e dir ect and effective treatments 
to address the growing number of patients affected by OA. 

Biotherapy of OA 

The current state of OA research indicates a growing interest in 

r egener ativ e medicine for tr eating cartila ge r egener ation in joints.
This a ppr oac h aims to r emodel the joint structur e and effectiv el y 
tr eat OA [ 185 ]. Regener ativ e methods ar e designed to addr ess the 
loss of cartilage matrix by stim ulating cartila ge formation in en- 
ogenous stem cells and matrix metabolism in cartilage cells . T his
 estor ation pr ocess aims to r estor e the normal structur e and func-
ion of damaged joints [ 186 ]. In recent years, various biotherapies,
uch as cell therapy, gene therapy, and biomaterials , ha v e emer ged
n preclinical or clinical trials . T hese biother a pies primaril y focus
n regulating the microenvironment and cellular activity within 

he joint [ 187 , 188 ]. Additionally, current OA research emphasizes
isease pr e v ention and earl y tr eatment, making biologics incr eas-

ngl y attr activ e due to their ability to interv ene in OA diseases and
r omote cartila ge r egener ation. Inflammation is now r ecognized
s a k e y pathophysiological process in OA, and the use of biolog-
cal agents to address the inflammatory response is a crucial as-
ect to consider [ 189 ]. 

ell therapy 

ell ther a py has emer ged as a pr ominent topic in the medical field
n recent years as an alternative treatment for tissue damage. By
tilizing various types of cells, it aims to alleviate the pathogen-
sis of diseases [ 190 ]. This ther a peutic a ppr oac h holds great po-
ential in r egener ating lost cartila ge, combating cartila ge degr ada-
ion, r elie ving pain, and improving patient mobility [ 191 ]. Among
he different sources of cells for r egener ativ e medicine , MSCs ha ve
hown promise . T hese cells can be derived from adipose tissue,
one marrow, synovial tissue, and other sources. Curr entl y, the
SCs being studied include BM-MSCs , AD-MSCs , and UC-MSCs

 192–195 ]. Another highly potent tissue engineering therapy for
oint cartilage injury is induced pluripotent stem cells (iPSCs).
hese cells have the ability to differentiate into chondrocytes and
an be r epr ogr ammed fr om somatic cells, offering a wider range
f sources and avoiding ethical concerns [ 196 ]. iPSCs have the
otential to overcome limitations associated with current cellu- 

ar sources, as they allow for the generation of large numbers
f autocytes from small starting groups . Moreo ver, iPSCs show
romise as a viable source of cells for tr eating cartila ge defects
nd could be dir ectl y utilized in clinical applications [ 197 ]. Re-
earc hers hav e also observ ed self-r ene wal activity in iPSCs, en-
bling the production of homogeneous iPSC-derived cartilage that 
an be transplanted to an unlimited number of patients . T his ap-
r oac h addr esses issues r elated to allogeneic cartila ge, suc h as
onor scarcity, risk of disease transmission, and variations in car-
ilage quality among donors [ 198 ]. These cells have the ability to
r olifer ate, differ entiate, metabolize, and r eplenish lost cartila ge
ells, as well as the ECM, thereby facilitating the repair of dam-
ged joint cartilage and restoration of joint function. 

It is important to acknowledge the existing limitations in the
urr ent a pplication of cell ther a py for the tr eatment of OA [ 199 ].
ne significant challenge is the unsustainable cellular and hya- 

ine cartilage phenotype of differentiated chondrocytes [ 200 ]. Ad-
itionally, the onset of senescence in MSCs adversely impacts 
heir differ entiation potential, imm unomodulatory ca pacity, and 

igr atory ability. Ev en with cryopr eserv ation, studies hav e shown
 decline in viability, colony-forming units, and integrin expres- 
ion following thawing [ 201 , 202 ]. With the r a pid incr ease in the
umber of stem cell studies, there are concerns regarding the
afety of stem cell ther a py. For example, stem cell injections can
otentially lead to cell transformation or premature cell differen- 
iation [ 203 , 204 ]. Curr entl y, stem cell ther a py r emains a topic of
ontr ov ersy due to the immune regulatory function of stem cells,
hich may contribute to the de v elopment of tumors [ 205 ]. Addi-

ionall y, ther e ar e still unr esolv ed issues r elated to the risks of in-
ection transmission during cell transplantation, ethical concerns 
urrounding embryonic stem cells, limitations on the potential of 
dult stem cell differ entiation, and c hanges in the c har acteristics
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f stem cells after in vitro culture [ 206 , 207 ]. Consequently, the de-
elopment of cell therapy for the treatment of OA will r equir e sig-
ificant time and effort. 

r owth f actor therapy 

rowth factors are believed to have the potential to enhance the
ealing of cartilage injuries and modify the progression of degen-
r ativ e OA [ 208 ]. These growth factors can stimulate the differ-
ntiation of MSCs to produce phenotypes that resemble normal
oint cartilage and possess similar biomechanical properties [ 209 ].
latelet-rich plasma (PRP) is an autologous concentrate derived
rom human platelets, containing a substantial amount of growth
actors alongside ele v ated concentr ations of platelets, leuk ocytes,
nd fibrin [ 210 ]. By dir ectl y injecting these gr owth factors into the
ffected joint cavity, it is possible to stim ulate c hondr ocyte pr o-
iferation and ECM synthesis, potentially delaying or even revers-
ng the pr ogr ession of degener ativ e joint disease. Mor eov er, the
rowth factors and other bioactive molecules present in PRP may
acilitate critical tissue healing and alleviate pain by modulating
nflammation, inhibiting c hondr ocyte a poptosis, and pr omoting
ollagen synthesis . T his has been shown to result in pain relief and
unctional impr ov ement in patients with mild-to-moderate knee
A [ 211–214 ]. Park et al . e v aluated the efficacy of intra-articular
RP injections in comparison to hyaluronic acid (HA) injections
or the treatment of OA. They observed that patients receiving
RP exhibited high concentrations of growth factors, suggesting
hat these concentrations could serve as important indicators in
utur e studies inv estigating the r ole of PRP in OA tr eatment [ 215 ].

ene therapy 

ene ther a py corr ects or tr eats diseases caused by abnormal
enes by introducing exogenous genes into target cells. It also
r ovides ne w insights for the tr eatment of OA [ 216 ]. Adv ances in
A genetics , genomics , and epigenetics have enhanced our under-
tanding of the complexity of the disease and guided the e v alua-
ion of genetic/epigenetic findings for translation and clinical ap-
lication [ 217 ]. In recent years, genome-wide association studies
ave identified numerous novel genetic risk loci for OA. Epigenetic
raits and mediators serve as a mechanistic link between genetic
isk factors for OA and the onset or pr ogr ession of the disease.
urthermor e, since epigenetic tr aits ar e r elativ el y easy to modu-
ate, they present potential therapeutic targets [ 218 , 219 ]. Some
 esearc hers hav e demonstr ated significant differ ences between
ifferent OA patient populations, for example based on disease
e v erity, affected joint sites, and gender, and have highlighted at-
r activ e drug targets [ 220 ]. 

Attur et al . conducted a study on the relationship between
he single nucleotide pol ymor phism of the interleukin-1 receptor
ntagonist (IL-1RN) gene and the radiological severity of symp-
omatic OA, as well as the risk of de v eloping OA. The study re-
ealed that IL-1RN gene variation can predict the radiological
e v erity and risk of OA in the knee [ 221 ]. In recent times, the ap-
lication of OA genetics in large-scale genome-wide association
cans has made significant pr ogr ess, identifying > 100 pol ymor-
hic DNA variants associated with OA. These genetic risk variants
ccount for > 20% of OA heritability and are primarily located in
on-pr otein coding r egions of the genome, suggesting that they

unction by regulating the expression of the target gene. Although
he data from OA genetics studies have not directly led to new
reatments, it is worth noting that some OA-related genes encode
roteins for which treatments are already available [ 222 ]. Further
 esearc h in osteogenetics has the potential to pr ovide v aluable in-
ights into the pathogenesis of OA, and by identifying common
olecular mechanisms, genetic understanding may help uncover
ausal pathways [ 223 ]. Consequently, a deeper understanding of
he molecular basis of OA subtypes will enhance our knowledge
f the molecular pr ocesses involv ed in the de v elopment of OA and
ontribute to impr ov ed patient dia gnosis, mana gement, and tr eat-
ent. 

onclusion and perspectives 

he pathology of OA is complex and can be influenced by a variety
f factors such as en vironmental, genetic , metabolic , or mechan-
cal injury. Exosomes ar e involv ed in the physiological and patho-
ogical processes of OA by regulating intercellular communication
nd show strong potential for application in the treatment of OA.

Despite all these pr omising pr eclinical r esults, ther e ar e cur-
 entl y se v er al issues that hinder the pr actical a pplication of exo-
omes as r egener ativ e ther a pies in clinical OA tr eatment. Curr ent
tudies on stem cell-derived exosomes as therapeutic agents for
A ar e primaril y conducted using in vitro cellular models or in vivo
odels involving small animals. Their efficacy has been e v aluated

n fewer studies involving large animals, which may not yield sig-
ificant clinical effects . Furthermore , the optimal dose and fre-
uency of exosomes r equir ed for clinical a pplication r emain in-
dequatel y defined. Man y studies hav e utilized higher doses or
or e fr equent injections to demonstr ate significant impr ov ement

n animal models of OA; ho w e v er, the tr anslation of these find-
ngs to human treatment requires further in vestigation. T here is
 notable lack of standardization in the methodologies emplo y ed
cr oss studies r egarding the classification of exosomes, isolation
ec hniques, c har acterization, stem cell sources and growth condi-
ions , selection of OA models , outcome measurement types , and
tudy dur ations. Consequentl y, r esults fr om differ ent studies of-
en lack re producibility. Ad ditionally, exosomes used in clinical
rials m ust adher e to good manufacturing pr actices . T her efor e,
he de v elopment of pharmaceutical pr oducts with stable quality,
lear and enhanced efficacy, and scalable production of stem cell-
erived exosomes, as well as the enhancement of their druggabil-

ty, are critical clinical translational issues that warrant emphasis
nd further explor ation. Giv en that the biological effects of exo-
omes are mediated through their uptake by target cells, it is es-
ential to clarify and control the biodistribution of exosomes for
ffective clinical therapeutic applications. 
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