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Abstract 

Ovarian cancer remains the most lethal gynecological malignancy. Despite the approval of promising targeted ther-
apy such as bevacizumab and PARP inhibitors, 5-year survival has not improved significantly. Thus, there is an urgent 
need for new therapeutics. New advancements in therapeutic strategies target the pivotal hallmarks of cancer. This 
review is giving an updated overview of innovative and upcoming therapies for the treatment of ovarian cancer 
that focuses specific on the hallmarks of cancer. The hallmarks of cancer constitute a broad concept to reenact 
complexity of malignancies and furthermore identify possible targets for new treatment strategies. For this purpose, 
we analyzed approvals and current clinical phase III studies (registered at ClinicalTrials.gov (National Library of Medi-
cine, National Institutes of Health; U.S. Department of Health and Human Services, 2024)) for new drugs on the basis 
of their mechanisms of action and identified new target approaches. A broad spectrum of new promising drugs 
is currently under investigation in clinical phase III studies targeting mainly the hallmarks “self-sufficiency in growth 
signals,” “genomic instability,” and “angiogenesis.” The benefit of immune checkpoint inhibitors in ovarian cancer 
has been demonstrated for the first time. Besides, targeting the tumor microenvironment is of growing interest. 
Replicative immortality, energy metabolism, tumor promoting inflammation, and the microbiome of ovarian cancer 
are still barely targeted by drugs. Nevertheless, precision medicine, which focuses on specific disease characteristics, 
is becoming increasingly important in cancer treatment.
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Graphical Abstract

Background
Ovarian cancer (OC) represents the 8th most com-
mon cancer death worldwide among women. In 2022, 
325,000 women were newly diagnosed, and 207,000 
women died from OC. With regard to the prediction of 
a 40.4% increase in incidence by 2045, we are facing a 
global problem [1–3]. Limited treatment options and late 
diagnosis of OC pose the major challenges. Besides the 
lack of biomarkers, the relapse rate is high due to natural 
and acquired resistance mechanisms of the cancer cells 
and the tumor microenvironment (TME) [4–6]. Despite 
innovations in treatment such as bevacizumab, poly 
ADP-ribose polymerase inhibitors (PARPi), and antibody 
drug conjugates (ADC) such as mirvetuximab soravtan-
sine (MIRV), further therapeutic approaches are needed 
to significantly improve the situation.

First-line therapy for OC includes surgery followed 
by a chemotherapy combining platinum- and taxane-
based treatment [4]. For a long time, this scheme did not 
undergo major changes, until bevacizumab and PARPi 
were supplemented for maintenance therapy. According 
to the SOLO1 study, olaparib was introduced as mainte-
nance treatment of BRCA mutated (BRCAm) OC. Based 

on the results of PAOLA-1 study, approval of olaparib 
maintenance therapy was extended to combination with 
bevacizumab for BRCAm and BRCA-wild type (BRCAwt) 
but homologous recombination deficient (HRD) women 
[7, 8]. Niraparib is further approved as first line main-
tenance therapy for BRCA-wild type (BRCAwt) and 
homologous recombination proficient (HRP) patients. 
Treatment of recurrent OC (ROC) depends on platinum-
responsiveness and includes combinational and single 
therapies with gemcitabine, liposomal doxorubicin, or 
topotecan. In ROC, PARPi are approved regardless of 
mutational status [9, 10]. Interestingly a newly developed 
ADC, MIRV, is approved on folate receptor alpha (FRα) 
overexpressing platinum resistant OC [11].

OC shows a vast tumor heterogeneity. Based on histo-
pathological and molecular patterns, five different types 
of epithelial OC can be differentiated: high-grade serous 
cancer (HGSC), low-grade serous cancer (LGSC), muci-
nous cancer, endometrioid cancer, and clear cell car-
cinoma. So far, these differences are concomitant with 
slight changes in therapy algorithm. However, in order to 
achieve a successful response to therapy, subgroup cate-
gorization is of crucial importance. New clinical trials are 
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increasingly focusing on the heterogenic characteristics 
of the tumor and using subgroups or specific biomarkers 
as selection criteria for inclusion in a trial, as the patient 
stratification influences the response to therapy and thus 
the success of a trial. Currently, homologous recombi-
nation deficiency (HRD) testing and next generation 
sequencing (NGS) is used. Four major gene mutations 
have been identified that are highly correlated with OC, 
including TP53, BRCA1/2, KRAS, and PIK3CA, resulting 
in abnormal DNA repair, impaired tumor suppression, 
gain of oncogene function, and epigenetic changes [12]. 
These specific characteristics can form the basis for the 
development of new, targeted therapies and can be classi-
fied by the hallmarks of cancer.

The introduction of the “Hallmarks of Cancer” in 2000 
by Hanahan and Weinberg provides a logical frame-
work for a better understanding of the complexity of 
malignant diseases and enables more systematic can-
cer research. The initial six hallmarks were “sustaining 
proliferative signaling,” “evading growth suppressors,” 
“resisting cell death,” “enabling replicative immortal-
ity,” “inducing angiogenesis,” and “activating invasion 
and metastasis,” supported by the enabling characteris-
tics “genome instability and mutation,” and “tumor-pro-
moting inflammation” [13]. In 2011, the hallmarks were 
expanded by “reprogramming energy metabolism” and 
“evading immune destruction.” Besides, the crucial role 
of TME regarding tumorigenesis and treatment response 
was underlined [14]. The latest update was published 
in January 2022 introducing two emerging hallmarks, 
“unlocking phenotypic plasticity,” and “senescent cells,” 
as well as two further enabling characteristics “nonmu-
tational epigenetic reprogramming” and “polymorphic 
microbiomes” [15]. Since the hallmarks are supposed to 
be essential for development of cancer, described altera-
tions in signal pathways and protein expression represent 
excellent targets to impair tumor growth and cancer pro-
gression, thereby not only making cancer research more 
logical, but also systematic drug development. This could 
lead to a modular system in drug development.

While classic cytostatic drugs in general inhibit 
increased cell proliferation and thus cause increased side 
effects, targeted therapy more specifically inhibits spe-
cific altered pathways of cancer cells and the microenvi-
ronment. Drug development currently focuses primarily 
on single receptors, while each hallmark is regulated by 
semi-redundant signaling pathways that allow tumor 
adaptation and chemoresistance through mutation. 
However, challenging regarding OC is the absence of a 
druggable driver oncogene [16, 17]. Nevertheless, many 
promising molecules such as kinase inhibitors, PARPi, 
proteasome inhibitors, or immune checkpoint inhibitors 
which affect altered pathways are currently investigated 

for OC treatment. Several other auspicious techniques, 
targeting among others the highly immunosuppressive 
TME of OC, include adoptive cell therapy, chimeric-anti-
gen receptor T cells, cancer vaccines, and gene therapy 
[18, 19]. In order to prevent tumor adaptation, therapies 
that broadly target the hallmarks of cancer are beneficial 
[20].

The hallmarks of cancer describe the complexity of 
tumor diseases and identify potential targets for new 
treatment strategies. On the occasion of the last update 
of the hallmarks in 2022 [15] and following the review by 
Petrillo et al. [20] and the book chapter by El Bairi et al. 
[21], we would like to provide an update on the latest 
developments and upcoming therapeutics for the treat-
ment of OC according to the hallmarks. This review 
compiles therapeutic strategies for OC based on the 
hallmarks of cancer and the cellular signaling pathways 
involved. Furthermore, promising new drugs and mech-
anisms of action that are investigated in actual ongoing 
and recently completed phase III trials are presented.

Targeting hallmarks of cancer
Sustaining proliferative signaling
Deregulated cell proliferation plays a pivotal role in can-
cer development. Alterations in growth factors and their 
receptor expressions, intracellular signaling pathways, 
and disrupted negative-feedback mechanisms lead to 
constitutively activated cell proliferation [14]. Interest-
ingly, it has been shown that extensive cell proliferation, 
reflected in a high expression of the oncoprotein RAS, 
can cause cell senescence [22]. This might play an impor-
tant role regarding chemotherapy-resistance, promotion 
of tumor heterogeneity, and adaptive strategies becoming 
a more aggressive cancer [23]. Since many of the involved 
signal molecules are protein kinases, especially small-
molecule kinase inhibitors are intensively investigated 
targeting this hallmark (Fig. 1).

Epidermal growth factor receptors (EGFR), such as 
EGFR/HER1, ErbB2/HER2, ErbB3, and ErbB4, acti-
vate multiple signaling pathways including RAS/RAF/
MAPK, PI3K/AKT/mTOR, and JAK/STAT. Increased 
expression of EGFR was determined in 48% of OC [24, 
25]. No improvement in progression-free survival (PFS) 
or overall survival (OS) has been demonstrated in phase 
III clinical trials with erlotinib (EGFR inhibitor) as main-
tenance therapy in OC [26]. Utility of EGFR localization 
and expression patterns as prognostic biomarker, deter-
mined by immunohistochemistry (IHC), has also been 
denied [27]. Trastuzumab and pertuzumab, monoclo-
nal antibodies directed against HER2, are already suc-
cessfully approved for breast cancer. HER2 expression is 
increased among 40% of OC [28]. Unfortunately, com-
bination of pertuzumab and chemotherapy for OC in a 
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phase III trial did not show benefits in PFS or OS [29]. 
Nevertheless, the ongoing trial DETERMINE examines 
the combinational treatment with trastuzumab and per-
tuzumab in patients with HER2 amplification and rare 
cancer subtype [30]. ErbB3, initially overexpressed in 
41.3–67.5% of OC, concomitant with inferior prognosis 
and increased expression in case of recurrence, is not 
targeted in advanced clinical trials so far [31]. The same 
does apply for ErbB4, which expression is suspected to be 
negatively correlated with OS [32].

The RAS/RAF/MAPK pathway regulates the expres-
sion of the transcription factors, crucial for cell prolif-
eration, survival, and cell cycle progression. Mutation 
of either K-RAS or BRAF is frequent in LGSC [28, 33]. 
Thus, two phase III trials, MILO and LOGS, have proven 
the great benefit of the MEK inhibitors binimetinib and 
trametinib as treatment for recurrent LGSC [34, 35]. 
Upcoming biomarker analyses should identify a sub-
group of patients who selectively benefit from bini-
metinib [34]. To overcome resistance, treatments with 
either intra-pathway or inter-pathway combination are 
used [36]. Recently, the FDA has approved combinational 
treatment of dabrafenib (RAF inhibitor) and trametinib 
(MEK inhibitor) for all unresectable metastatic solid 
tumors with BRAF V600E mutation [37]. Based on this, 

combination of vemurafenib (BRAF inhibitor) and cobi-
metinib (MEK inhibitor) is currently investigated in the 
DETERMINE study for OC in case of BRAF V600 muta-
tion [30].

Seventy percent of OC present mutations in PI3K/
AKT/mTOR pathway. Hyperactive signaling either due 
to activating mutations in PI3K, AKT, and mTOR itself 
or due to loss of negative regulators as PTEN leads to 
constitutive activity of cell proliferation, motility, and 
survival [14, 28, 53]. High copy number variations of 
PIK3CA in 40% and mutation in 12% of OC, and encour-
aging results of a phase Ib trial, initiated the currently 
ongoing EPIK-O phase III study investigating alpelisib 
(PI3K inhibitor) and olaparib combination in platinum-
resistant or -refractory recurrent OC (PRROC) without 
germline BRCAm (gBRCAm) [42]. Biomarker analyses 
will investigate the PI3K pathway, HRR status, and DNA 
damage/repair pathways to identify favored subgroups 
[42]. Besides, focal adhesion kinase (FAK) and its recep-
tor anaplastic lymphoma kinase (ALK) are part of onco-
genic signaling in OC. Whereas monotherapy with FAK 
inhibitor defactinib has not been successful, it is currently 
investigated in recurrent LGSC in combination with mul-
tikinase inhibitor avutometinib (RAMP301 trial) [17, 54]. 
It is designed as confirmatory trial aiming full approval 

Fig. 1  Sustaining proliferative signaling. Alterations in growth factors such as EGFR, FRα, ALK, AXL, and IGFR lead to constitutive activity 
in downstream signaling pathways. Most frequently affected are RAS/RAF/MAPK, PI3K/AKT/mTOR, and JAK/STAT pathway. Constitutive activity leads 
to dysregulated cell proliferation, cell survival, and cell cycle progression. Currently ongoing and recently completed phase III trials targeting those 
molecules are displayed in the table. This figure was created using Biorender.com [26, 29, 30, 34, 35, 38–52]
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by FDA. PROTAC (FAK proteolysis targeting chimeric 
molecule) degraders are promising in preclinical research 
for OC treatment [55]. Inhibition of Src, being part of 
the FAK signaling pathway, with saracatinib in a clinical 
study was not efficient [44].

Further interesting targets regarding cell proliferation 
have been the FRα and the insulin-like growth factor 
receptor (IGFR). Although IGF1R signaling is often dys-
regulated in OC, inhibition with monoclonal antibod-
ies as ganitumab and kinase inhibitors as linsitinib have 
not been successful in clinical trials [56, 57]. This might 
be due to difficulties in maintaining insulin receptor 
signaling [17]. More than 90% of OC overexpress FRα, 
concomitant with especially increased JAK-STAT down-
stream signaling [58, 59]. Unfortunately, monoclonal 
antibodies as farletuzumab (MORAb-300) failed to show 
benefits in a phase III study in platinum-sensitive recur-
rent OC (PSROC) [39]. Nevertheless, FRα remains an 
interesting target for targeted transport systems. Disrup-
tion of AXL-axis in platinum-refractory women by bati-
raxcept also did not improve PFS [40].

Growing importance of biomarker-guided patient 
stratification is reflected in clinical trials as STAPOVER. 

Regardless of histological subtype and based on a signal 
transduction pathway assay, women with either estro-
gen receptor (ER), androgen receptor (AR), PI3K, or 
Hedgehog signaling pathway (HH) alterations are either 
treated with letrozole (aromatase inhibitor), bicalutamide 
(antiandrogen), or itraconazole (mTOR inhibitor) [43]. 
The expression of ERα is increased in ~ 80% of OC [60]. 
Clinical studies have proven that predominantly LGSC 
and endometrioid cancer show good responses to endo-
crine therapy [6, 61]. Ongoing MATAO study analyzes 
maintenance therapy with letrozole in OC [48]. Further 
studies include NRG-GY019 comparing letrozole mono-
therapy with carboplatin-paclitaxel followed by letrozole 
as maintenance therapy for LGSC [47].
Inducing or accessing vasculature
To ensure sufficient nutrients, oxygen, and evacuation 
of waste or metabolites, endothelial cells are reactivated 
in cancer (Fig. 2). Angiogenesis stimulatory molecules, 
such as vascular endothelial growth factor A (VEGFA), 
tumor growth factor β (TGF β), and fibroblast growth 
factor (FGF), interact with its receptors VEGFR, TGFR, 
and FGFR [14, 62]. In contrast, by binding to the Tie 
receptor, angiopoietin (Ang) inhibits vasculature 

Fig. 2  Inducing or accessing vasculature. In cancer, angiogenesis is stimulated by proangiogenic factors such as vascular endothelial growth 
factor (VEGF), tumor growth factor β (TGF β), and fibroblast growth factor (FGF), interacting with their receptors VEGFR, TGFR, and FGFR. Binding 
of angiopoietin to Tie2 receptor inhibits vascular maturation and platelet-derived growth factor (PDGF) promotes proliferation of pericytes. 
Increased activity of depictured signaling pathways leads to leaky neovasculature with high levels of apoptosis and excessive vessel branching. 
Currently ongoing and recently completed phase III trials targeting those pathways are listed in the table. This figure was created using Biorender.
com [63–85]
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maturation [58]. Furthermore, platelet-derived growth 
factor β (PDGFβ) is involved in proangiogenic signal-
ing, promoting proliferation of pericytes. Tumor neo-
vasculature is characterized by leakiness, excessive 
vessel branching, and increased levels of apoptosis [14].

Bevacizumab, inhibitor of VEGF, was the first tar-
geted and antiangiogenic therapy approved in front-line 
treatment and treatment of relapsed OC. Bevacizumab 
shows improvement in PFS but does not affect the 
OS rate. Clinically, it is of great value for patients 
with extensive ascites [63, 64]. Analyses based on the 
World Pharmacovigilance Database (FDA) and ran-
domized controlled trials assess the long-term safety 
profile of bevacizumab as relatively positive [86]. Next 
to bevacizumab, several other VEGF-inhibitors have 
been investigated clinically. Aflibercept, a recombi-
nant fusion protein trapping VEGF, was investigated in 
advanced chemoresistant OC with recurrent malignant 
ascites and led to less rapid ascites formation. Due to 
increased risk of fatal bowel perforation, aflibercept 
was not approved [68]. Navicixizumab is a fist-in-class 
bispecific antibody targeting delta-like ligand 4 (DLL4) 
and VEGF. Tumors responding to anti-VEGF therapy 
present low levels of DLL4, but unfortunately DLL4 
is overexpressed in 72% of OC [87]. The high overall 
response rate (ORR) of 43.2% to navicixizumab in a 
phase Ib study in PRROC led to the initiation of a phase 
III trial with an estimated primary completion date in 
November 2023, which includes a further 12  months 
survival follow-up [88, 70].

BD0801 is a monoclonal antibody blocking VEGF/
VEGFR interaction, which is investigated in phase III 
trial with supposed primary completion in December 
2023. Results are still pending [69]. Following the prom-
ising AEROC study, which investigated the VEGFR2 
inhibitor apatinib, apatinib is further investigated in 
AMELIE trial for OC therapy and as maintenance ther-
apy in combination with unapproved PARPi fluzoparib 
after first-line treatment [71, 72, 89]. Again, no results 
are available so far. Trebananib is a peptibody trapping 
Ang1/2. TRINOVA1-3 trials have investigated treba-
nanib in combination with paclitaxel in ROC proving 
significant prolonging of PFS compared to placebo, in 
combination with pegylated liposomal doxorubicin 
(PLD) showing improved ORR but without PFS benefit 
and as first-line treatment in combination with carbo-
platin and paclitaxel unfortunately demonstrating only 
minimal benefits for patients [77–79]. With the shift 
in patient stratification from recurrent epithelial OC 
(TRINOVA1-2) to epithelial OC, primary peritoneal or 
fallopian tube carcinoma (TRINOVA 3), the benefit has 
decreased.

Several multikinase inhibitors are part of treatment 
strategy investigations for OC. Cediranib is a multiki-
nase inhibitor targeting VEGFR1-3. ICON6 and NRG-
GY004 study failed to show significant OS benefits of 
cediranib given concurrently to standard of care therapy, 
given as maintenance therapy and given in combination 
with olaparib [73, 74]. However, worthwhile activity was 
suspected, featuring ICON9 study, which investigates 
maintenance therapy of olaparib with cediranib or pla-
cebo. Results are expected for 2025 [75]. Another study 
(phase II/III) evaluating cediranib and olaparib combi-
nation for recurrent or metastatic OC, is ongoing [76]. 
Likewise, no results of masitinib, a multikinase inhibi-
tor recently approved for amyotrophic lateral sclerosis, 
in combination with gemcitabine in PSROC have been 
published so far [80]. Multikinase inhibitor nintedanib, 
investigated in 2009 in combination with carboplatin 
and paclitaxel, has not been approved due to absence of 
OS benefits although realizing PFS benefits [81]. Sadly, 
AGO-OVAR16 study, which investigated the multiki-
nase inhibitor pazopanib (Votrient), did not confirm 
suspected OS benefit of MITO11 study [82, 90]. Fur-
thermore, the combination of TQB2450, a programmed 
death-ligand inhibitor, and anlotinib is currently investi-
gated [83, 91]. Anlotinib is further investigated in a phase 
I/IIa/III study in ROC concurrently to standard of care 
and as maintenance therapy [84]. CHIPRO is an ongo-
ing phase III trial investigating the multikinase inhibitor 
chiauranib targeting VEGFR1-3, PDGFRα, cKIT, Aurora 
B, and CSF-1R, in combination with weekly paclitaxel in 
patient with PRROC [85].

Evading growth suppressors
Processes that circumvent growth-inhibiting signals are 
a main characteristic of cancer cells. Absence of critical 
gatekeeper of cell cycle proliferation, in particular p53 
(tumor protein p53) and RB (retinoblastoma-associated), 
leads to uncontrolled cell growth. RB mainly regulates 
extracellular signals; TP53 mostly processes intracellu-
lar signals and can induce cell cycle arrest to repair DNA 
damage or start apoptosis [14]. Both tumor suppressors 
are commonly altered in OC (e.g., TP53 in over 90%) 
[92]. Cell cycle progression is tightly regulated by cyc-
lin-dependent kinases (CDKs) interacting with cyclins 
(Fig. 3). The frequent dysregulation in cancer makes them 
promising targets for therapy.

G1-S-phase transition is controlled by cyclin D/
CDK4/6 and cyclin E/CDK2 complexes. A positive feed-
back loop, wherein mitogenic stimuli such as c-myc 
increase cyclin D expression which inactivates together 
with CDK4/6 RB and results in release of transcription 
factor E2F, leads to G1/S-transition and cyclin E expres-
sion, which can further promote its own expression 
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independent of other stimuli [93]. G2/M transition is 
regulated by CDK1/2 building a complex with cyclin 
A/B, which formation is under control of DNA damage 
response ATM-CHK2 and ATR-CHK1 axis. Activated 
ATR causes phosphorylation of CHK1, which leads to 
reduced CDK activity through proteasomal degrada-
tion of CDC25 and causes a delay in the cell cycle [94, 
95]. Further, Wee1 kinase is activated by CHK1, subse-
quently inhibiting CDK1/2. Activated ATM/ATR further 
activates p53-signaling, among others leading to upreg-
ulation of p21, and thereby stabilizes the RB-E2F com-
plexes and prevents apoptosis [96]. To support cell cycle 
progression after DNA repair, Aurora kinase A activates 
polo-like kinase 1 (PLK1), which in turn inhibits Wee1 
activity, whereas Aurora kinase B accelerates degradation 
of p53. Defects in G1/2 transition are common in can-
cer cells, making them more reliant on intra S and G2/M 
checkpoints for survival [95, 97].

CCNE1 (cyclin E1) amplification is a common copy 
number variation (> 20%) in HGSC. CCNE1 amplifica-
tion leads to facilitated cell cycle progression and repli-
cational stress accompanied by genomic instability [6]. 
Thus, treatment strategies focus on CDK inhibitors, inhi-
bition of ATR/CHK1/WEE1 axis and restoration of p53.

Preclinical studies have demonstrated a benefit of 
CDK4/6 inhibitors, such as palbociclib and riboci-
clib, already approved for breast cancer, in estrogen 

receptor-positive cancer. A clinical phase II study inves-
tigating ribociclib in combination with letrozole in ROC 
has proven high response rates in LGSC [99]. Recently, 
the ALEPRO study started investigating another 
CDK4/6i, abemaciclib, together with letrozole in patients 
with estrogen receptor-positive rare OCs as an interna-
tional, multicentre, open-label, single-arm phase II study 
[100]. Patient-derived organoids (PDOs) have responded 
well to flavopiridol, a multiple CDKi, which was clinically 
confirmed (phase II) in cisplatin-resistant recurrent OC 
[17, 101, 102].

Inhibition of ATR/CHK1/WEE1 axis enhances sen-
sitivity of cancer cells to treatment due to uncontrolled 
cell cycle progression and high replicational stress, there-
fore being interesting for combinational treatments [6, 
95, 103, 104]. Ceralasertib, an ATR inhibitor, combined 
with PARPi has proven a clinical benefit rate of 62.5% in 
HRD and/or BRCAm PARPi-resistant ROC [105]. ATR 
inhibitor prexasertib was granted FDA Fast Track des-
ignation due to promising interim phase II study results 
[106, 107]. Unfortunately, other CHK inhibitors caused 
severe side effects [17]. Wee1, upregulated in OC, can 
be inhibited by adavosertib, thereby increasing sensitiv-
ity towards chemotherapy in TP53 mutant HGSC [108]. 
Inhibition of cell cycle progression by Aurora kinase A 
inhibitor, alisertib, and the PLK1 inhibitor, volasertib, has 

Fig. 3  Evading growth suppressors. Cell cycle progression is strictly regulated by checkpoints controlled by cyclin-dependent kinases (CDKs)/
cyclin-complexes. Due to frequent aberrations in checkpoint control, as well as alterations in critical gatekeepers, uncontrolled cell cycle 
progression is a common feature in OC. Current strategies in phase III studies targeting evasion of growth suppressors are listed in the table. This 
figure was created using Biorender.com [85, 98]



Page 8 of 30Hillmann et al. BMC Medicine           (2025) 23:10 

shown in phase II studies to be beneficial and merit fur-
ther investigation [109, 110].

Apart from this, restoration of p53 is a promising 
anticancer approach. Gene therapy with recombinant 
adenovirus p53 (SCH-58500) had been shown to be 
safe and favorable in phase I/II trials and progressed to 
a phase II/III trial in 1999. However, results have not 
been published. Further efforts aim to re-engineer p53, 
with adenoviruses or nanoparticles as carrier systems 
(e.g., Au-C225). Peptide-based p53 therapy, such as the 
p53-SLP vaccine, failed to show benefits in phase II trial. 
Promising small molecules reactivating mutant p53 are 
APR-246 and zinc metallochaperones [111]. HSP90i, 
ganetespib, which promotes degradation of mutant p53 
by MDM2 machinery, represents another approach [20]. 
In addition, the degradation of p53 can be influenced 
by the multikinase inhibitor chiauranib, which inhibits 
AURORA kinase B and is being investigated in the ongo-
ing CHIPRO study together with paclitaxel [85].

Resisting cell death
Apoptosis is a pathway to eliminate cells harboring 
mutations (Fig.  4) [14]. In the extrinsic pathway, Fas-
ligand-receptor interaction activates caspase 8 and, in 
the following, stimulates effector caspases triggering 

apoptosis. The intrinsic pathway is activated conse-
quently to DNA damage and excessive oncogenic signal-
ing. While regulators such as BCL-2 inhibit proapoptotic 
proteins as BAX and BAK, p53 promotes apoptosis by 
upregulation of BH-3-only proteins Noxa and Puma, 
which in contrast activate BAX and BAK. Subsequently, 
release of cytochrome c out of the outer mitochondrial 
membrane is promoted, featuring activation of caspase 
cascades. Cleavage of Bid to tBid displays cross activation 
of intrinsic pathway in case of extrinsic induced apopto-
sis. Inhibitors of apoptosis (IAP), e.g., XIAP and survivin, 
are important regulators of apoptosis, which suppress 
activity of intrinsic and extrinsic pathway by caspase 
inhibition [113].

OC is known for increased expression of antiapoptotic 
signals and survival signals, as well as decreased expres-
sion of proapoptotic signals [4, 14, 21]. Thus, these rep-
resent valuable targets for therapy. BH3 mimetics, such 
as ABT-737 and WEHI-539, which antagonize BCL-XL, 
have shown to synergize with carboplatin in cell growth 
assays, as does ABT-263 (navitoclax) with PARPi in vitro 
[114, 115]. Clinically, monotherapy of navitoclax, inves-
tigated in a phase II trial, was only marginally effective 
[116]. Another approach seems to be upregulation of 
BH3-only proteins with naftopidil [21].

Fig. 4  Resisting cell death. With regard to apoptosis induction, extrinsic and intrinsic pathways are differentiated. Several mechanisms of cancer 
cells are known to circumvent apoptosis. Treatment strategies to inhibit resistance to cell death are listed in the table. TNF, tumor necrosis factor; 
TRADD, TNFR1-associated death domain protein; FADD, Fas-associating protein with death domain. This figure was created using Biorender.com 
[112]
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Ofranergene obadenovec (VB-111) is a viral-based 
therapy, delivering a Fas-TNFR1 chimeric pro-apoptotic 
protein. It is supposed to drive endothelium specific 
expression and induction of apoptosis, leading to vascu-
lar disruption and activation of immune system. A phase 
III trial completed in July 2022 investigated VB-111 in 
combination with paclitaxel. Further analyses included 
subgroup analyses, quality of life, histopathology, and 
biomarkers. No improvement in PFS or OS was observed 
for PRROC [112, 117]. 

Avoiding immune destruction
Since the approval of ipilimumab in 2011, immune 
checkpoint inhibitors (ICI) have revolutionized the treat-
ment of many solid cancer types, except for OC [118]. 

Long-term follow-ups (≥ 3  years) of patients treated 
with ipilimumab indicate a consistent quality of life and 
an improvement in OS [119]. ICI prevent interaction of 
receptor and corresponding ligands such as CTLA-4/
CD80/86, PD-1/PD-L1/2, PD-L1/2/CD80, and LAG-3/
MHC-II, and thus override tumor’s survival mechanisms, 
especially the inhibition of T cell activity (Fig.  5) [18, 
120].

For single-agent therapy with ICI, such as anti-PD-
L1 pembrolizumab and anti-PD-1 nivolumab, accord-
ingly to studies as KEYNOTE-100 and NINJA, limited 
efficacy had been announced and no biomarkers have 
been identified [121, 122]. Only for clear cell carcinoma 
partial responses were detected. Causes of failure to 
improve patients’ outcome include the comparatively 

Fig. 5  Avoiding immune destruction. Expression of immune checkpoint molecules and programmed cell death ligands compromise 
immunostimulatory interaction of tumor, T, and dendritic cells. In addition, OC is characterized by highly immunosuppressive tumor 
microenvironment, which further attenuates antitumoral immune response by secretion of cyto- and chemokines. Current endeavors fighting 
immune evasion encompass immune checkpoint inhibitors, cancer vaccines, viro-immunotherapy, and interleukin application. Recently completed 
and currently ongoing phase III trials targeting immune evasion of OC are listed in the table. This figure was created using Biorender.com [83, 128, 
129, 131, 133–149]
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poorer ability of the immune system to show antitumoral 
response. Efficacy of ICI depends on high PD-L1 expres-
sion, low prevalence of somatic copy number variations, 
and the immunosuppressive properties of the TME [6, 
17]. Although BRCA-1/2 deficient cells show the high-
est PD-L1 expressions and immunogenicity due to muta-
tional burden, therapy response to ICI was not major in 
BRCA-1/2-deficient cells compared to BRCA-1/2-pro-
ficient cells [17, 122, 123]. TME of OC is highly immu-
nosuppressive and contains various types of immune 
cells. High amount of tumor-infiltrating lymphocytes 
(TIL) as well as high ratio of CD8 + TILs/CD4 + regula-
tory T cells (Treg) have established positive prognostic 
properties in OC [124–126]. Due to changed expression 
of surface molecules and secretion of immunosuppres-
sive chemokines and cytokines by tumor cells and innate 
immune cells, as myeloid-derived suppressor cells, 
immature dendritic cells, and tumor-associated mac-
rophages of M2 phenotype, immunosuppressive Tregs get 
activated and effector T cells and natural killer (NK) cells 
get inhibited [6, 124]. Non-immune cell TME is mainly 
built by cancer-associated fibroblasts, cancer-associated 
adipocytes, endothelial cells, and pericytes and supports 
immunosuppression by growth factors and cytokine 
production [18, 124, 127]. Increasing knowledge about 
functions of TME exhibits further strategies to improve 
treatment. With identification of predictive biomarkers, 
immunotherapy can either target inhibition of immu-
nosuppression or support stimulation of the immune 
system.

In view of the complexity of the mechanisms, it seems 
sensible to address different signaling pathways by com-
bination treatment. Since combination of ICI avelumab 
and standard of care treatment (carboplatin-paclitaxel) 
likewise did not prove benefits, nor in first-line, nor in 
second-line (JAVELIN 100/200), and also the combina-
tion of PLD with ICI pembrolizumab or durvalumab 
did not improve efficacy significantly despite a pro-anti-
gen-presenting effect, current research focuses on com-
bination with other agents as PARPi and bevacizumab 
[128–130]. In the ATALANTE-trial, which investigated 
atezolizumab in combination with bevacizumab and 
chemotherapy in ROC, the coprimary PFS in intention 
to treat population and PD-L1 positive populations was 
not reached [131]. AGO-OVAR 2.29/ENGOT-ov34 study 
results, recently presented at the ASCO Annual Meet-
ing 2024, similarly did not show OS or PFS benefits for 
atezolizumab combined with bevacizumab in non-plati-
num-based chemotherapy in ROC compared to placebo 
[132]. Likewise, IMagyn050 study did not verify a PFS 
benefit in newly diagnosed OC [133]. Results of NRG-
GY009 study, investigating atezolizumab-PLD-beva-
cizumab combinations in ROC, are still pending, and 

KEYNOTE-B96, investigating pembrolizumab in addi-
tion to weekly paclitaxel with or without bevacizumab in 
PRROC, is ongoing [134, 135].

Preclinically determined immunomodulatory proper-
ties of PARPi, such as increased neoantigen formation, 
increased PD-L1 expression and increased immune cell 
infiltration, built rationale to combine them with ICI 
[150]. Following phase I/II studies proving benefit of 
ICI-PARPi combinations regardless of BRCA-/HRD/
PD-L1 status and providing proof of advanced OS rates 
by therapy triplet including bevacizumab, several phase 
III studies are currently ongoing [151, 152]. JAVELIN 
Ovarian PARP 100 trial evaluated treatment efficacy of 
avelumab in combination with chemotherapy followed 
by maintenance therapy with avelumab and talazoparib 
in advanced OC but was stopped in 2019 due to missing 
benefits of avelumab for unselected patients in front-line 
setting observed in interim-analysis of JAVELIN Ovar-
ian 100 trial [153]. The results of the ANITA study, which 
investigated application of chemotherapy in combina-
tion with atezolizumab and niraparib in patients with 
ROC, have been recently presented at the ESMO Annual 
Congress 2023. They indicate a PFS benefit for only non-
BRCAm OC [137]. Large ongoing studies further investi-
gating PARPi-ICI combination in first-line and recurrent 
situations include KEYLINK-001, FIRST, MITO-33, and 
the COMBO arm within ATHENA-trial [140, 143–145].

The DUO-O study investigated the benefits of dur-
valumab therapy in combination with chemotherapy 
and bevacizumab, followed by maintenance therapy with 
durvalumab (anti-PD-L1), bevacizumab, and olaparib, 
in newly diagnosed advanced OC without BRCA muta-
tion. For the first time, benefits of PARPi and ICI were 
seen. Durvalumab and olaparib combination led to a 
significant improvement in PFS, from 19.3  months to 
24.2  months (HR 0.63). Considering only HRD-positive 
patients, a median PFS of 37.3  months (vs. 23  months) 
was reached (HR 0.49) [139]. This gives rise to hope for 
further advances in ICI-PARPi-bevacizumab combina-
tion. Nevertheless, critics fault the lack of an olaparib 
maintenance control arm in DUO-O study. Follow-up 
studies will provide further insights into the long-term 
benefits. So far, durvalumab is not approved in OC.

Other combinational strategies include testing 
TQB2450 (PD-L1 inhibitor) in combination with anlo-
tinib [83]. Backed on preclinical and phase Ib data for 
PRROC showing ORR of 47.1%, a phase III trial is cur-
rently conducted in China [91]. Nemvaleukin alfa, a 
novel engineered IL-2 cytokine fusion protein, is pres-
ently investigated in ARTISTRY-7 trial in combination 
with ICI pembrolizumab in PRROC and has already 
gained fast track designation by FDA [142]. Due to 
sterical occlusion, it only stimulates IL-2 receptors 
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(IL2-R) and activity of TEff and NK-cells and not those 
of Tregs, thereby preventing capillary leak syndromes 
as often noticed in case of simple IL-2 administration 
[142, 154]. ARTISTRY-1 trial provided evidence for the 
activity and safety of nemvaleukin alfa in PRROC [155].

Cancer vaccines are a growing field of research in 
OC. Peptide-based vaccines consist of known or pre-
dicted tumor-associated antigens (TAAs) administered 
with adjuvants to enhance immunogenicity. Presenta-
tion of processed antigens by antigen presenting cells 
and dendritic cells (DC) leads to activation of TEff cells 
and cytotoxicity by B cells [156]. Common TAAs to 
target in OC are FRα, HER2, CA125 (MUC16), MAGE-
A4, NY-ESO 1, and mesothelin [4, 6, 18]. Oregovomab, 
a CA-125-specific murine monoclonal antibody, is 
already investigated as cancer vaccine in phase III tri-
als since 2002. Despite missing improvement of clini-
cal outcome using oregovomab as maintenance therapy 
in advanced OC, it is currently investigated as front-
line therapy in newly diagnosed advanced epithelial 
OC in combination with paclitaxel and carboplatin in 
FLORA-5 study [146, 147].

Oncolytic viruses (OV) act by direct oncolysis of 
infected cells and contribute to indirect activation of the 
host immune system due to release of danger associated 
molecular patterns, viral antigens, and TAAs [18, 157]. 
Genetic engineering enables expression of transgenes, 
increases tumor specificity, and grows oncolytic potency 
[156]. OV therapy also affects the TME [18]. Following 
the success in phase II trial, GL-ONC1 (olvimulogenic 
nanivacirepvec) is currently investigated in the phase 
III OnPrime trial as front-line treatment in combina-
tion with platinum-based chemotherapy with or without 
bevacizumab [148, 158]. Further approaches but still in 
preclinical research include infected cell vaccines (ICVs), 
considering autologous tumor cells as vehicles to tumor 
niche, thereby turning immunologically “cold” tumors 
into “hot” tumors [4, 18].

Another line of attack is adoptive cell therapy (ACT), 
a transfer of autologous or allogeneic immune cells. 
Besides successful use of TIL for ACT after platinum-
based chemotherapy in 1995, the utilization of dendritic 
cell vaccines (DCV) pulsed with TAAs is likewise inter-
esting [159, 160]. Also, chimeric antigen receptor T cells 
(CAR-T) are actively investigated in OC, allowing an 
antigen-specific recognition of cancer cells and major 
histocompatibility complex (MHC)-independent activa-
tion of T cells [161]. However, CAR-T cell therapy still 
faces many issues, as off-target effects and tumor hetero-
geneity [162]. Bispecific antibodies (e.g., ubamatamab 
and REGN5668), which activate the T cell response by 
simultaneous binding to tumor and T cells, are currently 
in phase I/II trials [163–165]. In addition, in 2024, an 

unconventional phase II/III study is expected to test the 
effect of Plasmodium vivax on OC [149].

Genome instability and mutation
Germline, somatic, and epigenetic mutations com-
promising DNA damage-detection and -repair lead 
to genome instability, a fundamental feature of cancer 
[14]. Genome instability is associated with deficiency in 
homologous recombination (HR), which is present in 
41–50% of OC and is utilized by therapies targeting DNA 
repair [181]. In addition to BRCA1 and BRCA2 muta-
tions, various other genetic mutations and amplifica-
tions, e.g., in RAD51C, ATM/ATR, PTEN and CHEK2, 
have an impact on HRD in OC [92]. Since recent clinical 
research has proven predictive potential of HRD regard-
ing response to platinum-based and PARPi therapy, HRD 
tests were introduced to diagnostic algorithm of OC 
[182, 183]. Germline and somatic mutations are screened 
by next generation sequencing [181]. Further HRD tests 
focus on identification of loss of heterozygosity, telomeric 
allelic imbalances, and large-scale transitions, the “scars” 
of genomic instability [184]. So far, two commercially 
FDA approved tests are available: FoundationOne by 
Foundation Medicine and myChoice HRD test by Myriad 
Genetics. Since mutagenesis during tumor evolution can 
compromise accuracy of HRD tests, much effort is put 
into development of functional HRD assays, as quantifi-
cation of nuclear RAD51, to display current HRD status 
[184].

Based on synthetic lethality, PARPi are highly efficient 
in OC (Fig.  6). Among others, PARPi inhibit repair of 
DNA single-strand breaks and thereby cause accumula-
tion of DNA double-strand breaks. Deficiency of high-
quality HR and concurrent inhibition of alternative end 
joining (alt-EJ) by PARPi, as well as dependency on more 
error-prone non-homologous end joining (NHEJ) to 
repair DSBs, leads to accumulation of mutations, unregu-
lated cell division, and apoptosis [95, 181, 184, 185].

Thus, today PARPi are considered as first-line stand-
ard of care maintenance therapy of OC after response 
to platinum-based therapy. Based on several phase III 
studies, investigating olaparib, niraparib, and rucaparib 
in first-line setting, including SOLO-1, PRIMA, and 
ATHENA trial which have been reviewed in detail else-
where, olaparib is approved for first-line maintenance 
treatment of advanced OC with BRCAm; niraparib is 
approved regardless of HRD status [186, 187]. Olaparib 
approval was extended by its use in combination with 
bevacizumab as first-line maintenance therapy in HRD 
positive OC due to PAOLA-1 study [186].

Based on SOLO2 and study 19, olaparib is also 
approved as maintenance treatment for ROC [188]. 
Caused by new results of ARIEL-3 and NOVA study, 
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approval of rucaparib and niraparib has recently been 
restricted to tumors with BRCAm in recurrent situations 
[10,108,171,190-195].

PARPi as monotherapy in late line treatment have 
been discouraging so far. In SOLO 3 study, which treated 
gBRCA1/2 mutated HGSC PSROC with olaparib mono-
therapy, no significant difference in OS and PFS2 com-
pared to placebo group was seen [195, 196]. Likewise, 
third-line monotherapy with rucaparib for BRCAm 
OC was withdrawn in June 2022. New OS results of 
ARIEL 4 study, contrary to initially encouraging PFS 
results, favored chemotherapy over rucaparib [175, 196]. 
QUADRA study, a single-arm phase II study, investigated 
niraparib as fourth line or later treatment in HRD posi-
tive ROC. In September 2022, approval for this indica-
tion was voluntarily retrieved [197, 198]. Based on this 
long-term follow-up, the FDA withdrew approval for 
the PARP inhibitors olaparib, rucaparib, and niraparib 
for single-agent treatment. Long-term profile (> 2 years) 
proved olaparib to be safe and well tolerated [168].

Other PARPi, as for example veliparib, did not reach 
clinical approval despite phase III study VELIA proving 
a longer PFS compared to carboplatin-paclitaxel alone 
[176]. New PARPi as fluzuloparib and pamiparib are 
currently evaluated in clinical trials in China [72, 177]. 
In China, fluzuloparib is already approved for treatment 
of gBRCAm PSROC since 2020 [199]. The new PARPi 
senaparib also offers promising PFS benefits as mainte-
nance therapy in first-line treatment, regardless of bio-
markers [179]. However, PARPi treatment is associated 
with increased risk of myeloid-neoplasia, due to PARP2 
inhibition [6]. Therefore, selective inhibition of PARP1 
becomes a new strategy and promising agents as the 
selective PARP1 inhibitor AZD5305 are already under 
clinical evaluation [200, 201].

Since PARPi are chemosensitizing, they are popular 
agents for combination studies [202]. Combinational 
designs can be useful to overcome resistance mecha-
nisms to PARPi and platinum-based therapy, including 
restoration of HR, upregulation of multidrug-resistance 
channels, or replication fork stabilization [4, 200, 203, 
204]. Furthermore, cytotoxic effects of chemotherapeu-
tics can be enhanced by combination with PARPi, be it 
through accumulation of topo I-DNA complexes or by 
induction of replication stress thereby sensitizing to cell 
cycle checkpoint inhibitors (ATRi/CHKi/WEE1i) [205].

Next to high sensitivity towards PARPi, genome insta-
bility in OC offers a broad range of targets to inhibit. Due 
to common deficiencies in HR, OC are more reliant on 
alternative repair mechanisms as NHEJ and alt-EJ [206]. 
Inhibition of alt-EJ regulating Pol-θ with agents as novo-
biocin and ART558, as well as inhibition of NHEJ regulat-
ing DNA-dependent protein-kinase catalytic subunits via 

peposertib, is already under early clinical investigation [6, 
107, 207–209].

Other strategies targeting genome instability, include 
stabilization of G-quadruplex structures, for example 
by pidnarulex [204, 210]. Ubiquitin-specific protease 1 
(USP-1) inhibitors as KSQ-4279 promote degradation of 
DNA repair proteins and are already part of clinical stud-
ies [201, 211]. Also interesting is AsiDNA™, which mim-
ics DNA double-strand breaks and subsequently induces 
apoptosis of cancer cells [107, 212].

Tissue invasion and metastasis
Invasion and metastasis formation builds another basis of 
cancer progressing to higher malignancy and comprises 
cell detachment, dissemination, and implantation [124]. 
Epithelial-mesenchymal transition (EMT) represents a 
comprehensive model, how cancer cells acquire ability 
to detach from primary tumor and increase migratory 
capacity [4, 14]. Contrary to other epithelial cancers, 
EMT seems to be subsidiary for metastasis formation in 
OC, being more reliant on passive exfoliation of tumor 
cells by fluid current to peritoneal cavity [20, 124, 213]. 
Several mechanisms are described to overcome anoikis, 
a specific form of apoptosis usually induced upon loss of 
cell–matrix contact, including FAK activation and over-
expression of RAB25, BCL-2 family proteins, and EGFR 
[124]. Ascites, with its unique TME, promotes cell metas-
tasis. Surface markers expressed on OC as MUC16/
CA125 and mesothelin, support adhesion to mesothelial 
cells [124].

However, typical changes associated with EMT, such 
as low expression of E-cadherin, are correlated with a 
poor outcome, making it an interesting target for OC 
treatment [214]. EMT is driven by transcription fac-
tors (EMT-TF) such as Slug, Snail, Zeb-1, and Twist, 
which increase expression of mesenchymal adhesive and 
cytoskeletal proteins (N-cadherin, Vimentin, Fibronectin, 
ß1-ß3-integrins, matrix metalloproteinases) and decrease 
epithelial state proteins (occludin, claudin, α6ß4 integ-
rins, cytokeratin) [215]. Thus, current research focuses 
on inhibition of abovementioned features enabling inva-
sion and metastasis and targeting signaling pathways that 
activate EMT-TF expression, including TGF ß signaling, 
Wnt pathway and mitogenic growth factor receptors trig-
gering PI3K-AKT, RAS/RAF/MAPK, p38MAPK, and 
JNK pathways resulting in NFkB expression [215].

FANG vaccine (gemogenovatucel-T, vigil) is a tumor 
cell vaccine that stimulates dendritic cells and promotes 
downregulation of TGF ß1/ß2 [216]. TGF ß has multiple 
functions. It increases EMT-TF expression via SMAD, 
ERK, and PI3K/AKT signaling [215, 217]. Besides, TGF 
ß acts strongly immunosuppressive by inhibition of anti-
tumoral T cell responses [218]. In phase II studies, the 
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vaccine prolonged the time to recurrence in the first-line 
treatment of epithelial OC after standard therapy [219]. 
The VITAL study (IIb) analyzed vigil in stage IIIb-IV OC 
after complete clinical response to debulking surgery and 
primary chemotherapy [220]. Despite good toleration of 
treatment, primary endpoint was not reached [216]. This 
highlights the importance of both efficacy and safety pro-
files. Subgroup analysis has proven OS benefit for HR 
proficient women (HR 0.342) [221].

MET tyrosine kinase receptor and its ligand hepatocyte 
growth factor are involved in EMT activation by upreg-
ulation of SNAIL [215]. Cabozantinib is a multikinase 
inhibitor targeting Met, VEGFR2, Ret, Flt3, Kit, and Tie 
2 and has been investigated in two phase II trials in ROC 
[222, 223]. Unfortunately, monotherapy failed to reach 
good response [224, 225]. Ongoing studies focus on 
application in germ line cell tumors and in combination 
with atezolizumab [226, 227]. Since FAK and AXL are 
also involved in metastasis formation, defactinib (FAKi) 
and batiraxcept (AXL decoy protein) are currently inves-
tigated in ROC phase III trials (Fig. 7) [40, 41, 228, 229].

Downstream activation of NFκB, e.g., by. PI3K-AKT 
signaling promotes inflammation and invasion among 
others by expression of MMPs [230]. Belinostat, a his-
tone deacetylase complex (HDAC) inhibitor, reduces 
NFκB gene transcription by hypoacetylation. Despite ini-
tial encouraging results of a phase Ib/II study proving an 
ORR of 43% in ROC to treatment with belinostat, carbo-
platin, and paclitaxel, a phase II clinical trial in PRROC 
had to be stopped due to lack of drug activity [231–233].

Catumaxomab, approved in 2009 but withdrawn in 
2014 due to insolvency, is a trifunctional bispecific anti-
body, targeting EpCAM [234]. Phase II/III trials, investi-
gating catumaxomab and paracentesis, have shown slight 
improvement in puncture-free survival [235, 236]. Since 
August 2022, catumaxomab is once again under evalua-
tion by CHMP (Committee for Medicinal Products for 
Human Use, EMA) for approval [237].

Further hallmarks to target/perspectives
Since, to our knowledge, no phase III clinical trials have 
evaluated compounds targeting the hallmarks “enabling 

Fig. 6  Genome instability and mutation. High quality repair of DNA damage is crucial to maintain genomic stability. In case of DNA damage repair 
defects, as homologous repair deficiency or artificially induced defects by PARP inhibition, DNA damage leads to genomic instability or cell death 
due to synthetic lethality. Recently completed and currently ongoing phase III trials targeting genome instability of OC are listed in the table. SSB, 
single-strand breaks; DSB, double-strand breaks. This figure was created using Biorender.com [72, 138, 166–180]
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replicative immortality,” “deregulating cellular metab-
olism,” “senescent cells,” and “unlocking phenotypic 
plasticity,” nor targeting the enabling characteristics 
“tumor-promoting inflammation,” “nonmutational epige-
netic reprogramming,” and “polymorphic microbiomes,” 
we will discuss current preclinical strategies and initial 
ongoing clinical trials that indicate possible future direc-
tions (Figs. 8 and 9).

Infiltration of TME by inflammatory cells promotes 
neoplastic progression by the supply of growth factors, 
survival factors, extracellular matrix-modifying enzymes, 
and angiogenic molecules (Fig. 8) [14]. Cyclooxygenases 
(COX), especially COX-2, are fundamental in induction 
of inflammatory state, which has been proven to come 
along with poor outcome in OC patients [20, 238]. Pre-
clinical studies have demonstrated that high COX-2 
activity increases cell migration and cisplatin resistance 
in OC cells, explaining promising activity (ORR 28.9%) of 
celecoxib (COX-2 inhibitor) and carboplatin combination 
in a phase II study [239]. Unfortunately, further studies 
investigating COX-inhibitors in combination with cyto-
static drugs did not show differences in OS [240–242]. 
High COX-2 levels also correlate with a low response 
to immunotherapy and COX-2 inhibition reduced Treg 
infiltration of the tumor [243]. Thus, acetylsalicylic acid 
(COX-1/2i) was combined with atezolizumab and beva-
cizumab in phase II study (EORTC 1508), but no efficacy 
benefit was observed [244]. Synergistic activity of TLR3 
ligands, IFNα, and COX-2 inhibitors enhancing cytotoxic 
T-lymphocytes meanwhile suppressing Tregs was investi-
gated in a phase I trial in recurrent PSROC [245]. Good 
safety and tolerability, as well as chemoattraction of cyto-
toxic T-lymphocytes by the triplet composed of cisplatin, 
rintalomid (TLR3 ligand), and celecoxib (+ in some cases 
IFNα as adjunct), led to a phase II trial investigating this 
triplet together with autologous tumor-loaded αDC1 vac-
cine. Unfortunately, PFS improvement did not meet pre-
defined thresholds [246].

Whereas non-cancerous cells mainly process glucose 
to pyruvate and subsequently to carbon dioxide in mito-
chondria using the tricarboxylic acid cycle, cancer cells 
are mainly restricted to glycolysis. Since the “Warburg 
effect” is way less efficient in energy supply, upregulation 
of glucose transporters as GLUT1 and enhanced glutami-
nolysis can be seen in OC [14, 247–249]. Upregulation of 
GLUT1 is associated with poor prognosis in OC [250]. 
Key regulators of cancer cell metabolism are hypoxia-
inducible factor 1α (HIF-1α) and AMP-activated protein 
kinase (AMPK). Oncogenes, tumor suppressors, and 
other signaling pathways as c-myc, RAS, p53, and AKT/
PI3K/mTOR signaling further modulate energy metabo-
lism (Fig. 9) [14, 20, 248]. CRLX101 is a HIF-1α directed 
nanoparticle-drug conjugate transporting camptothecin 

(topo I-inhibitor) to cancer cells. Encouraging results in 
phase II trials as monotherapy and in combination with 
bevacizumab or paclitaxel in ROC merit future investiga-
tion [21, 251–253]. Besides, pan-AKT inhibitor capiva-
sertib (AZD5363) reached clinical studies and has shown 
good tolerability and safety in phase I [254]. Recently 
capivasertib has been approved in metastatic hormone 
receptor positive breast cancer in combination with ful-
vestrant [255]. Combination of capivasertib and olapa-
rib has shown great antitumor activity in phase I study 
including OC, likewise did preliminary results of a study 
investigating mTORC1/2 inhibitor vistusertib (AZD2014) 
in combination with olaparib evidence durable anti-
tumor activity [256–258]. Other preclinical strategies 
inhibiting aerobic glycolysis include BH3 mimetics, iver-
mectin, berberine, and ginsenoside and are reviewed else-
where [21, 249].

Telomer shortening arises with each cell division and is 
a natural barrier of replicative immortality (Fig. 8). Criti-
cal telomere attrition promotes extensive genomic insta-
bility, which leads to apoptosis via p53 and RB pathway or 
to replicative senescence. Cancer cell alterations such as 
loss of TP53 and restoration of telomerase activity enable 
survival of incipient malignancies [14, 259]. Ninety per-
cent of cancers are characterized by overexpression of 
telomerase, which counteracts telomere attrition by its 
telomerase reverse transcriptase (TERT) [260, 259]. Can-
cers with TERT promoter mutations and high expression 
of TERT are associated with poor outcome, making them 
and the telomer shortening, an interesting drug target 
[259, 261]. Current approaches consider small-mole-
cule telomerase inhibitors, oligonucleotide inhibitors, 
telomerase-directed gene therapy, immunotherapeutic 
approaches, and alternative splicing as treatment [261]. 
Further approaches include the attack of shelterin com-
plex and targeting of alternative lengthening of telomeres 
[261]. However, only imetelstat (GRN163L), an inhibitor 
of telomerase activity, has been tested in advanced clini-
cal studies for myelodysplastic syndrome and non-small 
cell lung cancer [262]. Other preclinical hopefuls include 
BIBR 1532 (telomerase inhibitor) and pyridostatin 
(G-quadruplex stabilizer), which have shown promise in 
tumor spheroids [261, 263, 264].

“Senescent cells” were described as a new hallmark 
of cancer in 2022. Senescence is a non-proliferative but 
viable state of cells, concomitant with changes in cell 
morphology and activation of senescence-associated 
secretory phenotype (SASP) releasing chemokines and 
cytokines supporting proliferative signaling, angiogen-
esis, and metastasis (Fig.  9) [14, 15, 265]. Induction of 
senescence varies by DNA damage, imbalances in cell 
signaling, and cellular stress [15, 265]. SA-β gal, p16, and 
p21 represent several biomarkers of cellular senescence, 
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but only a few markers have high specificity and sensi-
tivity [266]. Some senescent cells can regain replicative 
abilities by cellular plasticity, considering senescence as a 
mechanism of therapy resistance [267]. Therefore, senes-
cence has a key importance not only for tumor develop-
ment but also for the response to cancer therapy and is 
correlated with poor prognosis [268, 269]. Thus, target-
ing senescence with senolytic or senomorphic drugs, as 
well as stem cell therapies, was able to extend lifespan 
and to minimize tissue damage in various animal models 
[266]. Combination with other anticancer drugs contrib-
utes to overcome resistance to apoptosis and reduce side 
effects [266]. For example, high expression of Bcl-x(L) 
induces senescence-mediated chemoresistance, which 
can be reduced by BCL-2 inhibitors as navitoclax, which 
was proven in phase II MONA VI-1 trial [116, 270]. 
According to epidemiological data, metformin is protec-
tive in OC and modulates the SASP, inhibits endothelial 
senescence, and enhances efficacy of CDK4 and CDK6 
inhibitors [266, 271]. Furthermore, the inhibition of 

DYRK1A/B and DREAM complex, which are involved 
in cellular senescence in OC, is promising [271, 272]. 
Since hyperactivation of AKT/PI3K/mTOR signaling 
in OC is common, its inhibition is broadly investigated 
for OC treatment. Interestingly, it has been shown that 
AKT inhibition promotes senescence of cancer cells. 
Therefore, combination of AKT inhibitors and down-
stream blockage of autophagy and senescence could help 
to overcome therapy resistance [271]. Inversely, main-
tenance therapy with AKT inhibitors could keep tumor 
cells in senescent state, thereby preventing tumor recur-
rence [271]. However, in general, it remains controversial 
whether cellular senescence impedes cancer growth or 
supports tumor progress via SASP [15, 273]. In this con-
text also, cancer stem cell (CSC)-related cell senescence 
displays an interesting approach to target [274].

Unlocking phenotypic plasticity covers another newly 
introduced hallmark of cancer, the ability to escape or 
evade terminal differentiation (Fig. 8). Cancer can acquire 
new molecular properties through dedifferentiation, 

Fig. 7  Tissue invasion and metastasis. Tissue invasion and metastasis are complex processes, modulated by various signaling pathways. 
Epithelial-mesenchymal transition and expression of its regulating transcription factors, which are controlled by TGF β, Wnt, and growth factor 
signaling, is pivotal. Recently completed and currently ongoing phase III studies targeting tissue invasion and metastasis are listed in the table. EMT, 
epithelial-mesenchymal transition. This figure was created using Biorender.com [40, 41]
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blocked differentiation, or transdifferentiation, which 
facilitate metastasis and evasion of systemic therapy [15]. 
Influencing mechanisms are EMT, the formation of can-
cer stem cells, the activation or suppression of important 
signaling pathways, epigenetic changes, and changes in 
the tumor environment [275]. There is proof that EMT 
serves as a protective mechanism for cancer cells to sur-
vive. By inhibition of EMT, cisplatin resistance was suc-
cessfully overcome in OC [275–277]. IL (interleukin)−8 
contributes to tumor cell remodeling and is taking part 
in the regulation of tumor cell stemness, EMT, and resist-
ance to therapy [275]. Treatment with SB225002 (CXCR2 
inhibitor) attenuates IL-8-induced resistance in OC cells 
[278]. As therapy-related resistance is still a major obsta-
cle to a complete cure, it is crucial to understand the 

mechanisms involved in plasticity, to develop targeted 
therapies [275].

Epigenetic alterations, such as histone modifications, 
DNA methylation, and post-transcriptional modifica-
tions of RNA, influence gene expression and promote 
tumor development [15, 279, 280]. Several epigenetic 
alterations can be used as predictive markers in molec-
ular cancer screening and to derive treatment recom-
mendations [281]. Dynamic epigenetic changes in cancer 
are related to unlimited self-renewal and multi-lineage 
differentiation as well as tumor heterogeneity and dis-
play possible escape mechanisms to therapy which are 
druggable [15]. MicroRNAs (miRNA), small non-coding 
RNAs regulating gene expression organized in tumor 
suppressive or oncogenic clusters, are described in 

Fig. 8  Further hallmarks to target. The hallmarks deregulating cellular metabolism, unlocking phenotypic plasticity and the enabling characteristics 
tumor-promoting inflammation offer broad possibilities of altered pathways to target by cancer treatment. Auspicious targets are displayed 
in the boxes. CSC, cancer stem cells; CAF, cancer-associated fibroblasts; TCA, tricarboxylic acid cycle; TERT, telomerase reverse transcriptase; HMT, 
histone methylases; HDMS, histone demethylases; HAT, histone acetyltransferases; HDAC, histone deacetylase; DNMT, DNA methyltransferase. This 
figure was created using Biorender.com
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pathogenesis of OC and correlate with therapy response 
as well as patients’ outcome and serve as biomark-
ers [282, 283]. For example, Let-7 family of miRNA has 
a tumor suppressor function and is downregulated in 
many cancers. Let-7  g overexpression induces a signifi-
cant reduction in OC cell growth [283]. Aberrant CpG 
island methylation in OC influences apoptosis, drug sen-
sitivity, and cell cycle regulation. Prime example of aber-
rant methylation in OC is BRCA1 silencing by promoter 
hypermethylation [281]. Other epigenetic mechanisms, 
as shown by ep-100 which targets gonadotropin-releasing 
hormone receptor and combined with olaparib increases 
histone H2A.X phosphorylation or the gain of platinum 
sensitivity due to USP-1 inhibitors, which stop deubiq-
uitination of SNAIL, need to be further explored [281]. 
DNA methyltransferase (DNMT), histone deacety-
lase (HDAC), histone demethylase (HDT), and histone 
methyltransferase EZH2 are the main targets of so far 
marketed epidrugs [281]. Among DNMTis, ginsenoside 
Rg3 have shown to promote apoptosis; guadecitabine 
(SG-110) have increased PARPi sensitivity regardless of 
BRCA status [281, 284]. Current limitations of DNMTis 

are mainly due to toxic side effects [281]. HDACi, such 
as romidepsin, vorinostat, valproate, and PDX101, induce 
acetylation in OC and thereby promote transcriptional 
activation and synergism with platinum-based therapies 
[281, 285, 286]. Roxyl-ZHC-84 is a new HDACi, imped-
ing JAK1-STAT3-BCL-2 provided resistance mechanism 
[287].

Evidence is growing that microbiota which are symbi-
otically associated with multiple barrier tissues impact 
cancer phenotype by either cancer-protective or tumor-
promoting microbiome [15, 288, 289]. Mutagenesis due 
to bacterial toxins, epithelial proliferation caused by 
ligand mimetics and altered immune response and bar-
rier function are ways how the microbiome can affect 
cancer. In addition, microbes can trigger DNA damage 
and apoptosis by releasing genotoxic metabolites or by 
formation of reactive oxygen species. In OC patients, 
cytokine levels of tumor necrosis factor α (TNFα) and 
IL-6, which are involved in regulation of tumor pro-
gression via JAK/STAT3 pathway and are regulated by 
gut microbiome, were increased [290, 291]. Also, a link 
between chlamydia infections and the risk of OC has 

Fig. 9  Further hallmarks to target. Other promising targets for treatment are the reprogramming of glucose metabolism in cancer cells 
and the cellular senescence of cancer by stimulating the senescence-associated secretory phenotype, which consists of proinflammatory cytokines, 
chemokines and matrix-reforming factors. MCT4, monocarboxylate transporter 4; ATP, adenosine triphosphate; GLUT, glucose transporter; TCA, 
tricarboxylic acid cycle; PDH, pyruvate dehydrogenase; HIF, hypoxia-inducible factor; ROS, reactive oxygen species; SASP, senescence-associated 
secretory phenotype; SA-β-gal, senescence-associated beta-galactosidase. This figure was created using Biorender.com
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already been established. Further endeavors employ 
microbiome alterations as biomarkers for OC [292]. 
Recently, Choi and Choi have described the role of the 
gut and cervicovaginal microbiota in OC concomitant 
with new therapeutic approaches, including, among oth-
ers, fecal microbiome transplantation and vaginal micro-
biome transplantation to improve patients’ outcome 
[292–294].

Targeted transport
Targeted drug delivery systems that bind antibody, pep-
tide, polymer, small molecules, and single-stranded oli-
gonucleotides via linker enable selective delivery of high 
potent cytostatic drugs, thus increasing efficacy while 
decreasing systemic toxicity [295, 296]. A range of over-
expressed surface markers is known for OC, including 
FRα, trophoblast antigen 2 (TROP2), cadherin 6 (CDH6), 
and type II sodium-phosphate cotransporter (NaPi2b) 
(Fig.  10). Preclinical research works at terrific rate on 
systematic identification and validation of further mark-
ers [295, 297]. After binding, the system usually passes 
the cell membrane by endocytosis, receptor-mediated 
uptake, or non-endocytic translocation pathways and 
thus reaches its target [298].

So far (03/24), 13 antibody drug conjugates (ADCs) 
have been approved worldwide [299]. Mirvetuximab 
soravtansine (MIRV), an FRα-directed antibody linked to 
maytansinoid DM4, is the first and only ADC approved 
by the FDA for OC [300]. FRα is overexpressed in about 
90% of OC and expression increases with progress of 
disease [301]. A folate, conjugated with a vinca alka-
loid, vintafolide, was already investigated in the phase 
III PROCEED trial in 2011 but did not meet the futil-
ity threshold [302]. In contrast, MIRV has proven high 

efficacy in clinical trials, such as SORAYA study (phase 
II/III) with an ORR of 32.4% [303].

MIRV is the first treatment demonstrating a benefit in 
PFS (HR 0.65) and OS (HR 0.67) in PRROC, which has 
been shown in MIRASOL study, confirming the good 
therapy response seen in SORAYA [305]. In November 
2022, FDA granted accelerated approval for patients with 
FRα positive PRROC, who have previously received one 
to three systemic therapies [11]. A global study, GLORI-
OSA, is currently investigating the maintenance therapy 
in combination with bevacizumab in PSROC [307].

NaPi2b overexpression is reported in 95% of OC [295]. 
Upifitamab rilsodotin (UpRi) is a promising ADC target-
ing NaPi2b, linked to an anti-mitotic drug [311]. How-
ever, the phase III trial UP-NEXT was stopped in 2023 
due to severe bleeding [308, 312]. Raludotatug derux-
tecan is a potential first-in-class ADC, targeting CDH6. 
CDH6 is overexpressed in approximately 65% of OC 
[313]. Linked to the topoisomerase (topo) I-inhibitor der-
uxtecan, it has shown acceptable tolerability and early sig-
nals of efficacy in heavily pretreated women with OC as 
shown in interim-analysis of phase I study in 2023 [314]. 
Based on this, phase II/III REJOICE-Ovarian01 trial was 
initiated in February 2024 [309]. TROP2, a transmem-
brane glycoprotein, is overexpressed in 47–89% of OC 
and its overexpression is associated with poor progno-
sis [315]. Sacituzumab govitecan (Trodelvy), a TROP2-
directed ADC, is already approved for triple negative 
breast cancer [316]. In SHR-A-1921, a topo I-inhibitor is 
connected to a TROP2 antibody with a cleavable linker 
[317]. Based on good safety and efficacy profile in a phase 
I trial, a phase II/III trial started in February 2024, evalu-
ating the benefit in combination with carboplatin in ROC 
[310]. In addition, the TROP2 directed ADC BNT325/
DB-1305 is clinically promising and received FDA fast 
track designation for PRROC [318].

Fig. 10  Targeted transport—overexpressed cell surface markers. Antibody drug conjugates (ADC) are composed by a carrier, a payload, 
and a linker. Common carrier molecules include carbohydrates, proteins, small molecules, peptides, and aptamers. FRα, HER2, TROP2, CDH6, 
and NaPi2b represent overexpressed surface molecules of OC, which are possible targets for ADCs. Recently completed and currently ongoing 
studies investigating ADC for OC are listed in the table. This figure was created using Biorender.com [302–310]
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Further endeavors to optimize targeted drug delivery 
encompass bispecific ADCs [298]. One representative 
in preclinical research is the novel SORT1xHER2 bispe-
cific ADC, which is directed against HER2 and sortilin-1, 
which are co-overexpressed in OC [319]. Nevertheless, 
challenges regarding ADC, such as limited drug-to-
antibody ratio and antibody-induced immunogenicity, 
remain [295].

Furthermore, there are drug-loaded nanoparticles that 
diffuse to the tumor tissue due to enhanced permeabili-
zation and retention effect [295, 320, 321]. An example 
of this is liposomal doxorubicin (Doxil), a non-targeted 
nanoparticle approved by the FDA in 1995 [322]. Nano-
particle drug systems in clinical trials for OC include 
EP0057, camptothecin bound to a cyclodextrin-based 
polymer scaffold, and ELU001, exatecan combined with 
folic acid analogs [251, 323].

Further approaches
Intra- and intertumoral heterogeneity (morphological, 
prognostic, etiopathogenetic, and molecular heteroge-
neity) as well as growing knowledge about the impact 
of TME on cancer emphasize the importance of prog-
nostic screening methods for treatment response, e.g., 
patient-derived ex vivo tumor organoid cultures, patient-
derived xenografts, or “tumor/organ on a chip” models 
[324, 325]. Future dream would be to predict therapy 
response solely based on tumor sequencing. Due to this 
heterogeneity, biomarkers, patient stratification or rather 
precision oncology and adequate monitoring are crucial 
to select the appropriate therapy for each patient and 
thus contribute to the success of the drug, as shown in 
the work by Skorda et  al. [17]. Therefore, not only tests 
are needed to identify subgroups but also markers with 
higher specificity and sensitivity. Furthermore, the indi-
vidualized therapy approach is progressively represented 
in molecular tumor boards in the clinics.

Besides the development of new drugs, the investiga-
tion of tumor-treating field (TTF), an upcoming new 
cancer treatment modality, using alternating electric 
fields of intermediate frequency that are intended to 
disrupt tumor cell growth, is interesting [326]. INNO-
VATE-3, a phase III study, recently investigated TTF in 
combination with paclitaxel for PSROC. Although the 
primary endpoint of OS was not met, survival benefits 
among exploratory subgroups could be seen and merit 
further subgroup analyzes [327]. Taking into account 
major prognostic importance of complete debulking of 
OC for patient outcome, upcoming imaging agents as 
Gleolan (5-ALA) are another important tool to improve 
surgery [328]. Recently, a phase III study (OVA-302) was 
designed to investigate whether Gleolan can improve 
debulking surgery of OC [329, 330].

An appropriate study design is essential in order to be 
able to identify effects and side effects in clinical stud-
ies. This includes the choice of suitable biomarkers, the 
appropriate selection of in-process and follow-up con-
trols, and the perfectly responsive subgroup, due to the 
large heterogeneity in OC. An incorrect selection of sub-
groups can lead to a reduction in the effect or even the 
absence of an effect. Another challenge in clinical trials 
is long-term follow-up, included in both phase III and 
phase IV trials. With the increase in patient cohort size 
and observation time, rare or slowly developing adverse 
effects are more likely to be detected. Pharmacovigi-
lance is the monitoring of safety and/or efficacy over a 
longer-term period. Combination therapy is often used 
to reduce the risk of a poor safety profile. However, the 
challenge continues even after the clinical trials. In clini-
cal trials, optimally suited patients are initially included 
in the study. Subgroups are optimally selected and inten-
sively monitored. In the clinic, the drug is then used in a 
larger cohort of patients with poorer general health, dif-
ferent ages, and increased heterogeneity. For this reason, 
biomarkers, prognostic tests for treatment response (pre-
cision oncology), and appropriate monitoring are essen-
tial, even after approval, in order to be able to select the 
appropriate therapy for each patient and thus contribute 
to the success of the drug.

Conclusions
OC remains the most lethal gynecological cancer. Chal-
lenges faced in OC regarding drug therapy remain to be 
drug resistance mechanisms and CSCs leading to relapse 
situations. Many new strategies to improve patient’s out-
come appear upon the horizon. Using tools as targeted 
therapy, immunotherapy, gene therapy, and drug-conju-
gates, a variety of new techniques and compounds has 
been developed within the last years to target the hall-
marks of cancer.

For example, kinase inhibitors have been broadly 
investigated in OC treatment. To face challenges such as 
intratumoral heterogeneity and alterations of multiple 
pathways, mainly combinational treatments are currently 
under clinical evaluation. Especially, regarding immu-
notherapy, huge improvement was made within the last 
years. Numerous new compounds have evolved and have 
been investigated, finally showing OS benefits in treat-
ment with ICI and PARPi in the DUO-O trial.

Newly emerged hallmarks of cancer and enabling char-
acteristics as phenotypic plasticity, epigenetic repro-
gramming, and the microbiome display interesting 
targets to treat. Here, development and investigation of 
new compounds is still at the very beginning and merits 
future research. The information gaps in clinical studies 
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that exist due to general absence of a mandatory interna-
tional uniformly study register and due to the lack of an 
obligation to publish results should also be closed in the 
future.

Following the breakthrough of bevacizumab and PARPi 
within the recent years, the ADC MIRV appears to be the 
next drug with great potential in the pipeline. However, 
we are eagerly awaiting the pending study results and are 
curious to see which strategies to improve OC therapy 
will prevail.
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