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ABSTRACT
The classic epidemiological triangle model of host—environment—pathogen is recently being reshaped into a tetrahedron, with 
the growing understanding of the importance of the microbiome in this array. The gills, being a gateway into the fish body, 
bearing an important role in fish homeostasis, host a complex microbiome that reflects the ambient water, while also showing 
resemblance to gut microbiome. Next-generation sequencing (NGS) and improvements in data analysis tools enable researchers 
to gather and analyse a lot more data than ever before, take a closer, more detailed look at microbiota, and gain a much better un-
derstanding of the biological processes at work in these complex relations. Here, 16S rRNA amplicons of bacterial DNA extracted 
from the gills of 36 asymptomatic specimens of three wild fish species from the South China Sea (Nemipterus japonicus, Alepes 
djebaba, and Saurida tumbil) were sequenced using NGS. Data analyses revealed the presence of 20 potentially pathogenic spe-
cies, including several zoonotic agents. Gill microbiota exhibited host species-specificity, and expressed a significant difference 
between demersal and pelagic-amphidromous fish. It is suggested that this method be more widely implemented, in order to gain 
more insight on ocean ecosystems’ health status, as well as fish stocks of commercial importance.

1   |   Introduction

In a global climate rapidly changing and deeply affected by 
human activity (Vogel et al. 2019), the oceans are not exempt 
(Laufkötter, Zscheischler, and Frölicher 2020). With one sixth 
of the global animal protein intake being sourced from fish, half 
of which is wildly caught at sea, the impact of many stress fac-
tors on an important source of food for billions of people world-
wide is of great concern (FAO 2024). The influence of pollution, 

sea temperature rise, and ocean acidification are some of the 
major factors posing risk to fish populations (Broekhuizen 
et al. 2021; Cheng et al. 2020; Finn, Grattarola, and Pincheira-
Donoso 2023; Pistevos et al. 2015; Viršek et al. 2017). In order 
to assess the ability of these populations to cope with the stress, 
researchers look at external physical and chemical factors, such 
as previously mentioned, as well as the internal biological as-
pects of fishes themselves, and their relationships with microbi-
ological organisms affecting them through various commensal 
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relations (Llewellyn et  al.  2014). Disease outbreaks are more 
pronounced and measurable in aquaculture than in wild fish 
populations (Chapman et al. 2021; Clavelle et al. 2019), however 
the importance of either preventing or limiting the extent of 
these outbreaks has extreme economic and social implications 
(FAO  2024). Furthermore, since mariculture has been shown 
not only to affect the surrounding waters and wild fish popula-
tions within it, but also to be affected by it in a two-way process 
(Arechavala-Lopez et al. 2013), the importance of gathering real 
time data cannot be overstated. Therefore, monitoring of wild 
fish populations’ health can prove to be a relatively low-cost 
indicator—one of several—which can be implemented in order 
to reduce economic losses and risk to public health. The epi-
demiological triangle, describing the relationship between the 
environment, a host and a pathogen (King et  al.  2019), forms 
the foundations of research looking into the clockworks of ma-
rine animal diseases (Andrade et al. 2017; Elarabany et al. 2017; 
Genin et al. 2020; Wang et al. 2018; Zarantoniello et al. 2021). 
In recent years, another layer has been added to this model—
the microbiome. The close partnership between hosts and their 
symbiotic microbiota plays a significant role in host mainte-
nance and wellbeing, contributing to metabolism, immune 
system maturation, and additional defences against pathogenic 
invaders (Apprill  2017; Aschenbrenner et  al.  2016; Ramsey 
et  al.  2016; Vorburger and Perlman  2018). Changes in micro-
bial composition due to internal (Yildirimer and Brown 2018) 
and/or external stress factors (Halpern et al. 2008; Nguyen and 
Liou  2019; Pérez-Ruzafa, Pérez-Marcos, and Marcos  2018), 
may have a major effect on the wellbeing of the host (Llewellyn 
et al. 2014). Hence, fish microbiota trends may serve as a bioin-
dicator for the host's health status. Research of fishes’ microbi-
ota has been growing in the past decade, with studies varying in 
the organ of focus, ranging from the skin to internal organs (di-
gestive system, kidneys, liver, spleen, etc.) (Egerton et al. 2018; 
Krotman et  al.  2020; Liu et  al.  2016; Meron et  al.  2020; Ni 
et  al.  2013; Sevellec et  al.  2014; Tarnecki et  al.  2019), and re-
cently increasingly more—the gills (Itay et al. 2022; Merrifield 
and Rodiles 2015; Mohammed and Arias 2015). The gills, being 
a gateway to the body and blood system, serve several purposes 
in the wellbeing of a fish: from their primary role in gas and 
waste exchange to being an important mucosal immunity site 
(Evans, Piermarini, and Choe 2005; Salinas 2015). They have 
been found to be relatively well-correlated to gut microbiota 
(Pratte et al. 2018), and thus a good representative of the inter-
nal physiological state of the fish, as well as a proxy to ambient 
water bacteria community composition, pathogens included 
(Kuang et al. 2020). There are two practical reasons to use gills 
as the target organ for such monitoring programs: (i) harvest-
ing gill tissue is less time consuming relative to internal organs, 
which enables handling more samples in a given time frame; 
and (ii) a small clipping of the tissue may be sufficient for exam-
ination; hence fish do not necessarily have to be killed in order 
to be studied. In this study, we implemented 16S rRNA NGS to 
screen the gills of three wild fish species, analyse their gills’ mi-
crobial community composition and search for potential patho-
gens. This method follows in the footsteps of similar studies 
previously performed (Itay et al. 2022), further supporting the 
case for implementing it in more regions as a cost-effective mon-
itoring tool (Caporaso et al. 2011; Vayssier-Taussat et al. 2013; 
Walters et al. 2015).

2   |   Materials and Methods

2.1   |   Fish Collection

Fish were caught by fishermen in Hong Kong, in the north-
ern part of the South China Sea (Figure  1), and were bought 
to the laboratory in the Hong Kong University of Science and 
Technology from a stall in a local fish market. During that 
whole process—from the minute they were brought up by fish-
ermen until they were sold, then later brought to the lab for 
dissection—the fish were kept on ice. All samples which were 
not immediately dissected were kept in a −20°C fridge until 
being processed. Japanese threadfin bream (Nemipterus japon-
icus; n = 11) and Shrimp scad (Alepes djebaba; n = 13) samples 
were fished during December 2020. Greater lizardfish samples 
(Saurida tumbil; n = 12) were collected during January 2021.

2.2   |   Tissue Sampling

Tissue sampling was done based on Yanong (2003) and accord-
ing to the protocol in Supporting Information (Data S1–S3). In 
short, frozen fish specimens were gradually thawed in small 
batches in order keep their inner organs in a state of partial 
thawing, which is ideal for removal. The fish were weighed and 
measured (data added in the Supporting Informations section 
Data S1–S3), inspected externally and were then dissected asep-
tically. Gills samples (arc and filaments from a middle gill, one 
of each side) were placed in 2 mL-tubes, which were kept frozen 
at −80°C until DNA was extracted from them.

2.3   |   DNA Extraction

DNA extractions were done using the GeneMATRIX Soil DNA 
Purification Kit (EURx, Gdańsk, Poland), following the manu-
facturer instructions for tissue lysates, with an extra two-hour 
incubation at 55°C following suspension in the kit-provided 
lysis buffer of the tissue sample. DNA quality was examined 
by NanoDrop spectrophotometry analysis and agarose gel-
electrophoresis. Extracted DNA samples were stored at −80°C 
and later couriered to Israel in a box of dry ice.

2.4   |   PCR Amplification and Amplicon Sequencing

Total DNA extracts were used as template for amplification 
of partial 16S rRNA gene sequences, at the V4 hypervari-
able region. Amplicon generation followed a two-stage PCR 
amplification protocol (Naqib et  al.  2018). Each of the first 
stage PCR reactions (a total of 50 μL in volume) included: 
25 μL of GoTaq Green Master mix (Promega, Fitchburg, WI, 
USA), 2 μL of mixed forward-reverse primers (each in a con-
centration of 1 nM), 2 μL of bovine serum albumin (BSA), 
18 μL of ultra-purified water (UPW) and 3 μL of 80 ng/μL 
template DNA. The primers contained 5′ common sequence 
tags (known as common sequence 1 and 2, CS1 and CS2) 
compatible with Access Array primers for Illumina sequenc-
ers (Fluidigm, South San Francisco, CA, USA) (Caporaso 
et al. 2012). Amplification primers used (linker sequences in 
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bold): CS1_518F: 5′ –A​CAC​TGA​CGA​CAT​GGT​TCT​ACA​CC​
AGC​AGC​CGCGGTAATACG—3′ (Nakasaki et  al.  2009) and 
CS2_806Rc: 5′—T​ACG​GTA​GCA​GAG​ACT​TGG​TCT​GG​ACT​
ACNVGGGTWTCT—3′ (Walters et al. 2015).

The PCR conditions were set as follows: 10 cycles of denatur-
ation at 95°C for 15 s, annealing at 60°C for 15 s and elongation 
at 72°C for 30 s; followed by 10 cycles of denaturation at 95°C 
(15 s), annealing at 55°C (15 s) and elongation at 72°C (30 s); 
after which 10 more cycles at 95°C (15 s)/50°C (15 s)/72°C (30 s) 
were run; and then 5 final cycles with only a change of anneal-
ing temperature, performed at 62°C. The PCR concluded with 
2 min of incubation at 72°C, before being lowered to 4°C for 
1 h (or until samples were removed). Amplicons were sent to 
UIC Sequencing Core (Chicago, IL, USA), in which a second 
PCR amplification was performed in 10 μL reactions in 96-
well plates using MyTaq HS 2X mastermix (Bioline, Taunton, 
MA, USA). Each well received a separate primer pair with 
a unique 10-base barcode, obtained from the Access Array 
Barcode Library for Illumina (Fluidigm, South San Francisco, 
CA; Item# 100-4876). One μl of PCR product from the first 
stage amplification was used as template for the 2nd stage, 
without cleanup. Cycling was performed using the following 
conditions: 95°C for 5 min, then 8 cycles of 95°C for 30″, 60°C 
for 30″, and 72°C for 30″. Libraries were then pooled and se-
quenced using a 20% phiX spike-in on an Illumina Miniseq 
sequencer employing a mid-output flow cell (2 x 150 paired-
end reads). Final library preparation, pooling, and sequenc-
ing were performed at the genome research core (GRC) at the 
University of Illinois at Chicago (UIC).

2.5   |   Sequence Data Processing

Detailed information regarding the sequence data processing 
is provided in the Supporting Information File (Appendix S1). 
In brief, sequence data was analysed using the Dada2 pipeline 
(Callahan et al. 2016) using R package ‘dada2’ (version 1.14.1). 
Error rate estimation was carried out in order to sample nucleo-
tides and reads for model building randomly across all samples. 
The dada2 algorithm was implemented for error correction and 
a count table containing the amplicon sequence variants and 
counts per sample was produced. For each amplicon sequence 
variant (ASV), taxonomy (up to the species level) was inferred 
by alignment to the Silva non-redundant small subunit ribo-
somal RNA database (version 138).

2.6   |   Data Analysis

All data filtering parameter settings are detailed in the 
Supporting Information File (Appendix  S1). In short, for 
data analysis and generation of figures, the online tool 
MicrobiomeAnalyst (https://​www.​micro​biome​analy​st.​
ca/​Micro​biome​Analy​st/​home.​xhtml​) was used (Chong 
et  al.  2020; Dhariwal et  al.  2017). Taxonomy labels were as-
signed using the SILVA taxonomic framework (https://​www.​
arb-​silva.​de/​docum​entat​ion/​silva​taxon​omy/​). Initial analyses 
identified 251 unique bacterial species. The prevalence of these 
bacterial species was calculated per fish species, and ranged 
from a single occurrence in just one specimen of the whole 
pool of samples of the three fish species—to an appearance 

FIGURE 1    |    A map of the South China Sea, showing the area from which the fish samples originated. Map modified from: https://​www.​d-​maps.​
com/​carte.​php?​num_​car=​79&​lang=​en.

https://www.microbiomeanalyst.ca/MicrobiomeAnalyst/home.xhtml
https://www.microbiomeanalyst.ca/MicrobiomeAnalyst/home.xhtml
https://www.arb-silva.de/documentation/silvataxonomy/
https://www.arb-silva.de/documentation/silvataxonomy/
https://www.d-maps.com/carte.php?num_car=79&lang=en
https://www.d-maps.com/carte.php?num_car=79&lang=en
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in nearly all samples. Furthermore, the accumulated number 
of reads per bacterial species was calculated. A certain cor-
relation between increased occurrences and increased accu-
mulated number of reads was observed, as expected. Hence, 
a cutoff of 100 total reads was used to frame the species of 
interest. This cutoff was based on the assumption that a total 
number of reads beneath that threshold can be considered 
relatively ‘safe’, in terms that a fish infected by a pathogenic 
bacterium with such a low number of reads is probably not 
in risk of developing a disease, as explained in detail in Itay 
et  al.  (2022). All 73 bacterial species with at least 100 total 
reads were then searched for pathogenic potential by adding 
the words ‘infection’, ‘disease’, ‘marine’, ‘fish’, and ‘human’ 
to their names in Google Scholar. According to the results of 
the search, each species was rated for its pathogenic poten-
tial from ‘No’, through ‘Unknown’, ‘Rarely’, ‘Opportunistic’, 
‘Pathobiont’, ‘PP’ (meaning Potentially Pathogenic) to ‘Yes’, as 
described in Itay et al. (2022).

2.7   |   Phylogenetic Trees

The parameters used for creating trees are detailed in the 
Supporting Information file (Appendix  S1). Briefly, sequences 
identified as belonging to the several genera chosen for deeper 
enquiry were uploaded to Silva (https://​www.​arb-​silva.​de/​
align​er/​) for preparing phylogenetic files (Oliver et  al.  2017; 
Quast et  al.  2013; Yilmaz et  al.  2014). The ACT (Alignment, 
Classification and Tree Service) tool was used (SINA v1.2.11) 
(Pruesse, Peplies, and Glöckner 2012). Output TREE format files 
were extracted for visualisation with the FigTree v1.4.4 software 
(http://​tree.​bio.​ed.​ac.​uk/​softw​are/​figtr​ee/​).

3   |   Results

All of the 36 fish collected appeared healthy both externally 
and internally upon inspection and necropsy. The commu-
nity structure of the gill samples differed between fish spe-
cies (Figure 2). Shrimp scad (Alepes djebaba; hereafter ‘SHS’) 
samples exhibited a higher and richer composition (Simpson 
index average: 0.91), while also expressing the lowest variance 

between samples. Greater lizardfish (Saurida tumbil; hereafter 
‘GLF’) samples exhibited high variance and low average, less 
rich compositions (averaging at 0.45 on the Simpson index). 
Japanese threadfin bream (Nemipterus japonicus; hereafter 
‘JTB’) expressed a medium level variance and Simpson index 
(average at 0.57).

A comparison of compositions (Figure 3) shows a clustering of 
microbiomes amongst species, with SHS displaying a commu-
nity structure least similar to the other two, while JTB shares a 
large part of its microbiome with GLF.

An interaction network (Figure  4), expressing the strength of 
ties between bacteria genera to each other and their tendency 
to be hosted by the different fish species, reveals a complex 
structure with no distinct cohort. Nonetheless, some genera 
found in substantial numbers were more strongly associated 
with specific fish species rather than others: Pseudarcobacter, 
Shewanella, Aeromonas, Vibrio, Cetobacterium, Flavobacterium 
and Psychrilyobacter were predominately found in SHS gills; 
Photobacterium, Tenacibaculum and Oceanisphaera were com-
mon in GLF; while Psychromonas and Aliivibrio had shown up 
more in JTB samples. Most of the ties between bacteria genera 
were positive correlations.

The relative abundance analysis (Figure 5) shows that two of the 
most dominant genera, Photobacterium and Psychromonas were 
negatively correlated (−0.8232, according to the correlation net-
work data). In GLF, Photobacterium was on average 64% of the 
gill's microbiome (of which 95% of the reads came from P. leiog-
nathi, a non-pathogenic bacterium), while Psychromonas made 
up less than 0.5%. In JTB, on the other hand, Psychromonas 
dominated 70% of the microbiome, while Photobacterium was 
only 4%. In JTB, other important members of the gill's micro-
biome included Shewanella (9.7% on average) and Aliivibrio 
(1.5%). Less than 5% of the JTB reads could not be assigned (NA; 
i.e., not identified to genus). In GLF, apart from the aforemen-
tioned Photobacterium, the genera Pseudoalteromonas (5.9%), 
Psychrobacter, Flavobacterium, and Oceanisphaera (4.5%, 3.4% 
and 2%, respectively) were noteworthy microbiome constitu-
ents. In this fish species on average 12.4% of the reads were NA. 
In SHS, the gills microbiome expressed a much more balanced 
picture, in the meaning that no single genus was so dominant. 
Nonetheless, Shewanella was the leading element, taking up on 
average as much as 21.5% of its gill's microbiome. Other import-
ant genera included Photobacterium (14.3%), Pseudarcobacter 
(13.2%), Psychromonas (8.5%), Pseudoalteromonas (3.92%), 
Aeromonas (3.89%), Vibrio (3.11%), Flavobacterium (2.65%), and 
Psychrobacter (1.92%). SHS had the largest percentage of NA 
(14.25%).

The NGS data analyses provided a total output of 5655 unique 
bacterial amplicon sequence variants (ASVs) of which only 
one (ASV0005), identified as a Pseudoalteromonas sp., ap-
peared in all fish samples. Of the whole list of ASVs, 251 were 
identified to the taxonomic level of (unique bacterial) spe-
cies. Of these, 73 were found with at least 100 total reads and 
screened in the literature for their pathogenic potential (see 
methods for details). A list of 20 species bearing some patho-
genic potential (to humans and/or marine organisms) was as-
sembled (Table 1). These bacteria belong to 5 different classes: 

FIGURE 2    |    Community structure (aka: α-diversity) profiling of fish 
gills samples. The Simpson diversity index boxplot shows data clustered 
by fish species. Kruskal-Wallis statistic: 19.745, p < 0.5.158e-05.
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FIGURE 3    |    Gills’ microbiome resemblance between the sampled fish species. Jaccard index: F: 23.645, R2: 0.5889, p < 0.001, NMDS stress = 0.13311.

SHS
JTB
GLF

FIGURE 4    |    A network of interactions between different genera, with reference to three wild fish species from the South China Sea. Network 
calculation used Spearman's rank correlation coefficient and the threshold settings placed at: Correlation > 0.5; p < 0.05. Size of circles represents 
abundance and the colouring associates bacteria with host in regards to mean abundance.
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Gammaprteobacteria (n = 10); Bacteroidia (n = 4); Bacilli 
(n = 3); Acinetobacteria (n = 2) and Campylobacteria (n = 1). 
The list consists of 13 species recognised as carrying different 
degrees of pathogenicity to marine organisms, of which six 
are also known to bear some pathogenic potential to humans. 
Overall, there were 13 bacterial species with certain pathoge-
nicity to humans. In samples belonging to SHS 18 out of the 20 
(18/20) potentially pathogenic (PP) bacterial species appeared 
and 12 out of 13 bacterial species pathogenic to marine organ-
isms. In GLF 16 PP species (11/13 marine pathogens) were 
found and in JTB samples 10 PP species (5/13) showed up. 
These results are visualised in Figure 6.

A comparison between the results of the current study with 
that of Itay et al.  (2022) regarding Pathogenic/Non-pathogenic 
ratios of several genera of interest, is depicted in Figure 7. These 
genera include: Photobacterium, Shewanella, Staphylococcus, 
Streptococcus, and Vibrio. Phylogenetic trees of these gen-
era (from the current study) are available in the Supporting 
Information (Figures S1–S5).

4   |   Discussion

The Japanese threadfin bream (JTB; Nemipterus japonicus) 
and the Greater lizardfish (GLF; Saurida tumbil) are demer-
sal fish species found throughout the Indian Ocean. Both 
species feed mainly on crustaceans, squid and smaller fish. 
The key difference in their habitat preferences is that GLF in-
habits depths of 20–60 m, while JTB resides at depths of up to 

200 m (Doustdar, Hashemi, and Rahmati 2022; Saraswati and 
Perdhana 2020; SriHari et al. 2021; Tonnie et al. 2018). This 
difference in habitat may help explain the variation in gill mi-
crobiome diversity and the ratio of similarities to differences 
between the species.

The shrimp scad (SHS; Alepes djebaba) is distributed across the 
Indian Ocean—from the coasts of East Africa, through South 
Asia, and as far as Northern Australia. Some populations are even 
seen in the Pacific Ocean around Hawaii (Quayed et al.  2022). 
Since the opening of the Suez Canal, this species has been amongst 
the Lessepsian migrates that have successfully established them-
selves along the southeastern Mediterranean Sea. SHS is a pelagic 
species typically found at depths of 60–80 m, though it is also 
amphidromous, feeding on Zooplankton, fish eggs, and juvenile 
small fish (Bandkar et al. 2022). Its ability to migrate across di-
verse geographic regions with varying salinity levels, and of its 
broad diet, may explain both the richness of its microbiome and 
the large number of potential pathogens present in its gills.

There are three main surfaces of interaction between the fish 
and its environment: The gut, the skin, and the gills. Each of 
these organs harbours its own microbial community and plays 
a different role in host immunity. The gills, in constant contact 
with the surrounding water and its associated microbes, serve 
both as a barrier and a gateway into the fish's body, and are a 
critical site of mucosal immunity (Salinas 2015). To a certain ex-
tent, the gill microbiome may reflect the microbial composition 
of the water in which the fish resides, including potential patho-
gens (Kuang et al. 2020).

FIGURE 5    |    Relative abundance of bacterial species within each of the fish species’ gills. Small taxa with counts < 3000 were merged together 
(‘Others’).
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From an evolutionary perspective, a richer, more diverse gut 
microbiome improves the host's metabolic performance, en-
abling it to digest food more efficiently, and possibly creating 
novel metabolic capabilities (Gomez, Sunyer, and Salinas 2013; 
Koppang, Kvellestad, and Fischer 2015; Maynard et al. 2012). 
This, in turn, allows the fish to adopt a more diverse diet, 

providing the advantage of better coping with rapid environ-
mental changes, such as those experienced by marine species 
over the past few decades. As a result, species like the shrimp 
scad are expected to be less vulnerable than those with more 
restricting feeding habits and habitats. Following the evolu-
tionary path of microbiome diversity and its benefits, one may 

FIGURE 6    |    Number of potentially pathogenic bacterial species that were found in the gills of three fish species. A lower-case ‘m’ to the right of a 
fish species’ abbreviation marks pathogens with a potential to affect marine animals. Hence, each fish species is represented by two rows -the upper 
one shows marine pathogens, and the lower one shows pathogens with human relevance.

FIGURE 7    |    A comparison of five genera of interest that were mentioned in Itay et al. (2022) and their relative abundance of pathogenic species. 
The left column of each genera represents findings from the current study, while the right column (genus name with an ‘*’) represents that of the 
previous study referred to above.
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ask whether the microbiome can also serve as an indicator 
for assessing vulnerabilities of various fish species to habitat 
changes driven from the climate crisis. In an intertwined eco-
logical environment such as the sea, the combined stress by 
multiple factors is both visible and measurable. This makes 
the work of marine scientists more crucial than ever, pro-
viding decision makers with a growing body of hard data for 
policy-making.

Fish gill microbiome analyses as a tool for assessing pathogen 
prevalence has become more widespread in recent years, with 
its effectiveness gradually becoming more evident (Brown, 
Wiens, and Salinas  2019; Hess et  al.  2015; Minich, Petrus 
et al. 2020; Minich, Poore et al. 2020; Rosado et al. 2019). In 
this study, we examined the gills microbiomes of three com-
mon wild fish species from the South China Sea. The results 
demonstrate that potential pathogens are present in the gill 
microbiota of these fish, with significant diversity in the bac-
terial species observed. However, the presence does of these 
pathogens does not necessarily indicate a high potential of dis-
ease development. These seemingly contradicting notions can 
coexist because potential pathogens express virulence only 
under specific, sometimes extreme, conditions. For example, 
the presence of Photobacterium damselae in large numbers 
in GLF does not mean these fish were diseased. P. damselae 
may be a pathobiont of the GLF, often beneficial by protect-
ing the fish from other pathogens—while retaining the ability 
to express virulence under stress or threat (Itay et al. 2022). 
Conversely, Shewanella baltica and Shewanella frigidima-
rina are not considered pathogenic to marine organisms, but 
are leading causes of food spoilage (Wright et  al.  2019; Zhu 
et al. 2015). Despite being freshly bought from the market just 
hours after being caught, most of the sampled fish harboured 
these bacteria in their gills (S. frigidimarina: 66.7% in GLF, 
100% in both JTB and SHS samples; S. baltica: 58.3%, 81.8%, 
and 100% in GLF, JTB, and SHS, respectively). These findings 
warrant further research to assess potential risks to public 
health.

This study was designed to be comparable to that of Itay 
et al. (2022), using the same methods but on different fish spe-
cies and in a different geographical location. While repeating 
the process strengthens the claim regarding the method's fea-
sibility as a cost-effective way to gather information and make 
predictions, the comparison has its limitations: (i) the fish 
were not exactly of the same species; (ii) samples were not col-
lected with a seasonality consideration; and (iii) the previous 
study used fish captured during a research vessel expedition, 
while those in the current study came from the fish market 
(i.e., handling of the fish was less controlled, both in transpor-
tation practices and the possibility of sorting out unwanted 
samples). Nonetheless, some meaningful trends emerge from 
both studies:

	i.	 The Greater lizardfish (GLF; Saurida tumbil) is closely 
related to the Lessepsian lizardfish (LLF; Saurida lessep-
sianus). Analyses of both species revealed a Simpson index 
indicating high variance between individual samples and 
medium-low bacterial diversity (0.75 in LLF; 0.45 in GLF). 
Both species hosted a significant percentage of the total 
potentially pathogenic species identified in their respective 

studies—27/41 (66%) for LLF, 16/20 (80%) for GLF—with 
Shewanella baltica and Photobacterium damselae preva-
lent in many samples (45.8% and 37.5%, in LLF; 58.3% and 
66.7% in GLF);

	ii.	 Both Atlantic chub mackerel (Scomber colias; ACM) and 
Shrimp scad (Alepes djebaba; SHS) are migratory species 
that inhabit vast geographic regions and encounter diverse 
habitat conditions. These species exhibited the largest va-
riety of potential pathogens (35/41, 85%, in ACM; 18/20, 
90% in SHS) and the highest Simpson index averages (0.9 
in ACM; 0.91 in SHS), with minimal variance amongst 
samples.

Another important aspect is the comparison of potential patho-
gens identified in both studies. In the previous study, 41 po-
tential pathogens were found in fish gills, whereas the current 
study identified only 20. Besides S. baltica and P. damselae, only 
Shewanella putrefaciens and Cutibacterium acnes were iden-
tified in both studies. Several genera, including Acinetobacter, 
Aeromonas, Corynebacterium, Staphylococcus, Streptococcus, 
Tenacibaculum, and Vibrio were represented by potentially 
pathogenic species in both studies. The data, visualised in 
Figure  6, show that Shewanella species responsible for food 
spoilage comprised about two-thirds of the total Shewanella 
reads in both studies. Pathogenic Vibrio species, in both 
cases, were present in low single-digit percentages. However, 
Staphylococcus and Streptococcus exhibited pathogenic read ra-
tios of 0.61 and 0.91 (respectively), though their percentage of 
overall abundance was negligible. In contrast, Photobacterium 
played a more significant role in the gill microbiome in both 
studies, but in this study Photobacterium damselae accounted 
for only 2% of the total Photobacterium reads, compared to 31% 
in the previous study.

To understand the cause of these differences—whether due to 
geographic spread, host biology, environmental factors, or mi-
crobiome composition—it will be necessary to repeat the study 
in both locations, sampling similar fish, over multiple seasons 
and years.

5   |   Conclusions

Fish gills harbour species microbiomes, exhibiting solid cor-
relations between certain taxonomic groups. Some overlap 
exists between the three species sampled, perhaps expressing 
some form of core microbiome. This methodology, using NGS 
to collect data from fish gills regarding their microbiota, can be 
made more valuable if it is made as part of a continuous mon-
itoring program, being either repeated for several consecutive 
years, being compared with similar spatiotemporal studies or 
expanded to more fish species. At the same time, it should also 
be placed in a broader context of the whole studied ecosystem 
and connected to broader data of marine organisms of higher 
and lower trophic levels and the physio—geo—bio—chemical 
data of the ambient water. By doing so, scientists would be able 
to assert possible connections between changes in abiotic fac-
tors such as water temperature, acidity, and oxygen levels, the 
presence of certain pollutants, etc., with shifts in fish gill micro-
biota, leading to better predictions on the level of risk of disease 
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outbreaks occurring, thus leading to better management of the 
marine environment in whole and fish as a vital food resource 
in specific.
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