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Abstract. Disulfidptosis, which was recently identified, has 
shown promise as a potential cancer treatment. Nonetheless, 
the precise role of long non‑coding RNAs (lncRNAs) in 
this phenomenon is currently unclear. To elucidate their 
significance in bladder cancer (BLCA), a signature of disul‑
fidptosis‑related lncRNAs (DRlncRNAs) was developed and 
their potential prognostic significance was explored. BLCA 
sample data were sourced from The Cancer Genome Atlas. A 
predictive signature comprising DRlncRNAs was formulated 
and subsequently validated. The combination of this signature 
with clinical characteristics facilitated the development of a 
nomogram with practical clinical utility. Additionally, enrich‑
ment analysis was conducted, the tumor microenvironment 
(TME) was assessed, the tumor mutational burden (TMB) 
was analyzed, and drug sensitivity was explored. Reverse 

transcription‑quantitative PCR (RT‑qPCR) was utilized to 
quantify lncRNA expression. The results revealed an eight‑gene 
signature based on DRlncRNAs was established, and the 
predictive accuracy of the nomogram that incorporated the 
risk score [area under the curve (AUC)=0.733] outperformed 
the nomogram without it (AUC=0.703). High‑risk groups were 
associated with pathways such as WNT signaling, focal adhe‑
sion and cell cycle pathways. The TME study revealed that 
high‑risk patients had increased immune infiltration, whereas 
the TMB and tumor immune dysfunction and exclusion scores 
in low‑risk patients indicated a potentially robust immune 
response. Drug sensitivity analysis identified appropriate anti‑
tumor drugs for each group. RT‑qPCR experiments validated 
significant differences in DRlncRNAs expression between 
normal and BLCA cell lines. In conclusion, the prognostic risk 
signature, which includes the eight identified DRlncRNAs, 
demonstrates promise for predicting prognosis of patients with 
BLCA and guiding the selection of suitable immunotherapy 
and chemotherapy strategies.

Introduction

Bladder cancer (BLCA) accounts for over 550,000 new cases 
annually, ranking as the most common urinary malignancy (1). 
The primary treatment for BLCA involves radical cystectomy, 
combined with adjuvant cisplatin‑based chemotherapy (2). 
Despite aggressive interventions including radiotherapy, 
surgery and chemotherapy, a considerable number of indi‑
viduals experience recurrence or metastasis, resulting in poor 
5‑year survival outcomes (3). Therefore, there is a critical 
need for novel predictive biomarkers to improve prognostic 
accuracy and guide the management of patients with BLCA.

Disulfidptosis, a newly identified form of regulated cell 
death, was first described by the laboratory of BY Gan in 
2023 (4). Distinct from apoptosis, autophagy, ferroptosis and 
cuproptosis, disulfidptosis occurs in glucose‑starved tumor 
cells. In this process, overexpression of SLC7A11 leads to 
significant depletion of nicotinamide adenine dinucleotide 
phosphate (NADPH), which subsequently triggers the 
abnormal accumulation of disulfide bonds (4). This accumu‑
lation disrupts the normal interactions between cytoskeletal 
proteins, causing conformational changes that ultimately result 
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in rapid tumor cell death (5). Consequently, modulating cancer 
cell susceptibility to disulfidptosis may represent a promising 
therapeutic strategy.

lncRNAs are RNA transcripts >200 nucleotides that do not 
encode proteins (6). These molecules are involved in a wide 
range of regulatory functions, including the modulation of 
genome activity, protein modification and post‑transcriptional 
regulation (7). lncRNAs play crucial roles in various cellular 
processes, such as gene expression control, chromatin 
remodeling, and cellular stress responses (8). In recent years, 
lncRNA‑based signatures have gained significant attention 
for their prognostic potential in various cancers, including 
colorectal cancer (CRC) (9), nasopharyngeal carcinoma (10), 
and hepatocellular carcinoma  (11). These signatures have 
shown promise in predicting disease outcomes and guiding 
treatment decisions. However, the development of prognostic 
signatures based on DRlncRNAs for BLCA remains limited. 
Given the emerging role of disulfidptosis in tumor cell death, 
exploring the relationship between DRlncRNAs and BLCA 
prognosis could offer new insights into therapeutic strategies.

As a result, a prognostic risk signature was developed and 
validated based on DRlncRNAs to forecast survival outcomes 
in patients with BLCA and the clinical applicability of this 
signature was explored.

Materials and methods

Gathering and processing data. The mRNA and lncRNA 
sequencing data of 394 BLCA samples and 19 controls were 
obtained from The Cancer Genome Atlas (TCGA) database 
(https://portal.gdc.cancer.gov/). TCGA database was queried 
up to 24 January, 2024, to retrieve transcriptomic and clinical 
data (12). The dataset encompassed 413 patients with BLCA, 
including 394 tumor samples and 19 normal samples. For 
diverse data analyses, transcriptomic data in HTSeq‑Counts 
and HTSeq‑TPM formats were specifically chosen. Samples 
with incomplete clinical records or overall survival (OS) of 
<30 days were excluded.

Identification of DRlncRNAs essential for signature. Recent 
literature has identified several disulfidptosis‑related genes 
(DRGs), including SLC7A11, SLC3A2, SLC2A1, NCKAP1, 
WASF2 and RAC1 (4). A protein‑protein interaction network 
for the six DRGs was constructed using the Search Tool for the 
Retrieval of Interacting Genes/Proteins (STRING) database 
(https://cn.string‑db.org/). Utilizing Pearson correlation analysis 
of these DRGs, a screening for DRlncRNAs (|R| >0.3, P<0.001) 
was conducted. Then ‘DESeq2’ package was performed for 
differential analysis (P<0.05, |log2‑fold change| >1) (13).

Using a 7:3 ratio, the 364 BLCA samples were divided 
into training and testing cohorts. Initially, DRlncRNAs were 
selected through univariate Cox analysis of the training group 
(P<0.01). The selection was then refined using the least abso‑
lute shrinkage and selection operator (LASSO) algorithm to 
prevent overfitting of this signature. In the end, 8 DRlncRNAs 
were selected.

BLCA prognostic risk signature. The predictive risk score for 
each patient with BLCA was calculated using the following 
formula: Predicted risk score=Σ[(coefficient of lncRNAn) x 

(expression of lncRNAn)]. Subsequently, patients were strati‑
fied into two cohorts based on the median risk score derived 
from the prognostic signature: High‑risk and low‑risk groups. 
To investigate OS differences between these groups in each 
study cohort, the ‘survival’ and ‘survminer’ software tools 
were employed to construct Kaplan‑Meier (K‑M) curves. The 
‘timeROC’ package was employed to calculate the area under 
the receiver operating characteristic (ROC) curves (AUC) to 
assess predictive accuracy. Additionally, principal component 
analysis (PCA) was conducted to assess the separation of 
risk groups (14). Variables that independently impact BLCA 
survival were identified through univariate and multivariate 
regression analyses. Finally, K‑M survival curves were gener‑
ated for subgroups with distinct clinical characteristics, 
providing a comprehensive assessment of the prognostic 
signature's clinical applicability.

BLCA prediction nomogram. Utilizing the ‘RMS’ package, a 
prognostic nomogram was constructed for predicting the OS 
of individual patients with BLCA. This comprehensive model 
integrates both the risk score and relevant clinical data (15). 
To validate its precision, ROC curves were employed and 
Decision Curve Analysis (DCA) was conducted. Furthermore, 
the nomogram's performance was visually evaluated by 
plotting calibration curves.

Enrichment analysis. Differentially expressed DRGs and their 
enrichment in biological signaling pathways were identified 
through Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis. Subsequently, the Gene Set Enrichment Analysis 
(GSEA) software (version 3.0; Broad Institute website 
(https://www.gsea‑msigdb.org/)) was leveraged to scrutinize 
GOBP, KEGG and WIKIPATHWAYS gene sets (16). GSEA 
was conducted on risk‑stratified gene expression profiles, 
utilizing 1,000 resamples, an upper limit of 5,000 genes, and 
a lower limit of 5. The significance thresholds were set at 
q‑values <0.25 and P‑values <0.05.

Tumor mutation burden (TMB) analysis. The ‘TCGAbiolinks’ 
package was utilized to aggregate somatic mutation data 
profiles in the format of mutation annotation. Subsequently, 
a comparative analysis of mutation profiles and TMB scores 
was conducted between the high‑ and low‑risk groups, using 
the ‘maftools’ program (17).

Tumor microenvironment (TME) analysis. The ‘ESTIMATE’ 
software was utilized to analyze microenvironmental 
differences between the two subgroups. Additionally, seven 
algorithms (XCELL, CIBERSORT‑ABS, TIMER, EPIC, 
QUANTISEQ, MCPCOUNTER and CIBERSORT) were 
used to investigate the correlation between risk scores and 
infiltrating immune cells (18). To evaluate infiltration scores in 
the BLCA microenvironment, the ‘GSVA’ tool was applied for 
single‑sample GSEA (ssGSEA).

Disulfidptosis‑related signature in immunotherapy and 
chemotherapy. The tumor immune dysfunction and exclu‑
sion (TIDE) platform was utilized to predict the response to 
immunotherapy in BLCA (19). Furthermore, the ‘oncoPredict’ 
package was harnessed to assess the IC50 of widely used 
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chemotherapeutic agents and compare their sensitivity across 
different risk cohorts (20).

Reverse transcription‑quantitative PCR (RT‑qPCR) verifica‑
tion of lncRNAs in signature. The BLCA cell lines (T24 and 
5637) (IMMOCELL; (http://www.immocell.com/), where 
T24 is generally considered to have a higher malignancy level 
compared with 5637, and the SV‑HUC‑1 cell line, derived 
from human normal bladder epithelial cells, were cultivated in 
a controlled incubator at 37˚C with 5% CO2, using RPMI‑1640 
medium (Thermo Fisher Scientific, Inc.). Total RNA was 
extracted from each sample using TRIzol® reagent (Invitrogen; 
Thermo Fisher Scientific Inc.). cDNA was reverse‑transcribed 
from the isolated RNA using the PrimeScript RT Reagent 
Kit (Takara Bio, Inc.), following the manufacturer's protocol. 
And the SYBR Green premixed qPCR kit (Hunan Accurate 
Bio‑Medical Co., Ltd.) was used in a Roche LightCycler 480 
II [Roche Diagnostics (Shanghai) Co., Ltd.]. Subsequently, 
RT‑qPCR was performed. The thermocycling conditions were 
as follows: initial denaturation at 95˚C for 5 min, followed by 
40 amplification cycles consisting of denaturation at 95˚C for 
15 sec, annealing at 60˚C for 20 sec, and extension at 72˚C for 
30 sec. A final extension step was performed at 72˚C for 5 min. 
The forward primer sequence for the reference gene GAPDH is 
5'‑GGA​AGC​TTG​TCA​TCA​ATG​GAA​ATC‑3', and the reverse 
primer sequence is 5'‑TGA​TGA​CCC​TTT​TGG​CTC​CC‑3'. 
The relative expression of lncRNAs was quantified as a 2‑ΔΔCq 

value after assessing gene expression levels via RT‑qPCR (21). 
Experiments were conducted in triplicate, with primer details 
provided in Table SI. Furthermore, the protein expression 
profiles of the identified DRGs were examined and compared 
between normal and BLCA tissues using the Human Protein 
Atlas (HPA) database (https://www.proteinatlas.org/).

Statistical analysis. Expression levels of DRlncRNAs in cell 
lines were detected using RT‑qPCR. Statistical significance 
was determined by unpaired Student's t‑test and one‑way 
analysis of variance (ANOVA) to compare the expression 
levels between different cell lines. Should the ANOVA indi‑
cate a significant difference among the groups, the comparison 
between two groups was conducted using LSD method as the 
post hoc test. Data are presented as the mean ± standard devia‑
tion (SD) from at least three independent experiments. All 
statistical analyses were conducted using SPSS version 26.0 
(IBM Corp.) and RStudio version 4.2.1 [PBC (http://www.
rstudio.com/)]. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Identification of DRlncRNAs in patients with BLCA. The 
schematic diagram representing the study is depicted in 
Fig. 1. In the initial phase, following the identification of six 
DRGs, the STRING database (https://cn.string‑db.org/) was 
utilized to construct a protein‑protein interaction network 
(Fig. 2A). Subsequently, through Pearson correlation analysis, 
1,156 lncRNAs correlated with these DRGs were identified. 
Further differential analysis revealed that 287 lncRNAs exhib‑
ited differential expression between cancerous and normal 
tissues (Fig. 2B).

The 364 patients were divided into two groups: A training 
group (n=255) and a test group (n=109). Detailed clinical 
information for each group is provided in Table I. Notably, 14 
lncRNAs were identified in the training set through univariate 
analysis (Table SII). Subsequently, the LASSO algorithm refined 
this selection, resulting in the identification of 8 DRlncRNAs 
for the development of the signature (Fig. 2C and D; details in 
Table SIII). Additionally, the study also explored correlations 
among these final 8 DRlncRNAs (Fig. S1A) and their upregu‑
lation and downregulation patterns (Fig. S1B). Furthermore, 
the associations between these 8 lncRNAs and their associated 
genes were investigated (Fig. S1C).

Developing and validating the risk score signature. Following the 
outlined steps, a prognostic signature was formulated for patients 
with BLCA, and the risk scores were established as specified: 
Predicted risk score = (‑0.003727 x AL390719.2 expression) + 
(‑0.126979 x ASMTL‑AS1 expression) + (0.1324342  x 
AL031058.1 expression) + (0.3540896 x LINC02438 expres‑
sion) + (0.1858756 x LINC01788 expression) + (0.1228996 x 
AC022613.2 expression) + (0.1901772 x RBMS3‑AS3 expres‑
sion) + (0.2711116 x AL122035.1 expression). Specific clinical 
data for both risk groups are provided in Table II.

The prognostic outcomes of the high‑ and low‑risk groups 
in the training (P<0.0001), test (P=0.03) and entire (P<0.0001) 
cohorts exhibited significant disparities, as evidenced by K‑M 
curves (Fig. 3A‑C). ROC curves revealed anticipated AUC 
values at different time intervals (1‑, 3‑ and 5‑years) of 0.73, 
0.70 and 0.70, respectively, in the training cohort (Fig. 3D); 
0.80, 0.72 and 0.71, respectively, in the test cohort (Fig. 3E); and 
0.75, 0.70 and 0.70, respectively, in the entire cohort (Fig. 3F).

These data affirm the outstanding predictive performance 
of the signature for patients with BLCA. Heatmaps depicting 
the expression of 8 DRlncRNAs, risk curves, risk survival 
status plots (Fig. S2A‑C) and scatter dot plots (Fig. S2D‑F) 
in each cohort vividly illustrate the unfavorable survival 
outcomes among high‑risk patients.

Furthermore, PCA underscores the superior discrimina‑
tory accuracy of the risk signature when distinguishing 
between the two groups of patients with BLCA, surpassing 
the discriminatory power of individual genes, lncRNAs and 
DRlncRNAs (Fig. 4A‑D). Notably, univariate analysis identi‑
fied age, tumor stage and risk score (all P<0.001) as significant 
prognostic factors (Fig.  4E). In the multivariate analysis, 
age, tumor stage and risk score (all P<0.001) independently 
demonstrated predictive significance (Fig. 4F).

The heatmap visually portrays distinct expression patterns 
of the 8 lncRNAs alongside clinical features (tumor stage, 
age and sex) in both high‑ and low‑risk patients (Fig. S3A). 
Scatter plots revealed that increasing risk scores associated 
with female sex (P=0.026) and mortality (P<0.001), while age 
and tumor stage do not exhibit significant associations with the 
risk score (Fig. S3B‑E). Survival curves across diverse clinical 
subgroups underscore the robust predictive capacity of this 
signature, particularly among male patients across all tumor 
stages and age groups (Fig. 5A‑F).

Nomogram in patients with BLCA. Following the aforemen‑
tioned analyses, a prognostic nomogram that seamlessly 
integrates the risk score alongside other pertinent clinical 
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features was constructed to predict the OS of patients with 
BLCA at 1, 3, and 5 years (Fig. 6A). Subsequent validation 
using data of patients with BLCA substantiated the effective‑
ness of this predictive tool (Fig. S4).

The AUC further attests to the accuracy of the risk 
score‑based nomogram, with AUC values as follows: Risk 
score (0.693), age (0.602), sex (0.467) and stage (0.675). 
Notably, the nomogram incorporating the risk score (0.733) 

Figure 1. Schematic diagram of the present study. BLCA, bladder cancer; lncRNA, long non‑coding RNA; TCGA, The Cancer Genome Atlas; PCA, prin‑
cipal component analysis; TIDE, tumor immune dysfunction and exclusion; GSEA, gene set enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; TMB, tumor mutation burden; TME, tumor microenvironment.
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outperformed the nomogram without the risk score (0.703) 
and DCA confirmed the accuracy of the risk score‑based 
nomogram (Fig. 6B and C). Additionally, calibration curves 
underscored the superior predictive capacity of the risk 
score‑based nomogram (Fig. 6D and E).

Functional enrichment analysis. The salient pathways 
identified through KEGG pathway enrichment analysis are 
illustrated in Fig. S5A and B. This analysis, conducted across 
three libraries and examined using GSEA, yielded consistent 
outcomes. Remarkably, the pathways enriched in high‑risk 
patients were linked to the cell cycle, focal adhesion and WNT 
signaling (Fig. S6A‑C), while those in low‑risk patients were 
predominantly related to substance metabolism (Fig. S6D). 
Comprehensive details of all pathways are available in 
Table SIV.

Somatic mutation landscape. As depicted in Fig.  7A, the 
low‑risk subgroup exhibited an elevated TMB. The waterfall 

plots visually represented the 20 most frequently mutated 
genes in patients with BLCA (Fig. 7B and C). Notably, the top 
four mutated genes among high‑risk patients were TP53 (56%), 
TTN (44%), ARID1A (27%) and KMT2D (25%). Meanwhile, 
among low‑risk patients, the prominent mutated genes were 
TTN (42%), TP53 (40%), KDM6A (29%) and KMT2D (26%).

Immune infiltration landscape. In the cohort of high‑risk 
patients, elevated stromal, immune and ESTIMATE scores 
were observed, alongside diminished tumor purity scores 
(Fig. 8A‑D). These findings suggest a potential link between 
the unfavorable prognosis in high‑risk patients and an 
immunosuppressive microenvironment that facilitates tumor 
immune evasion. The accompanying bubble chart delineates 
the associations of risk scores with immune cell populations 
(Fig. 8E).

Increased immune cell infiltration was revealed in 
high‑risk patients, as discerned through ssGSEA analysis 
(Fig. 8F). Notably, immunosuppressive cell subsets [including 

Figure 2. Identification of DRlncRNAs in patients with bladder cancer. (A) The protein‑protein interaction network indicating the interactions among 6 
disulfidptosis‑related genes. (B) Volcano plot showing 287 differentially expressed DRlncRNAs. (C and D) Least absolute shrinkage and selection operator 
regression analysis. DRlncRNAs, disulfidptosis‑related long non‑coding RNAs.
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myeloid‑derived suppressor cells (MDSCs), Th2 cells (type 
2 T helper cells), and regulatory T cells (Tregs; T follicular 
helper cells)] were significantly upregulated in the high‑risk 
group. CD56dim natural killer cells and monocytes were 
more highly infiltrated in the low‑risk group. For a compre‑
hensive understanding of the intricate interplay, the detailed 
immune cell associations are presented in Fig.  S7A‑D. 
Overall, the high‑risk cohort consistently exhibited augmented 
immune activity, as evidenced by the ssGSEA analysis of 
immune‑related functions (Fig.  8G). Except for Type  II 
IFN response, which was expressed more strongly in the 
low‑risk group, the other 12 immune‑related functions (APC 
co inhibition, APC co‑stimulation, CCR, check‑point, cyto‑
lytic activity, HLA, inflammation‑promoting, MHC class I, 
para‑inflammation, T cell co‑inhibition, T cell co‑stimulation 
and type I IFN response) were expressed more strongly in the 
high‑risk group.

The exploration of treatment strategies for BLCA. In the 
exploration of therapeutic strategies for BLCA, it has been 
discerned that low‑risk patients exhibit significantly lower 
TIDE scores, coupled with elevated Microsatellite instability 
scores, while T cell dysfunction scores remain relatively stable 
(Fig. S8A‑D). These empirical findings posit that low‑risk 
patients with BLCA may manifest reduced vulnerability to 
tumor immune subversion, thereby potentially augmenting the 
efficacy of immunotherapy.

Additionally, pharmaceutical agents to which high‑risk 
patients evince heightened sensitivity are listed in Table SV, 
while drugs that elicit augmented responsiveness in low‑risk 
patients are presented in Table SVI. The pharmacological 
agents whose sensitivity remains largely unaltered between 
the two patient cohorts are meticulously catalogued in 
Table SVII. A summary of antineoplastic drug target pathways 
is provided in Table SVIII. Noteworthy, compounds targeting 

Table I. Clinical information of the patients in the test and training groups.

	 Train cohort (n=255)	 Test cohort (n=109)	 Entire cohort (n=364)
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Characteristics	 n	 %	 n	 %	 n	 %

Age						    
  <65	 89	 34.9	 42	 38.5 	 131	 36.0
  >65	 166	 65.1	 67	 61.5	 233	 64.0
Status						    
  Alive	 142	 55.7	 57	 52.3	 199	 54.7
  Dead	 113	 44.3	 52	 47.7	 165	 45.3
Sex						    
  Female	 66	 25.9	 29	 26.6	 95	 26.1
  Male	 189	 74.1	 80	 73.4	 269	 73.9
Stage						    
  Stage I	 4	 1.6	 0	 0	 4	 1.1
  Stage II	 70	 27.5	 25	 22.9	 95	 26.1
  Stage III	 92	 36.1	 46	 42.2	 138	 37.9
  Stage IV	 89	 34.9	 38	 34.9	 127	 34.9
T stage						    
  T1	 5	 2.0	 0	 0	 5	 1.4
  T2	 82	 32.2	 28	 25.7	 110	 30.2
  T3	 129	 50.6	 63	 57.8	 192	 52.7
  T4	 39	 15.3	 18	 16.5	 57	 15.7
M stage						    
  M0	 121	 47.5	 57	 52.3	 178	 48.9
  M1	 6	 2.4	 2	   1.8	 8	 2.2
  Unknown	 128	 50.2	 50	 45.9	 178	 48.9
N stage						    
  N0	 148	 58.0	 65	 59.6	 213	 58.5
  N1	 31	 12.2	 12	 11.0	 43	 11.8
  N2	 52	 20.4	 23	 21.1	 75	 20.6
  N3	 3	 1.2	 2	   1.8	 5	 1.4
  Unknown	 21	 8.2	 7	   6.4	 28	 7.7

T stage, tumor stage; N stage, node stage; M stage, metastasis stage.
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the PI3K/mTOR signaling pathway appear to exert a more 
pronounced impact on high‑risk populations, whereas those 
directed at apoptosis regulation exhibit heightened efficacy 
against low‑risk populations.

Combined public data and in vitro validation of the prognostic 
signature. HPA, the valuable resource for understanding 
protein expression patterns, was meticulously explored to 
discern the protein expression disparities between BLCA and 
normal samples (Fig. S9). Analyzing DRGs protein expression 
may reveal their role in BLCA, and abnormal expression could 
serve as prognostic biomarkers or therapeutic targets. It was 
found that the proteins encoded by NCKAP1, RAC1, SLC2A1 
and SLC3A2 have higher expression levels in tumors, while 
the protein encoded by WASF2 has higher expression levels 

in normal tissues. Survival analysis from the HPA indicated 
that high expression of proteins encoded by NCKAP1, RAC1, 
SLC2A1 and SLC3A2 is associated with a poor 5‑year survival 
rate in BLCA, whereas WASF2 expression was not statistically 
significant. Detailed results are provided in Table SIX.

The expression levels of DRlncRNAs in the SV‑HUC‑1 
cell line, which represents a normal bladder epithelial cell line, 
and the BLCA cell lines (T24 and 5637) were assessed using 
RT‑qPCR (Fig. S10). The results revealed that ASMTL‑AS1 
expression is higher in the 5637 cell line compared with 
the T24 cell line, while the expression levels of the other 
seven genes do not show any statistically significant differ‑
ences (Fig. S10). Additionally, as demonstrated in Fig. S11, 
AL390719.2, ASMTL‑AS1, AL031058.1 and LINC02438 
were upregulated in BLCA cell lines (T24 and 5637), whereas 
AC022613.2, RBMS3‑AS3 and AL122035.1 were downregu‑
lated. No significant difference in expression was observed 
for LINC01788. In addition, to explore the potential roles of 
DRGs in the two cell lines, bar charts of the expression levels 
of DRGs in the two cell lines were obtained from HPA. The 
results indicated that RAC1, SLC7A11 and WASF2 were 
expressed higher in 5637 cells, while SLC2A1, NCKAP1 and 
SLC3A2 were expressed higher in T24 cells (Fig. S12).

Discussion

BLCA, the tenth most prevalent cancer worldwide, has 
presented an escalating incidence across several nations (22). 
Despite concerted endeavors in BLCA treatment, the 5‑year 
survival rate remains disconcertingly low, hovering around a 
mere 14 months (2). Advances in molecular biology and deep‑
ening understanding of tumorigenesis have paved the way for 
personalized medicine in BLCA (23). As a result, the pursuit 
of novel biomarkers to improve patient prognosis prediction 
and advance BLCA therapy has become critical.

The process of disulfidptosis, characterized by the accumu‑
lation of disulfides and F‑actin contraction, precipitates tumor 
cell demise (24). In light of this, DRlncRNAs have emerged 
as robust prognostic signatures for BLCA. Further investiga‑
tions into the underlying molecular mechanisms and clinical 
applications are underway. The present data unequivocally 
demonstrated that the risk score functions independently as a 
potent prognostic indicator in patients with BLCA, exhibiting 
commendable predictive efficacy. Notably, higher risk scores 
correlate with poorer survival rates. The nomogram, too, 
showcases remarkable predictive performance. The nomo‑
gram also exhibits significant predictive performance, with the 
nomogram incorporating the risk score (AUC=0.733) showing 
greater accuracy compared with the nomogram without the 
risk score (AUC=0.703). Enrichment analysis revealed signifi‑
cant activity in the cell cycle, focal adhesion and the WNT 
signaling pathway among high‑risk patients, while those 
enriched in low‑risk patients were predominantly associated 
with substance metabolism. In addition, low‑risk patients 
exhibit elevated TMB values and lower TIDE scores, hinting 
at improved outcomes with immunotherapy. There is also a 
differential sensitivity to immunotherapy and chemotherapy 
between the two risk groups.

Disulfidptosis, intricately linked to alterations in intra‑
cellular redox status, profoundly impacts cytoskeletal 

Table II. Clinical information for 364 patients in different risk 
categories.

	 High‑risk group	 Low‑risk group
	 (n=181)	 (n=183)
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Characteristics	 n	 %	 n	 %

Age				  
  <65	 63	 34.8	 68	 37.2
  >65	 118	 65.2	 115	 62.8
Status				  
  Alive	 76	 42.0	 123	 67.2
  Dead	 105	 58.0	 60	 32.8
Sex				  
  Female	 55	 30.4	 40	 21.9
  Male	 126	 69.6	 143	 78.1
Stage				  
  Stage I	 1	 0.6	 3	 1.6
  Stage II	 32	 17.7	 63	 34.4
  Stage III	 79	 43.6	 59	 32.2
  Stage IV	 69	 38.1	 58	 31.7
T stage				  
  T1	 1	 0.6	 4	 2.2
  T2	 38	 21.0	 72	 39.3
  T3	 108	 59.7	 84	 45.9
  T4	 34	 18.8	 23	 12.6
M stage				  
  M0	 81	 44.8	 97	 53.0
  M1	 4	 2.2	 4	 2.2
  Unknown	 96	 53.0	 82	 44.8
N stage				  
  N0	 108	 59.7	 105	 57.4
  N1	 28	 15.5	 15	 8.2
  N2	 36	 19.9	 39	 21.3
  N3	 3	 1.7	 2	 1.1
  Unknown	 6	 3.3	 22	 12.0

T stage, tumor stage; N stage, node stage; M stage, metastasis stage.

https://www.spandidos-publications.com/10.3892/mco.2024.2814
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Figure 3. Evaluation of the prognostic effectiveness of prognostic signature in the training group, test group and entire group. (A‑C) The comparison of the 
Kaplan‑Meier overall survival curves between low‑ and high‑risk patients. (D‑F) Receiver operating characteristic curves over one, three and five years. AUC, 
area under the curve.

Figure 4. Independent prognostic analysis and PCA. (A‑D) PCA analysis based on all genes, all lncRNAs, disulfidptosis‑related lncRNAs and risk signature. 
(E and F) Univariate and multivariate analyses. PCA, principal component analysis; lncRNA, long non‑coding RNA; HR, hazard ratio; CI, confidence interval.
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Figure 5. Further validation of signature impacts. (A‑F) Kaplan‑Meier analysis of overall survival in various clinical characteristics groups.

Figure 6. Development of a nomogram and the predictive performance of the signature. (A) Forecast analysis of nomogram for 1‑, 3‑ and 5‑years. (B) Receiver 
operating characteristic curves that include diverse clinical data. (C) Decision curve analysis. (D and E) Calibration curves for 1‑, 3‑ and 5‑year nomogram 
(D) with risk score and (E) without risk score. AUC, area under the curve.

https://www.spandidos-publications.com/10.3892/mco.2024.2814
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conformation, leading to tumor cell death  (9). Prognostic 
signatures predicated upon disulfidptosis have consistently 
demonstrated robust predictive capabilities across diverse 
malignancies. Qi et al (25) validated the prognostic utility 
of a disulfidptosis‑based risk signature in lung adenocar‑
cinoma patients, yielding commendable results. Similarly, 
Wang et al  (26) devised a disulfidptosis‑related prognostic 
signature for predicting hepatocellular carcinoma survival, 
achieving favorable outcomes.

In the current investigation, transcriptomic data from 
patients with BLCA within the TCGA cohort were meticu‑
lously curated. Employing Pearson correlation tests and 
differential analyses, distinctively expressed DRlncRNAs 
were discerned. Subsequently, a training cohort was 
meticulously selected for subsequent univariate and LASSO 
analyses, culminating in the formulation of a robust prognostic 
signature that incorporates these DRlncRNAs. The outcome 
results of the high‑ and low‑risk groups showed significant 

Figure 7. TMB analysis. (A) Percentage bar graph. (B and C) Waterfall diagram of (B) high‑risk groups and (C) low‑risk groups. TMB, tumor mutation burden; 
H‑, high; L‑, low.
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differences and vividly illustrate the poor outcome in high‑risk 
patients. PCA emphasizes that prognostic signature has supe‑
rior discriminative accuracy in distinguishing between two 
high‑risk patient groups. Noteworthy, constituents of this 
signature include ASMTL‑AS1, which orchestrates the release 
of miR‑660 and miR‑93‑3p, thereby augmenting FOXO1 
gene expression and effectively suppressing glycolysis and 
tumorigenesis (27). In the context of prostate cancer cells, 
overexpression of RBMS3‑AS3 impedes cell proliferation 
and tumorigenesis (28). Furthermore, heightened expression 
of AL390719.2 in primary CRC is closely associated with 
an unfavorable prognosis, particularly in patients with CRC 
harboring KRAS mutations  (29). However, the molecular 
functions of other lncRNAs in various cancers still need to be 
elucidated. In summary, our prognostic signature, comprising 
eight DRlncRNAs, emerges as a dependable tool for prog‑
nostic prediction in patients with BLCA. Finally, RT‑qPCR 
experiments confirmed the significant differential expression 
of the seven DRlncRNAs in normal vs. cancer tissues.

In our efforts to elucidate relevant mechanisms, GSEA 
and TMB analyses were performed. Notably, the cell cycle, 

focal adhesion and WNT signaling pathways demonstrated 
significant enrichment in high‑risk patients. Dysregulation 
of cell cycle checkpoints often leads to uncontrolled prolif‑
eration in cancer cells (30). Focal adhesion, a pivotal process 
integrating the extracellular matrix and cellular components, 
plays a significant role in tumor metastasis and invasion (31). 
For instance, upregulation of CircNIPBL can activate the 
WNT/β‑catenin pathway, thereby inducing migration and 
invasion in BLCA (32). The observed inferior prognosis among 
high‑risk patients may be attributed to the activation of these 
pathways. Those enriched in low‑risk patients were predomi‑
nantly associated with substance metabolism. Furthermore, an 
elevated TMB value was discerned in the low‑risk group.

A comprehensive literature search revealed that high TMB 
in patients with BLCA who do not undergo immunotherapy 
correlates with prolonged OS and a favorable prognosis (33). 
Moreover, patients with high TMB BLCA generally exhibit 
more favorable outcomes when treated with immunotherapy, 
specifically anti‑programmed cell death protein 1 therapy (34). 
It was posited that immunotherapy holds promise for achieving 
superior outcomes in the low‑risk population. Among the 

Figure 8. Immune infiltration landscape analysis. (A‑D) Violin plots of differences in the microenvironment between the two groups. (E) The correlation 
between immune cells and risk scores under seven algorithms. (F) Single‑sample gene set enrichment analysis evaluation of 28 immune cell infiltrations and 
(G) 13 immune function scores. *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001. ns, not significant (P>0.05).

https://www.spandidos-publications.com/10.3892/mco.2024.2814
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high‑risk group, the four most commonly mutated genes were 
TP53 (56%), TTN (44%), ARID1A (27%) and KMT2D (25%). 
TP53 mutations are common in BLCA, and TP53 function 
is impaired in 76% of cases, driving the progress of BLCA, 
affecting the prognosis and guiding the treatment (35). TTN 
is a common mutated gene in BLCA and can be used as a 
biomarker for predicting immune responses (36). ARID1A 
mutation is a truncal driven mutation that forms the basis for 
the development of a subgroup of urothelial carcinoma. When 
combined with other driving mutations, it leads to dysregu‑
lation of numerous key cellular processes  (37). KMT2D 
mutations can lead to dysregulation of gene expression, thereby 
promoting tumor development, and its truncation mutations 
may serve as potential biomarkers for stratification of patients 
with BLCA (38).

Typically, lncRNAs are detected using RT‑qPCR, RNA 
sequencing (RNA‑seq), and in situ hybridization (ISH) (39). 
RT‑qPCR is widely used in clinical settings due to its high 
sensitivity and specificity, while RNA‑seq provides compre‑
hensive lncRNA profiling and is increasingly integrated 
into clinical diagnostics, although its primary use remains 
in research. ISH enables the localization of lncRNAs within 
tissues, offering spatial context to their expression. In the 
present study, RT‑qPCR was employed to precisely detect and 
quantify DRlncRNAs, with raw expression data normalized 
through established bioinformatics pipelines to reduce tech‑
nical variability and ensure cross‑sample comparability. The 
lncRNA signature developed in the present study facilitates 
effective risk stratification, classifying patients into high‑ 
and low‑risk groups based on calculated risk scores, thereby 
guiding personalized therapeutic decisions. Additionally, 
combining the lncRNA signature with traditional clinical 
parameters, such as tumor stage and grade, significantly 
enhances the predictive accuracy of the model, providing a 
robust framework for prognosticating clinical outcomes in 
bladder cancer patients.

The current investigation has extended into the pivotal 
role of our distinctive signature in shaping both immunothera‑
peutic and chemotherapeutic strategies. Existing research has 
emphasized that MDSCs, triggered by transcription factors 
(NF‑κB, STAT1, STAT3 and STAT6), impede T cell prolifera‑
tion and induce an elevation in Tregs (40). Tregs infiltrating the 
tumor hinder the cytotoxic effect of CD8+ T cells on tumors 
by expressing CTLA‑4 and competitively binding IL‑2, thus 
fostering immune evasion within the TME (41). Additionally, 
Th2 cells, through the secretion of cytokines (such as IL‑4 and 
IL‑10), attenuate the immune response and promote tumor 
growth (42). The increased presence of these cells in high‑risk 
populations may partially explain the unfavorable prognosis, 
providing valuable insights for immunotherapy strategies. 
CD56dim natural killer cells and monocytes were more 
highly infiltrated in the low‑risk group. Furthermore, a decline 
in TIDE scores among low‑risk patients indicates heightened 
immunotherapy efficacy (20). Consequently, it is advocated 
considering immunotherapy for patients at low risk. Notably, 
analyzing drug sensitivity offers essential guidance for clinical 
drug selection in patients with BLCA. By calculating and 
grouping risk scores, our risk scoring model can guide person‑
alized drug therapy for patients with BLCA. High‑risk patients 
exhibit increased responsiveness to medications targeting the 

PI3K/mTOR pathway, which is highly activated in BLCA 
and contributes to disease progression  (43). For instance, 
AZD8186, as a PI3K β/δ inhibitor, which exhibits significant 
sensitivity in high‑risk group. This heightened sensitivity in 
high‑risk patients may be elucidated by the observed associa‑
tion. Moreover, patients with low risk demonstrate increased 
responsiveness to medications targeting the apoptosis regula‑
tion pathway. Targeting the apoptotic pathway of tumor cells 
represents a potent anticancer strategy, less likely to result in 
tumor recurrence. Several drugs directly targeting the intrinsic 
apoptotic pathway have received approval (44), reinforcing the 
inherent capability of our signature to guide clinical patients 
with BLCA in antineoplastic drug selection.

The present study exhibits several notable strengths. To 
bolster the scientific credibility of the current findings, the 
results were meticulously compared with those of similar 
studies. Compared with other similar models in the same 
industry, the present study has high accuracy in predicting 
patient prognosis. Unlike the DRlncRNA signature proposed 
by Sun et al (45), which underwent validation solely in the 
test group, our signature underwent rigorous validation across 
the entire cohort, rendering the results more universally appli‑
cable. Furthermore, compared with Lu et al (46), the present 
investigation was extended by incorporating TMB analysis to 
enhance the scientific robustness of our DRlncRNAs' signature, 
which already demonstrated commendable predictive value in 
patients with BLCA. Finally, the use of cell lines to validate 
DRlncRNAs reduced external interference and demonstrated 
significant expression differences. However, it is imperative 
to acknowledge the limitations inherent in the present study. 
Notably, the absence of further experiments exploring the 
functional roles of the DRlncRNAs within our signature 
constitutes a significant limitation. Additionally, the data 
utilized in the present study originates from the TCGA data‑
base rather than proprietary sources, potentially introducing 
inherent deviations. Consequently, future investigations, 
encompassing further in vitro or in vivo validated and clinical 
trials, remain essential to validate and refine the current find‑
ings. Future in vitro validation studies should include western 
blotting to quantify the levels of DRlncRNAs expression and 
corresponding protein markers in bladder cancer cell lines, and 
gene knockout/overexpression by utilizing RNA interference 
or CRISPR/Cas9 technology to downregulate or upregulate 
the expression of selected DRlncRNAs. Subsequently, to 
assess cell behavior, including proliferation, migration and 
apoptosis. To confirm in vitro findings, in vivo verification 
should be performed using animal models, such as xenotrans‑
plantation model (implanting bladder cancer cell lines with 
altered DRlncRNAs expression into immunodeficient mice to 
evaluate tumor growth and metastasis).

In conclusion, the present study has successfully established 
a prognostic risk scoring signature based on DRlncRNAs. 
The nomogram, incorporating risk scores and clinical char‑
acteristics, demonstrates significant predictive capability. 
Mechanistic analysis revealed that high‑risk populations are 
enriched in the cell cycle, focal adhesion and WNT signaling 
pathways, while the low‑risk subgroup shows elevated TMB 
levels and reduced TIDE scores, suggesting a more favorable 
response to immunotherapy. Drug sensitivity predictions 
indicate that targeting the PI3K/mTOR pathway offers greater 
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efficacy for high‑risk patients. Nevertheless, the limitations of 
the present study are acknowledged and the need for further 
validation through extensive basic and clinical research is 
emphasized.
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