Table 5:
Model comparison under non-proportional hazards for the latency
Scenario | Model | AUC | |||||||
---|---|---|---|---|---|---|---|---|---|
Bias | MSE | Bias | MSE | Bias | MSE | Train | Test | ||
2 | Logit | 0.4025 | 0.2232 | 0.2343 | 0.1137 | 0.0608 | 0.0103 | 0.5431 | 0.5564 |
Spline | 0.3974 | 0.1851 | 0.2550 | 0.0962 | 0.0524 | 0.0091 | 0.5647 | 0.5479 | |
DT | 0.1671 | 0.0465 | 0.0923 | 0.0320 | 0.0434 | 0.0087 | 0.9521 | 0.9377 | |
SVM | 0.3725 | 0.2357 | 0.2433 | 0.1260 | 0.0461 | 0.0080 | 0.9650 | 0.9620 | |
NN | 0.0806 | 0.0239 | 0.0643 | 0.0142 | 0.0483 | 0.0084 | 0.9826 | 0.9634 | |
XGB | 0.2940 | 0.0983 | 0.1882 | 0.0511 | 0.0495 | 0.0084 | 0.9813 | 0.9492 | |
RF | 0.1263 | 0.0493 | 0.0916 | 0.0264 | 0.0517 | 0.0090 | 0.9906 | 0.9577 | |
3 | Logit | 0.3037 | 0.1410 | 0.1481 | 0.0566 | 0.3100 | 0.1315 | 0.5741 | 0.5577 |
Spline | 0.2023 | 0.0835 | 0.1259 | 0.0375 | 0.2258 | 0.0936 | 0.7874 | 0.7319 | |
DT | 0.2201 | 0.1088 | 0.1202 | 0.0352 | 0.2700 | 0.1389 | 0.8081 | 0.7482 | |
SVM | 0.3122 | 0.1210 | 0.1474 | 0.0435 | 0.3138 | 0.1721 | 0.7637 | 0.7122 | |
NN | 0.2327 | 0.1332 | 0.1255 | 0.0433 | 0.2963 | 0.1599 | 0.7670 | 0.7259 | |
XGB | 0.2133 | 0.1040 | 0.1190 | 0.0354 | 0.2780 | 0.1408 | 0.8169 | 0.7592 | |
RF | 0.2157 | 0.0982 | 0.1217 | 0.0340 | 0.2690 | 0.1316 | 0.8374 | 0.7651 | |
4 | Logit | 0.3367 | 0.1873 | 0.1632 | 0.0760 | 0.1171 | 0.0376 | 0.5647 | 0.5463 |
Spline | 0.2516 | 0.0985 | 0.1552 | 0.0482 | 0.0949 | 0.0251 | 0.6913 | 0.5976 | |
DT | 0.2410 | 0.0989 | 0.1545 | 0.0503 | 0.0958 | 0.0291 | 0.9276 | 0.7975 | |
SVM | 0.3662 | 0.1771 | 0.2390 | 0.1029 | 0.0755 | 0.0167 | 0.9402 | 0.8753 | |
NN | 0.2929 | 0.1587 | 0.1797 | 0.0696 | 0.1100 | 0.0323 | 0.8773 | 0.7956 | |
XGB | 0.2393 | 0.0993 | 0.1528 | 0.0493 | 0.0925 | 0.0230 | 0.9585 | 0.8097 | |
RF | 0.2362 | 0.0900 | 0.1474 | 0.0445 | 0.1030 | 0.0280 | 0.9562 | 0.8134 |