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ABSTRACT

Microarray analysis of gene expression during the
yeast division cycle has led to the proposal that a
significant number of genes in Saccharomyces
cerevisiae are expressed in a cell-cycle-specific
manner. Four different methods of synchronization
were used for cell-cycle analysis. Randomized data
exhibit periodic patterns of lesser strength than the
experimental data. Thus the cyclicities in the expression
measurements in the four experiments presented do
not arise from chance fluctuations or noise in the
data. However, when the degree of cyclicity for genes
in different experiments are compared, a large
degree of non-reproducibility is found. Re-examining
the phase timing of peak expression, we find that
three of the experiments (those using α-factor,
CDC28 and CDC15 synchronization) show consistent
patterns of phasing, but the elutriation synchrony
results demonstrate a different pattern from the other
arrest-release synchronization methods. Specific
genes can show a wide range of cyclical behavior
between different experiments; a gene with high
cyclicity in one experiment can show essentially no
cyclicity in another experiment. The elutriation
experiment, possibly being the least perturbing of
the four synchronization methods, may give the most
accurate characterization of the state of gene expres-
sion during the normal, unperturbed cell cycle.
Under this alternative explanation, the observed
cyclicities in the other three experiments are a stress
response to synchronization, and may not reproduce
in unperturbed cells.

INTRODUCTION

When a result or experiment is recognized as fundamental to a
field, and is cited by many as a key result that future work
should look to, it is important that the experiments be beyond
reproach and unconditionally acceptable. We wish to analyze
such an experiment and express our concerns regarding the

experiments, the analysis and the results. We do this so that the
field of cell cycle studies can rest on results that are correct and
not subject to major revision. We hope either that the concerns
raised are answered in the future or that they lead to a different
view of the eukaryotic cell cycle.

Microarray analysis has been used to identify a large number
of genes in Saccharomyces cerevisiae that are proposed to be
expressed in a cell-cycle-specific manner. In one set of experiments
(1) cells were synchronized three different ways (α-factor
arrest, temperature arrest of a temperature sensitive mutant,
elutriation synchronization). The mRNA was extracted at a
number of points following synchronization, and the expres-
sion levels of approximately 6000 genes were determined
using a two-color microarray protocol. Genes expressed in a
cell-cycle-specific manner were identified using a Fourier
fitting algorithm (1). 800 genes were classified as being
expressed in a cell-cycle-specific manner, with 300 classified
as G1-phase genes, 71 as S-phase genes, 121 as G2-phase
genes, 195 as M-phase genes and 113 as M/G1-phase genes.

An independent analysis of S.cerevisiae gene expression
during the division cycle used two temperature-sensitive
mutants to synchronize cells (2). Using Affymetrix micro-
arrays, gene expression following synchronization was deter-
mined at a sequence of points in nearly the same set of
transcripts that were measured in the two-color experiments.
Cyclic expression patterns were identified by subjective or
visual analysis of the microarray expression measurements.
The CDC28 synchronization results from the Affymetrix
experiments are included in the analysis of yeast genes (1) to
give four experiments that can be compared.

At the time of writing, the data on gene expression during the
S.cerevisiae cell cycle (1) has been referenced by more than
293 published papers. These microarray data have spawned a
large body of analytical work on gene expression during the
cell cycle of yeast (3–17). Because of the enormous interest in
understanding which (or whether) specific genes are expressed
at particular times during the cell cycle, it is important that any
uncharacterized sources of experimental variation or reason-
able alternative explanations for the patterns in the experimental
data be brought to light. We have reconsidered the expression
results, and find that while the α-factor, CDC15 and CDC28
experiments are in agreement, the elution results are non-
conforming. This discrepancy was very likely the reason that
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the elution results were not used for the main argument that
there are large numbers of genes in S.cerevisiae with cell-
cycle-coordinated expression.

We suggest an alternative explanation and conclusion,
namely that the results of the four experiments are what should
be expected. Since the α-factor, CDC15 and CDC28 synchro-
nizations may perturb cells, release from arrest would be
expected to have a dramatic influence on gene expression. This
perturbation may lead to cyclic variations in gene expression.
The elution-based synchronization, being less perturbing, does
not produce such cycles. This analysis has implications
regarding whether the observed periodicities in expression
may be interpreted as being representative of gene expression
in cells growing under normal, unperturbed conditions.

Besides performing a statistical reanalysis of the microarray
results, we shall also raise basic biological issues relating to the
experimental analysis, and thereby argue that it is important,
irrespective of the microarray results, to re-examine the
proposal of cycle-specific gene expression in yeast.

MATERIALS AND METHODS

Data

The raw microarray measurements are available from two
websites. The two-color data (1) were obtained from the
website http://genome-www.stanford.edu/cellcycle. The
Affymetrix CDC28 data (2) are available in raw form from the
website http://171.65.26.52/yeast_cell_cycle/cellcycle.html.
The Affymetrix CDC28 values were processed (1) to allow
direct comparison with the results of the two-color analysis (1).
In the analysis presented here, we use both the raw two-color
data as well as the processed CDC28 data (1).

Normalization of data

The data were normalized (1) to enable direct comparison
across experiments, across genes and across the two different
types of microarray. In addition to the processing carried out as
described in Spellman et al. (1) we applied a logarithmic trans-
formation to each measurement, then centered the genes within
each experiment.

Sampling interval and interdivision time

Since different synchronization methods required different
growth conditions, the nominal interdivision times varied
across the experiments. Additionally, RNA was collected at
different sampling intervals in different experiments, and
different numbers of samples were obtained in different experi-
ments. Based on the information reported in the primary
papers, Table 1 summarizes the values used for the sampling
intervals, total experiment times, interdivision times and
number of samples obtained. All of the analyses presented here
have also been done using the values for these parameters
chosen by Aach and Church (4) (Table 1) and the results
obtained are qualitatively similar to the results shown below.

Numerical characterization of sinusoidal expression

For each gene, the measured time points were fit using least
squares to two basis curves. The first basis curve has the form
S(t) = sin(2πt/T) and the second basis curve has the form C(t) =
cos(2πt/T), where T is the nominal interdivision time. Suppose

Yi(t) denotes the measured expression for transcript i at time t.
The vector Yi(t) was regressed against S(t) and C(t) leading to
the decomposition Yi(t) = aiS(t) + biC(t) + Ri(t), where Zi(t) =
aiS(t) + biC(t) represents the periodic component of expression
with T min period, and Ri(t) represents the component of
expression that is either aperiodic, or that has a period substan-
tially different from T min. The proportion of variance
explained by the Fourier basis (Fourier-PVE) is the ratio mi =
var[Zi(t)]/var[Yi(t)], which lies between 0 and 1. Values closer
to 1 indicate greater sinusoidal expression with a T min period,
while values closer to zero indicate a lack of periodicity, or
periodicity with a period that is substantially different from T
min.

The fitted waveform Zi(t) is proportional to a shifted sine
wave of the form sin(πU + 2πt/T), where –1 < U < 1 is the
phase. Phases close to 0, 1 or –1 are sine like, in that at time
zero they take on an intermediate value, whereas phases close
to 1/2 or –1/2 are cosine like, in that at time zero they are close
to their maximum or minimum value.

Randomization of data

It was important to determine whether the level of sinusoidal
cell-cycle-specific expression patterns in the different experi-
ments could be explained as arising from chance arrangements
of random fluctuations in the measurements (i.e. variation
arising from biological or technical sources that have an equal
influence on all time points). Therefore an artificial data set
was constructed that was compatible with the observed data in
terms of the overall variation at each time point, but which
lacked any special tendency to exhibit periodic or sinusoidal
expression patterns. To construct this data set, a random
permutation of the observed values for a given gene across the
time points was generated in such a way that any permutation
was as likely to appear as any other. In other words, an artificial
experiment was constructed by sampling uniformly and
without replacement from the measured values for each gene
in an actual experiment.

RESULTS

Our statistical analysis is framed as a response to three
questions. First, we ask whether the number of cyclic genes is
sufficiently high that one may conclude that at least some of
the apparent cyclicity in gene expression does not arise from
coincidental arrangements of measurement error and non-cyclic

Table 1. Experimental sampling values for the published experimental data (1)

aCDC28 data is from Cho et al. (2).
bThe values in parentheses are the values used by Aach and Church (4) in their
analysis of the data (1).

Sampling
interval
(min)

Total
experiment
time (min)

Interdivision
time
(min)

Number of
points
sampled

Alpha 7 120 66 (67.5)b 18

CDC15 10 290 110 (119) 24

CDC28a 10 160 85 17

Elution 30 390 390 (422.5) 14
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biological variation. To this, we answer yes. Then we ask
whether the same genes exhibit high cyclicity across the four
synchronization methods. Here the answer is more complex, as
there is only a weak positive correlation of cyclicities between
different experiments. Our third question is whether, among
the cyclic genes, the peak expression occurs at the same relative
point within the cell cycle in all four experiments. The answer
to this question depends on the methods, with the elution
experiment being different from the other three experiments,
which are in substantial agreement. The statistical analysis of the
experimental data is then followed by an analysis of the biology
of S.cerevisiae, the importance of the pattern of growth and
division for cell-cycle analysis, and an analysis of specific
gene expression patterns in different experiments.

Comparison of experimental data with random data

An initial question was whether the observed cyclical expression
in S.cerevisiae identified using microarrays could be explained
by purely statistical considerations. Given the existence of
measurement error as well as biological or experimental variation
in expression that is not due to the cell cycle, it is possible that
even if none of the genes were truly expressed in synchrony
with the cell cycle, a certain number of genes with apparently
cyclic expression might be found due to chance fluctuations
and non-cyclic biological variation. Put another way, it is
generally agreed that a substantial number of genes present on
the microarray do not possess cell-cycle-specific expression.
In any given experiment, many of these genes will exhibit
cyclic expression due to the chance arrangement of non-cyclic,
random fluctuations. We were interested in determining
whether cyclic variation in expression can be explained as
arising from these random fluctuations.

An analysis of the yeast data is presented in Figure 1. For
each rank, r = 1, 2, …, the cyclicity (quantified as Fourier-
PVE) of the rth most cyclic gene in the randomized data is
plotted against the cyclicity of the rth most cyclic gene in the
observed data. The data used in Figure 1 are from the 1000
genes with the highest standard deviation. This selection
process eliminates from consideration a large number of genes
with negligible variation. Points below the diagonal line indi-
cate a level of cyclicity in the observed data that cannot be
explained by measurement error or non-cyclic biological vari-
ation. For example, in the α-factor synchronization experiment
in Figure 1, a number of genes have a measured cyclicity
greater than 0.8, but one would have to go down to a cyclicity
threshold of approximately 0.5 to acquire the same number of
genes in the randomized data. Similar results are presented for
the three other synchronization methods.

Figure 1 indicates that the periodicities observed in gene
expression under all four synchronizations of S.cerevisiae
cells cannot be accounted for by the chance arrangement of
random fluctuations in the measurements. These patterns can
be attributed to genuine periodicities in gene expression in the
synchrony experiments. This result is consistent with the
original analysis (1), where a similar randomization comparison
led to the conclusion that the false positive rate lies between
3 and 10%.

Reproducibility of the cyclicity values

To determine whether genes that have cyclic expression in one
experiment also tend to have cyclic expression in the other

experiments, we looked at the reproducibility of the Fourier-
PVE across the four experiments. In Figure 2, the cyclicities
(quantified as Fourier-PVE) between each pair of distinct
synchronization methods is shown as a scatter plot. As in
Figure 1, only the 1000 genes with greatest average standard
deviation across the four experiments are included. Visual
inspection of Figure 2 indicates that there is a very small
positive association between elution results and any of the
other three synchronization methods. The association between
the α-factor, CDC15 and CDC28 experiments is slightly
stronger, but also appears to be quite weak. Much of this
apparent lack of reproducibility may arise from the fact that
even very cyclic patterns may not conform to a sine wave, as is
predicated by the Fourier analysis. We do realize that the
choice of a sine wave fit is only one of many possible curves
that could have been used, and future work may require
additional analysis using different idealizations of cell-cycle-
specific gene expression.

The distribution of cyclicity values for the different experi-
ments (Fig. 2, histograms) also shows that the overall level of
cyclicity in the 1000 selected genes is different for the elutria-
tion experiment compared with the three arrest methods of
synchronization.

Reproducibility of the time of peak expression

For each of the four synchronization methods, we selected the
top 1000 genes based on Fourier-PVE and determined whether
the location of peak expression was consistent between the
experiment used to do the selection and the other three experi-
ments. We used the phase values (described in Materials and
Methods) to identify the time of peak expression in each gene.
In Figure 3, each row shows scatter plots of the timing of peak
expression in the experiment used to do the gene selection against
the timing of gene expression in the other three experiments.

Figure 1. Cyclicity of expression following different synchronization methods.
For each experiment, the 1000 genes with the highest standard deviation in
experimental values (using the raw data) were determined. For each of these
1000 genes the Fourier-PVE was calculated. These values were also deter-
mined for a randomized data set derived from the experimental values. The
randomized data set (construction described in Materials and Methods) was
produced by a randomization of the values for each gene. This produces two
lists of numbers, both of which were sorted from least to greatest. The cyclicity
values for each rank of gene in order is plotted for the experimental values
against the randomized values. The cyclicity in each of the four experiments is
therefore compared with the cyclicity in its randomized counterpart. Since the
points fall below the diagonal line, this graph shows that there is more cyclicity
present in the experimental values than can be explained as arising from
chance fluctuations in the measurement process.
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With the exception of the elution experiment (see below),
there is a high level of reproducibility in the relative timing of
peak expression. This suggests that within the α-factor,
CDC15 and CDC28 experiments, although the Fourier-PVE
shown in Figure 2 may intrinsically be somewhat variable, the
consistency in peak location is far too high to be explained by
chance. We draw two conclusions from this finding. First, we
conclude that the Fourier analysis is a suitable method for
estimating the timing of peak expression, even while the
cyclicity values given by Fourier-PVE should be treated as
lying on a coarse scale. More importantly, we conclude that the
α-factor, CDC15 and CDC28 synchronization methods give a
strong and reproducible signal, whereas the elution experiment
gives a different pattern.

The phase pattern in the elution experiment is not completely
unrelated to the pattern under arrest/release synchronization
methods. The relationship is not indicated by a clear diagonal,
as is the case with the other comparisons. It is possible that the
data would be consistent with differences in the relative phases
in the elutriation and the arrest/release methods of cell cycle
analysis. A resolution of the question of phase of expression
will probably require experiments using non-perturbing
methods of cell-cycle analysis to determine whether there is a
particular order of gene expression during the yeast cell cycle.

Reproducibility of particular gene cyclicities

Another way of looking at reproducibility between different
synchronization experiments is presented in Figure 4, where
the 100 most cyclically expressed genes under each of the four
synchronization methods are displayed based on their cyclicity
levels. The cyclicity levels are expressed as ranks within the

roughly 6200 genes, with a low rank corresponding to a high
cyclicity. Each block of four horizontal lines displays the
cyclicity ranks in all four experiments for the 100 most cyclic
genes in a given experiment. Numerous genes have no
apparent reproducibility of gene cyclicity between different
experiments. Genes that are periodic under one synchroniza-
tion procedure are not necessarily periodic under a different
synchronization procedure. In fact, some genes that are very
periodic in one experiment are at the other extreme end of the
cyclicity scale in another experiment, showing essentially no
reproducibility. This result indicates that numerous periodicities
observed in some experiments are not clearly due to an innate,
cell-cycle-related expression pattern. Rather, this result
(Fig. 4) suggests that the observed cyclicities may possibly be
due to a biological—but not a cell-cycle driven or related—
response to the experimental treatments. If cell cycle expres-
sion were innate, then the cyclicity results would be expected
to be consistent in all synchronization experiments. Further-
more, this result can be used to conclude that at least some of
the synchronization methods used to study cell-cycle-
dependent gene expression do not truly synchronize cells.

A fourth way of looking at the reproducibility of cyclicity
across experiments is to determine how often a particular gene
appears near the top of a list of genes sorted by cyclicity in a
given synchronization experiment. A tabulation of these find-
ings is presented in Table 2. For each of the four cell-cycle
experiments (1), the top 50, 100, 200 and 300 genes in terms of
cyclicity were determined. If no gene appeared in the top group
of genes for more than a single experiment, then one would
have 200, 400, 800 or 1200 genes listed. Because some genes
are present in more than one list, fewer distinct genes are found

Figure 2. Reproducibility of cyclicity between different experiments. For each distinct pair of synchronization methods used to analyze the cell cycle (1), the
cyclicity levels for the 1000 genes with the highest standard deviations for one of the experiments are presented as a scatter plot. Thus, for the first line of four
boxes, the 1000 genes in the α-factor experiment were identified, and their cyclicities in the α-factor experiment are compared with the cyclicities in the other three
experiments. The four diagonal graphs are histograms showing the marginal level of cyclicity in each experiment for all 1000 genes for the selected experiment
(listed at the left).



2924 Nucleic Acids Research, 2002, Vol. 30, No. 13

in the aggregate list. Specifically, 175, 322, 595 and 883 genes
are found for the four choices of list size. In Table 2 the distri-
bution of these duplications, triplications and quadruplications
are presented. Even when retaining the top 300 genes in each
experiment, 73% of the genes are not present in more than one
experiment; that is, they are present as single representatives.
Only nine genes are present among the top 300 for all four
experiments. If one examines only the top 100 genes for each of
the four experiments, then there are no genes that are present in all
four lists. This again indicates that the level of reproducibility of
cyclic gene expression over different synchronization experiments
is of a low order.

DISCUSSION

In the analysis of yeast gene expression during the division
cycle (1) various choices were made that may have had the
effect of emphasizing data supportive of cyclic gene expres-
sion. These choices thus de-emphasized data that might not be
supportive of cyclic gene expression.

In calculating the aggregate cyclicity value for each gene, the
individual values for the α-factor, CDC28 and CDC15
synchronization experiments were included, whereas the
results for the elution experiment were excluded. The reason
that the elutriation data was not included was that ‘it was not
possible to calculate a [value] that maximized the value of
more than a handful of the known genes’ (1). Notably, the
CDC28 data were more similar to the α-factor and CDC15
data than were the elution measurements, even though the
CDC28 data were generated by a different group using a
different type of microarray.

It is interesting in this context to note that in a paper devoted
to analyzing the extant yeast cell cycle (5) a classification of
genes according to function was different from the original (1)
classification. The explanation given (5) was that ‘This may be
due to the poor quality of the elutriation expression data, as
synchronization by elutriation was not very effective in this
experiment. For the α-factor-synchronized cell cycle expres-
sion there is much better agreement between the two classifica-
tions.’

One possible explanation for the different classification
results, and the lack of conformity of the elutriation data with
the α-factor, CDC15 and CDC28 results, is that the elutriation
data may be closer to the expression pattern in unperturbed
cells. From this point of view, one might conclude that there is
actually little variation in gene expression during the division
cycle.

Conversely, the α-factor-synchronized cell cycle data may
give stronger periodicities that lead to a more robust classification
scheme. If this were the case, one would expect reproducible
results for the α-factor experiments but less reproducible
results for the elutriation data. Again, this reproducibility and
strength of periodicity should not be taken as an indication that
a particular gene is expressed in a cell-cycle-specific manner
during the normal, unperturbed cell cycle.

To put this more clearly, the results from the α-factor
synchronization (as well as CDC28 and CDC15 synchroniza-
tion) may lead to more defined and reproducible analyses than
the data from the elutriation experiment. Such reproducibility
may be useful for gene expression analysis. But utility is not a
proper criterion for accepting data that may be affected by
potential perturbations or artifacts. It is possible that the
weaker cyclicities in the elutriation data are closer to the

Figure 3. Correlation of peak timing between different experiments. For each set of genes in an experiment the 1000 genes with the highest cyclicities were iden-
tified. The phase locations of these genes were then compared in a scatter plot against the phase location in the other three experiments. The phase location was
determined for each gene using the fitted Fourier pattern. The graphs on the diagonal are histograms summarizing the frequency of the 1000 genes with the highest
cyclicities having peaks of expression at particular times during the cell cycle.
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natural situation in growing cells. For this reason one should be
wary of extending the batch synchronization methods (whether
by α-factor or by temperature sensitive arrest synchronization)
to determine the pattern of gene expression during the division
cycle.

Beyond the issue that a selection bias may have led to the
aggregation of a subset of experimental results that support a
particular prior point of view, another more fundamental point
must be made about the elution results. The elution synchroniza-
tion approach is the only one of the four methods that has a
clear theoretical basis. [The problems with the current view of
arrest synchronization methods have been clearly described
(18) and will not be further detailed here.] Small cells are
younger cells. Large cells are cells later in the division cycle.
Selection of small cells selects cells that are preferentially
young cells. The theoretical basis for synchronization by the
other three methods is less clear. The three inhibition methods
assume that cells arrest at a point in the cell cycle. It is further
assumed that when released from inhibition the arrested cells
resume growth from that point to produce synchronized
growth. These assumptions are debatable.

We favor the elutriation results over the results from the
other three inhibition methods of synchronization. To be fair,
we point out that the elutriation results, in contrast to the other
results, cover only one cell cycle (Table 1). This aspect of the
design leaves open the possibility that a more complete set of
elution measurements may turn out to show a greater consist-
ency with the inhibition methods.

The question remains whether the observed periodicities are
truly representative of the normal cell cycle in unperturbed
cells. It has been argued that the batch synchronization
methods (e.g. α-factor arrest, temperature sensitive inhibition,
nocodazole) used to analyze the cell cycle of S.cerevisiae do
not actually synchronize cells but merely align cells for partic-
ular cell properties (18). But equally importantly, it is gener-
ally accepted that such inhibition methods may lead to
introduction of artifacts or anomalous periodicities that were
not present in the unperturbed cells (19).

Problems associated with aggregating several experiments

In another approach to analyzing cyclicity, an aggregate
cyclicity value was determined by combining the values for
three different experiments (1). Cyclicity levels in individual
experiments were not reported, and the elutriation was dropped
for reasons that may be considered arbitrary. In order to assess
whether the Affymetrix data using CDC28 synchronization,
which had been produced by a different laboratory, was
strongly influencing the results, the aggregation analysis was
repeated without including this experiment. Although it is
argued that the results are not significantly impacted by the
inclusion or exclusion of the Affymetrix data (1), it is worth
noting that the Affymetrix measurements contribute only one-third
of the aggregate score, so it is difficult to assess whether the
influence is in fact large. We suggest that while an aggregate
score may be a useful way to borrow strength across several
experiments, relying solely on an aggregated cyclicity measure
may serve to mask problems in the individual experiments. We
propose that before an aggregate score is considered, an effort
should be made to demonstrate that there is a reasonable
strength of signal in the individual experiments, and a reason-
able level of reproducibility between the individual experiments.

Clustering of genes according to function, cyclicity and
control DNA sequences

A crucial point regarding the interpretation of the CDC28
experiments resides in a subsequent analysis of the original
data (16). The CDC28 data were analyzed using a clustering
algorithm. Clusters of genes were produced that exhibited
similar expression patterns. The DNA sequences associated

Figure 4. Reproducibility of cyclicity for specific genes for different synchro-
nization experiments. In each panel of four lines are displayed the 100 most
cyclic genes from a given synchronization method (1). Each vertical dash
indicates the rank cyclicity for a single gene in a single experiment. The first
line is the location of the 100 most cyclic genes for the α-factor experiment.
Lines 2–4 are the particular genes from line 1 and their relative cyclicity for
synchronization by CDC15 arrest, CDC28 arrest and elution. Thus rank cyclic-
ities of genes selected for high cyclicity for one synchronization method are
shown for all four synchronization methods. Similarly, the remaining 12 lines
are comparative analyses of the data for high cyclicity genes from the CDC15,
CDC28 and elution experiments compared with the same genes analyzed by
different methods.

Table 2. Frequency of high cyclicity values for different synchronization
methods

Genes selected from each
synchronization experiment

300 200 100 50

Total analyzed after elimination of
duplicates

883 595 322 175

Expected with no duplicates 1200 800 400 200

Number of times a given gene is found Frequency of finding a gene either
1, 2, 3 or 4 times among the top
cyclical genes in an experiment

4 9 3 0 0

3 59 40 12 2

2 172 116 54 21

1 643 436 256 152

Percentage singles 73% 73% 80% 87%
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with the genes in each cluster were also analyzed. Two types of
clusters were observed. First, three clusters that represented
three different functional categories (replication and DNA
synthesis, organization of the centrosome, and budding and
cell polarity) gave cyclical patterns that were associated with
expression at particular times during the cell cycle (G1, S and
G2). More significantly, a search of the DNA sequences asso-
ciated with these genes revealed a surprising level of
consensus among the DNA sequences within the clusters. The
consensus sequences associated with a given cluster were
rarely found outside the cluster.

A second type of cluster gave groups of gene expression
patterns with no reproducibility between the first and second
cycles of gene expression. For example, the ribosome cluster
gave no peak in the first cycle after synchronization and a
single peak in G1 in the second cycle. The methionine and
sulfur metabolism cluster gave a peak in S–G2 of the first cycle
and no peak in the second cycle. Carbohydrate metabolism
genes were low in the first cycle and high in the second cycle.
This lack of reproducibility between two successive cycles is
an indication that the cells are perturbed. Non-reproducibility
of expression levels between two cycles for any gene group
means that there is a perturbation of the cells, such that there is
either an induction or a repression of expression in the first
cycle that is not present in the second cycle.

What about the interesting correlation of expression patterns
and the upstream DNA sequence motifs that were common to
members of each cluster? One explanation for the reproduci-
bility of expression among members of a cluster (even if that
pattern is not related to the cell cycle) and upstream DNA
sequences is the possibility that the CDC28 synchronization
method affects genes in the cluster through the common
sequence motifs. However, this finding does not imply
anything more than that the stresses applied as part of the
synchronization process produced perturbations that were
mediated through the common upstream sequences. The corre-
lation of cluster pattern and upstream gene sequences does not
mean that the observed cyclicities are related to the normal,
unperturbed cell cycle.

Problems with continuous variation in cell-cycle
expression patterns

One of the more striking results on cyclic gene expression
during the yeast division cycle is that the times of peak gene
expression appeared to be uniformly distributed throughout the
division cycle (1). When the genes were sorted vertically
according to peak expression time, it appeared that at each
point in the division cycle approximately the same number of
genes exhibited their peak expression. The color coding used
to demonstrate this effect might obscure precise timing of peak
gene expression. Therefore the timing of peak expression was
quantified using the Fourier phase analysis and the distribution
of phases during the cell cycle was determined (Fig. 3, histo-
grams). While there is some evidence of clustering in the timing of
gene expression, the main result is that peak expression appears to
be able to occur at any time during the division cycle.

The finding of a continuous range for the timing of peak
gene expression during the yeast cell cycle actually raises more
problems than it solves. While the idea of sequential activation
of genes as cells pass through the cell cycle may be attractive,
this proposal raises questions as to whether each individual

gene in the sequence of activation possesses a particular signal
that initiates its expression at that particular time. This model
would entail each gene being associated with a timing signal
that is specific to that gene. From a design point of view, this
seems to be inordinately complex relative to a more parsimo-
nious solution in which a few global regulators turn on sets of
genes at a relatively small number of key transition points in
the cell cycle. At present, for reasons that may be due to the
limited temporal resolution of the microarray experiments, there is
little evidence that such transition points are being detected.

The rate of false positives

The analysis presented here is consistent with the original
proposed 3–10% false positive rate. From this point of view,
the proposed 3–10% false positive rate (1) can be interpreted as
referring to false positives in identifying genes with a cyclic
response to the synchronizing perturbation, and not necessarily
to false positives in identifying genes with innate cyclic
expression driven by the cell cycle.

Implications for analysis of cell cycle regulation

The analysis presented here is independent of specific views or
models of the cell cycle. Our motivation in preparing this analysis
stems from a desire to ensure that the quantitative data used to
support cell-cycle-specific gene expression is treated in a
rigorous and objective manner.

Synchronization experiments where the cells are synchro-
nized by a batch procedure (i.e. those where all cells are treated
equally, such as with starvation, inhibition, or temperature
arrest) are subject to two criticisms. First, there is the criticism
that the cells are not synchronized at all. Cells may be aligned
for a particular property (e.g. G1-phase DNA content), but this
does not mean the cells are representative of any particular cell
age during the division cycle, nor does it mean the cells are
synchronized (18).

A second and more generally accepted critique is that such
starvation/inhibition synchronization procedures may affect
the experimental observations by introducing artificial period-
icities that appear as cell-cycle-specific gene expression. Thus,
there may be periodicities in the data, but these periodicities
are not necessarily present in the original, unperturbed cells.
These artificial periodicities could be considered artifacts that
are unrelated to the real, underlying pattern of gene expression
during the division cycle.

Classical identification of cell-cycle expression

In support of the microarray data it was pointed out that from a
list of 104 genes that were previously identified as being
expressed in a cell-cycle-specific manner, the microarray
analysis identified 96 of them (1). That the microarray data
confirmed 92% of the genes that were identified as cell-cycle
specific using more classical methods is important. These 104
genes are identified in 77 papers. (The complete list can be
found at ‘Word document’ at the website http://cellcycle-
www.stanford.edu/data/rawdata/.) We have looked at almost
all of the papers that were available and merely point out that
most of the previous analysis was based on α-factor
synchronization, temperature sensitive arrest synchronization,
raffinose–galactose arrest–regrowth, feed–starve synchroniza-
tion, nocodazole synchronization and hydroxyurea arrest, with
some of the papers also using elutriation. The repetition of
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cyclicity in the microarray analysis may very likely be due to
the use of the same methods that were used to synchronize or
align cells in the previously published papers.

Some of the previously published work using standard
methods to analyze the cell cycle is quite impressive. The issue
raised here is only whether one can use certain synchronization
methods in conjunction with microarray analysis to identify
cell-cycle-specific expression. Even more importantly, it is not
argued here that this reanalysis of the microarray data demon-
strates that there are no cell-cycle-specific patterns of gene
expression in yeast. We merely propose that the microarray
data using four different synchronization methods should be
looked at with caution.

On the choice of numerical threshold for cyclical
expression

The threshold chosen as the cut-off value for cell-cycle-
specific expression was actually chosen to include as many of
the ‘known’ genes that had been previously proposed to be
cyclically expressed using classical methods. This argument in
support of the microarray method as one that can find cycli-
cally expressed genes has a degree of circularity to it. The
finding that 92% of the known genes are included in the micro-
array set is related to lowering the threshold to include these
genes. There was no independent choice of threshold value that
can be tested for its ability to include the ‘known’ set of cyclically
expressed genes.

More problematically, genes that are expected to be non-
cyclic in their expression during the division cycle have been
found to be cyclic. For example, an extended discussion is
presented for the tubulin genes and the methionine genes
which are not expected to be cyclical in expression but which
are included in the cyclical gene group. Some ad hoc explan-
ations are presented to justify the found cyclicity. We merely
point out that these genes could be used as arguments to raise
the threshold to exclude genes that are known, suspected or
believed to be non-cyclically expressed. Raising the threshold
to exclude known non-cyclic genes could suggest that genes
proposed to be cyclic are weakly supported by the microarray
data. Of course, it is possible that the tubulin genes are
expressed in a cyclic manner as indicated by the microarray
data. In the absence of independent data indicating that this is
the case, we can only point out that the threshold determination
should consider the expectations of non-cyclicity as well as
cyclicity of gene expression.

Databanks and data analysis

The availability of the raw data on the web allowed a re-
examination of the proposal of cell-cycle-specific expression
in yeast. If the data were not publicly available, it would not
have been possible to test whether there were reproducibility
or other problems with the data. This analysis and conclusions
presented here therefore emphasize the need for the raw data to
be available for further study and analysis. In the original yeast
paper (1) the authors conclude by writing ‘we hope that our
colleagues in the scientific community will find this paper to
be valuable not as only a description of our results but also as a
resource for data for some time to come.’ We agree with and
support this hope, but also expect that any deficiencies in the
data be recognized and taken into account in future analyses.

G1 phase and the cell cycle

Although the analysis presented here is independent of particular
models of cell cycle control, it is of interest to point out that the
impetus for this study is the proposal that there are no G1
phase-specific controls. The finding that there are a significant
number of patterns that were attributed to the G1 phase (1) led
to this re-examination of the microarray data. This view of the
G1 phase has been reviewed and applied to a number of experi-
mental results (18,20–28).

Caveats and limitations on the analysis

In fairness to the analysis of Spellman et al. (1), it is important
to raise one argument against the analysis presented in Figure 3. In
Figure 3, the time of peak expression during the division cycle
for various genes is correlated between experiments. For many
comparisons, there is an obvious diagonal slope to the points.
The interpretation of this diagonal is that it implies that the
relative timing of peak expression for genes is relatively repro-
ducible between any two block/release experiments. When the
elutriation experiment is correlated with the block/release
experiments, this obvious diagonal is missing. Our interpreta-
tion was that the elutriation result may be the correct result, and
stress-induced variations in the block/release experiment are
artifacts of the experimental treatment. It should be pointed
out, in opposition to this interpretation, that cells from the
block/release experiments are grown in glucose, have a rela-
tively short interdivision time, and so have short G1 phases. In
contrast, the elutriated cells were grown in ethanol, have a
longer interdivision time (∼300 min) and so have a longer G1
phase. It is possible that the peak phase-times are different for
the cells with different growth rates. Thus, halfway through the
cycle for the glucose-grown, block/release cells is late S or
possibly G2 phase. But half way through the cycle for the
elutriated cells may just be past the midpoint of the G1 phase.
This phase problem could have prevented the inclusion of
results from the elutriation experiment in the aggregate,
numerical results. To put together the elutriation results and the
block/release results, there is need for an independent analysis
of where the cells are in the cell cycle, so that one can match up
the two very differently timed cell cycles.

There is another problem with analyzing the elution results.
The elution experiment is the one experiment among the four
synchronization methods studied that is restricted to one cycle.
Stress responses to synchronization would be expected to
primarily affect the first cycle of a multi-cycle-synchronized
culture (although it is not clear that such a restriction must be
in place). The multi-cycle cyclicity analysis would tend to
identify genes that are cyclic over more than one cycle. This
would tend to eliminate genes cyclical over one cycle, which
could therefore eliminate many stress-induced variations. This
distinction cannot be made for the elutriation results, as there is
only one cycle for analysis. This may lead to the inclusion, in
the elutriation data, of more cyclical patterns produced by
stress effects.

Biological problems regarding cell-cycle expression
analysis

Beyond the statistical analysis of the published data on gene
expression in cells proposed to be synchronized, we wish to
point out some specifically biological problems.
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We first must ask ‘what is the purpose of analyzing gene
expression in synchronized cells?’ To this question we feel the
answer is ‘to understand gene expression in the normal cell
cycle’. Specifically, the analysis is not to understand expression in
the particular experimental conditions used to analyze gene
expression, but to describe what happens during the division
cycle of unstarved, unperturbed, exponentially growing cells.

That this is problematic is indicated by the fact that in the
three arrest procedures the cells continue to grow so that they
are much larger than normal cells. How can one say that what-
ever happens in an inhibition/release experiment is a reflection
of the normal cell cycle? If the cytoplasm/nuclear ratio is much
larger after inhibition of the cells, how can one be assured that
the results obtained reflect the pattern of synthesis in cells with
a smaller cytoplasm/nuclear ratio?

More troubling is the fact that when multiple cycles of
S.cerevisiae are studied, the cycles beyond the first are
composed of two different cells. One cell is the ‘mother’ cell,
which is larger than the smaller ‘daughter’ cells that budded
from the mother cell. We find it difficult to understand the
multiple cycle experiments when cells have this basic pattern
of division. It is possible that larger cells could produce both
mother and daughter cells that are large enough at division to
be equivalent regarding the cell cycle. However, until this
problem is worked out in detail, it is important to be cautious
when analyzing the S.cerevisiae cell cycle.

Gene expression during the division cycle of human cells

A parallel study of microarray analysis of gene expression
during the division cycle of human cells has shown that similar
problems exist in this study. Microarray analysis of gene
expression patterns for thousands of human genes has led to
the proposal that a large number of genes are expressed in a
cell-cycle-specific manner (29). The identification of cyclically
expressed genes was based on Affymetrix microarray analysis
of gene expression following double-thymidine block synchro-
nization. A statistical re-analysis (30) of the original data leads
to three principal findings. (i) Randomized data exhibit
periodic patterns of similar or greater strength than the experi-
mental data. This suggested that all apparent cyclicities in the
expression measurements may arise from chance fluctuations.
(ii) The presence of cyclicity and the timing of peak cyclicity
in a given gene are not reproduced in two replicate experi-
ments. This suggested that there is an uncontrolled source of
experimental variation that is stronger than the innate variation
of gene expression in cells over time. (iii) The amplitude of
peak expression in the second cycle is not consistently smaller
than the corresponding amplitude in the first cycle. This
finding placed doubt on the assumption that the cells are actu-
ally synchronized. We have proposed that the microarray
results do not support the proposal that there are numerous
cell-cycle-specifically expressed genes in human cells (30).
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