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Inferring effects ofmutations on SARS-CoV-2
transmission fromgenomic surveillance data

Brian Lee 1, Ahmed Abdul Quadeer 2,3, Muhammad Saqib Sohail2,4,
Elizabeth Finney1, Syed Faraz Ahmed2,3,5, Matthew R. McKay 2,3,5,6 &
John P. Barton 1,7,8

Newandmore transmissible variants of SARS-CoV-2 have arisenmultiple times
over the course of the pandemic. Rapidly identifying mutations that affect
transmission could improve our understanding of viral biology and highlight
new variants that warrant further study. Here we develop a generic, analytical
epidemiological model to infer the transmission effects of mutations from
genomic surveillance data. Applying our model to SARS-CoV-2 data across
many regions, we find multiple mutations that substantially affect the trans-
mission rate, both within and outside the Spike protein. Themutations that we
infer to have the largest effects on transmission are strongly supported by
experimental evidence from prior studies. Importantly, our model detects
lineages with increased transmission even at low frequencies. As an example,
we infer significant transmission advantages for the Alpha, Delta, andOmicron
variants shortly after their appearances in regional data, when they comprised
only around 1-2% of sample sequences. Our model thus facilitates the rapid
identification of variants andmutations that affect transmission fromgenomic
surveillance data.

Viruses can acquire mutations that affect how efficiently they infect
new hosts, for example by increasing viral load or escaping host
immunity1–4. The ability to rapidly identify mutations that increase
transmission could inform outbreak control efforts and identify
potential immune escape variants5–9. However, estimating how indivi-
dual mutations affect viral transmission is a challenging problem.

To address this challenge, we developed a method to infer the
effects of single nucleotide variants (SNVs) on viral transmission that
systematically integrates genomic surveillance data from different
regions. Our analytical approach is based on a simple epidemiological
model, allowing it to be efficiently applied to large data sets and
opening the door to future theoretical extensions. Our method is also

automatic in the sense that it relies onlyon sequencedata anddoes not
require, for example, clustering sequences into discrete “variants.” An
additional advantage of our approach is that relative changes in viral
transmission are statistically explained in terms of the specific muta-
tions that different viruses bear, highlighting mutations that may be
especially biologically important. Simulations show that our approach
can reliably estimate the transmission effects of SNVs even from lim-
ited data. As our approach is based on surveillance data, it infers the
effects of observed SNVs, rather than predicting the effects of SNVs
that have never been observed before.

We applied our method to more than 7.4 million SARS-CoV-2
sequences from 149 geographical regions to reveal the effects of SNVs
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on viral transmission throughout the pandemic. While the vast
majority of SARS-CoV-2 SNVs have negligible effects, we readily
observe increased transmission for sets of SNVs in Spike and other
hotspots throughout the genome. For clarity, we will refer to all non-
reference nucleotides (including deletions or insertions) as SNVs and
viral lineages possessing common sets of SNVs as variants. When we
discuss the effects of amino acid substitutions, we will use the term
mutations to distinguish these substitutions from variation at the
nucleotide level, as multiple different nucleotide changes can lead to
the same change at the level of proteins.

Importantly, our approach is sensitive enough to identify variants
with increased transmission before they reachhigh frequencies. This is
demonstrated by studying the rise of the Alpha and Delta variants in
Great Britain and Omicron in South Africa. We reliably infer increased
transmission for these variants soon after their emergence, when their
frequency in the region was only around 1–2%. An untargeted search
for sets of SNVs that strongly increase viral transmission also reveals
multiple collections of SNVs belonging to well-known variants. Col-
lectively, these data show that our model can be applied for the sur-
veillance of evolving pathogens to robustly identify variants with
transmission advantages and to highlight key SNVs thatmay be driving
changes in transmission.

Results
Epidemiological model
To quantify the effects of SNVs on viral transmission, we developed a
generalized Galton–Watson-like stochastic branching process model
of disease spread (see the “Methods” section). Branching processes
have been frequently used to model the stochastic numbers of infec-
tions in a population10,11. Our model draws the number of secondary
infections caused by an infected individual from a negative binomial
distribution with mean R, referred to as the effective reproduction
number, and dispersion parameter k. The negative binomial distribu-
tion for secondary infections has been used in past work to model
superspreading12–17, which becomes more prominent when k is small.
However, we show in the Supplementary Information that the incor-
poration of detailed information about the current number of infec-
tions and degree of superspreading—even if known perfectly—can
actually lead toworse inferencewhendata isfinitely sampled. Thus,we
will ultimately absorb these terms into a regularization parameter, and
the degree of superspreading does not influence the inferred trans-
mission effects of SARS-CoV-2 mutations that we will describe below.
Multiple variants with different transmission rates are included by
assigning a variant a an effective reproduction number Ra =R(1 +wa).
Under an additive model, the net increase or decrease in transmission
for a variant is the sumof the individual transmission effects si for each
SNV i that the variant contains. In analogywith population genetics, we
refer to the wa and si as selection coefficients. We will maintain this
analogy throughout this work, associating natural selection or fitness
with the relative capacity for viral transmission between hosts.

We then apply Bayesian inference to estimate the transmission
effects of SNVs that best explain the observed evolutionary history of
an outbreak. To simplify our analysis, we use a path integral technique
from statistical physics, recently applied in the context of population
genetics18, to efficiently quantify the probability of the model para-
meters given the data (for details, see Supplementary Information).
This allows us to derive an analytical estimate for the maximum a
posteriori selection coefficients ŝ, normalized per serial interval, for a
given set of viral genomic surveillance data

ŝ = γ0I +Cint

� ��1
Δx : ð1Þ

Here Δx is the change in the SNV frequency vector over time, γ0 is a
rescaled regularization term proportional to the precision of a Gaus-
sian prior distribution for the selection coefficients si (Methods), and I

is the identity matrix. The dispersion parameter k and number of
infected individuals N, analogous to a population size in population
genetics, are absorbed into the definition of γ0. Cint is the covariance
matrix of SNV frequencies integrated over time and accounts for
competition between variants as well as the speed of growth for dif-
ferent viral lineages (Supplementary Information). Data frommultiple
outbreaks can be combined by summing contributions to the inte-
grated covariance and frequency change from each individual trajec-
tory (see the “Methods” section). Our theoretical model could also be
extended to incorporate additional features of disease transmission,
such as the travel of infected individuals between different outbreak
regions.

Validation in simulations
To test our ability to reliably infer the transmission effects of SNVs, we
analyzed simulation data using a wide range of parameters. We found
that inference is accurate evenwithout abundant data, especiallywhen
we combine information from outbreaks in different regions (Fig. 1,
Supplementary Fig. 1) Because we model the evolution of relative
frequencies of different variants, accurate inference of transmission
effects does not require the knowledge of difficult-to-estimate para-
meters such as the current number of infected individuals or the
effective reproduction number (see the “Methods” section). Simula-
tions also demonstrated that our model is robust to variations in
effective reproduction numbers in different regions (Supplemen-
tary Fig. 2).

Global patterns of selection in SARS-CoV-2
Westudied the evolutionary historyof SARS-CoV-2 using genomicdata
fromGISAID19 as of January 26, 2024. We separated data by region and
estimated selection coefficients jointly over all regions (see the
“Methods” section). After filtering regions with low or infrequent
coverage, our analysis included more than 7.4 million SARS-CoV-2
sequences from 149 different regions, containing 1398 nonsynon-
ymous SNVs observed at nontrivial frequencies.

Our analysis revealed that, while the majority of SNVs were nearly
neutral, a few dramatically increased viral transmission (Fig. 2a, Sup-
plementary Table 1). We observe clusters of SNVs with strong effects
on transmission along the SARS-CoV-2 genome (Fig. 2b). The highest
density of SNVs that increase transmission is in Spike, especially in the
S1 subunit (Supplementary Fig. 3). Of the top 20 mutations at the
amino acid level that we infer to be most strongly selected, 16 are in
Spike (Supplementary Table 1). However, SNVs with a strong selective
advantage are also found in other proteins, especially in N, NSP4,
NSP6, and NSP12.

Mutations inferred to strongly increase transmission
The top 50 mutations that we infer to increase SARS-CoV-2 transmis-
sion the most are listed in Fig. 2c and Supplementary Table 1. These
mutations are at the amino acid level and can include the effect of
multiple SNVs and deletions that occur within a single codon. Experi-
mental evidence directly or indirectly supports 48 of these 50 infer-
ences. For clarity, we will reference mutations at the amino acid level
rather than the underlying SNVs, which are also given in Supplemen-
tary Table 1.

Spike mutations F486P, Q498R, Q954H, N460K, P681R, R346T,
N969K, and N679K comprise 8 of the top 10 mutations, and all have
demonstrated functional effects that could increase
transmission20,20–25. Similarly, Spike mutations in the receptor binding
motif (RBM) such as F486P, Q498R, N460K, N450D, T478K, N501Y,
L452R, and the so-called FLip mutations L455F and F456L appear
prominently in our analysis, comprising 9 of the top 25 mutations.
Most of these mutations have been shown to increase resistance to
RBM-specific neutralizing antibodies20–22,24,26 and the majority also
enhance ACE2 receptor binding4,21,27–31.
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Of these, N501Y (ŝ = 10:1%, ranked 15th) is shared by almost all
major SARS-CoV-2 variants. Q498R, N460K, and T478K are shared by
all Omicron variants. Beyond the functional effects above, N501Y is
known to increase transmission of infection32 and to help maintain
Spike in an active conformation for receptor recognition21. Eight Spike
N-terminal domain (NTD) mutations/deletions (T19R/I, Δ142, Δ157/
F157L, H245N, A264D, and G142D) are also strongly selected. These lie
in the antigenic supersite where mutations have been shown to
decrease the neutralization potency of NTD-specific monoclonal
antibodies21,33. Spike mutations unique to the recently emerged Omi-
cron variants BA.2.86 and JN.1 (N450D, V445H, K356T, E554K, H245N,
and A246D) alongwith those found in the KP.2 andKP.3 variants which
have become globally dominant in 2024 (R346T, F456L), rank among
the top mutations identified in our analysis. All these mutations are
known to impact either ACE2 receptor binding or antibody
neutralization26,34–37.

Research on viral transmission has naturally focused on Spike
because of its role in viral entry and as a target of neutralizing anti-
bodies. However, our analysis also reveals strongly selectedmutations
outside of Spike. These include the NSP4 mutation T492I, and
Nucleocapsid mutations R203M/K, Δ32/R32C, and P13L. NSP4 muta-
tion T492I (ŝ = 16:6%, ranked 2nd) was reported to increase viral
replication and infectivity, enhance cleavage of the viral protease
NSP5, and contribute to immune evasion based on experiments and
animal models38. Nucleocapsid mutation R203M (ŝ = 11:4%, ranked
13th) is in the linker region of the protein and enhances viral RNA
replication, delivery, and packaging, which may increase
transmission39. Studies suggest that NSP6 mutations Δ106 and S106T

(ranked 3rd and 38th, ŝ = 16:5 and ŝ =6:6) and F108L (ranked 23rd,
ŝ = 7:6)may increase transmission by interferon antagonism40. We also
find additional mutations outside of Spike, such as G671S in the RNA-
dependent RNA polymerase NSP12 and Δ32 in N, that are highly
selected and may be good targets for further experimental study. Our
model thus highlights non-Spikemutations thatmay confer a selective
advantage to emerging variants.

Estimates of relative transmission rates for major SARS-CoV-2
variants
We estimated the net increase in viral transmission relative to the
WIV04 reference sequence for well-known SARS-CoV-2 variants by
adding contributions from the individual variant-defining SNVs (Fig. 3
and Supplementary Fig. 4, see the “Methods” section). Because our
model uses global data and infers the transmission effects of individual
SNVs, variants can be compared to one another directly even if they
arose on different genetic backgrounds, or if they appeared in differ-
ent regions or at different times. This also allows us to infer sub-
stantially increased transmission for variants such as Gamma or Mu,
which never achieved the level of global dominance exhibited by
variants like Alpha, Delta, Omicron, or XBB (Supplementary Fig. 4).

Our findings are consistent with past estimates that have shown a
substantial transmission advantage first for Alpha and then for Delta
relative to other pre-Omicron lineages41–43. However, past estimates
have varied substantially depending on the data source andmethod of
inference. In different analyses, Delta has been inferred to have an
advantage of between 34% and 97% relative to other pre-Omicron
lineages41,42,44. Similarly, Alpha has been estimated to increase trans-
mission by 29–90% relative to pre-existing lineages in different
regions5,41,45–47. One advantage of our approach is that it can infer
selection coefficients that best explain the growth or decline of var-
iants across many regions, allowing for more even comparisons.

Over the period of data that we analyzed, Omicron and its sub-
variants display clear, large increases in transmission over past variants
(Fig. 3). The transmission advantage of BA.1 (ŵ= 170%), which we
estimate to be the least transmissible of Omicron subvariants, is
roughly twice as large as the inferred selection coefficient for Delta
(ŵ=85%). More recent variants of Omicron, such as XBB (ŵ=280%)
are inferred to be substantially more transmissible.

In general, we find that the contributions of individual SNVs to the
overall selection coefficient ŵ for a variant are very heterogeneous. A
small fraction of SNVs are responsible for most of the increase in
transmission. As an example, Supplementary Fig. 5 shows the relative
contribution of each Alpha, Delta, and Omicron (BA.1) SNV to the total
selection coefficient ŵ for the variant. In each case, fewer than 20% of
SNVs are responsible for more than 80% of the increase in
transmission.

Detection of low-frequency SNVs that increase transmission
We asked whether strong increases in transmission could be inferred
for beneficial SNVs when they are still at low frequencies before they
dominate the viral population. To explore this, we considered the rise
of the threemajor variants of concern (VOCs): Alpha andDelta in Great
Britain, and Omicron (BA.1) in South Africa. We computed the inferred
selection coefficient ŵ for each variant in each region at different
points in time, as the VOCs began increasing in frequency. Selection
coefficientswere computed atdifferent times byfiltering the sequence
data from GISAID to exclude sequences after a specific cutoff date.
Note that this approach is different fromprevious sections,whichused
all data through January 26, 2024 to compute selection coefficients. To
focus on the transmission effects of novel SNVs, we removed putative
beneficial SNVs that had been previously observed in other VOCs from
the estimates of ŵ.

We found that the inferred selection coefficients for novel Alpha
SNVs rose rapidly as the variantwas emerging (Fig. 4a). At the time that

Fig. 1 | Our approach accurately estimates transmission effects of SNVs in
simulations. Simulated epidemiological dynamics begin with a mixed population
containing variants with beneficial, neutral, and deleterious SNVs. a Selection
coefficients for individual SNVs, shown as mean values ± one theoretical s.d. (i.e.,
the width of the posterior distribution, see Supplementary Information), can be
accurately inferred from stochastic dynamics in a typical simulation. b Extensive
tests on 1000 replicate simulations with identical parameters show that inferred
selection coefficients are centered around their true values. Deleterious coeffi-
cients are slightly more challenging to infer accurately due to their low frequencies
in data. Simulation parameters. The initial population is a mixture of two variants
with beneficial SNVs (s =0.03), two with neutral SNVs (s =0), and two with dele-
terious SNVs (s = −0.03). The number of newly infected individuals per serial
interval rises rapidly from 6000 to around 10,000 and stays nearly constant
thereafter. Dispersion parameter k is fixed at 0.1.
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Public Health England labeled Alpha a variant of interest (VOI)48, the
inferred selection coefficient for novel Alpha SNVs was around 15%.
When Alpha was declared a VOC49, this had grown to around 45%.
These statistics would indicate a substantial transmission advantage
for Alpha relative to co-circulating variants. Notably, we inferred novel
Alpha SNVs to be stronglybeneficial evenwhile the variant remained at
low frequencies in Great Britain.

Similar analyses show that our model rapidly infers increased
transmission for novel SNVs in Delta and Omicron. The selection
coefficient for novel Delta SNVs in Great Britain was around 60–70%
when it was classified as a VOC50 (Fig. 4b). No full-length Omicron
sequences were available onGISAIDwhen it was designated as a VOC51.
However, the first Omicron data from South Africa uploaded on
December 7, 2021, clearly revealed an enormous transmission advan-
tage for Omicron (Fig. 4c).

In each of these examples, a strong increase in transmission was
detectable even for variants at low frequencies. To illustrate this point,
we filtered SARS-CoV-2 sequence data by its collection date in each of
these regions and computed the frequency of the Alpha, Delta, and
Omicron variants over time. At the time that each variant reached a

frequency of 2% in the population, their inferred selection coefficients
for novel SNVs were 11%, 16%, and 21% for Alpha, Delta, and Omicron,
respectively. These results show that our model can identify SNVs
associated with higher transmission even when they are present in a
small fraction of all infections in a region.

Robust identification of beneficial SNVs
Identifying variants that increase transmission in real time could
inform public health efforts and highlight important aspects of viral
biology. However, the inherent stochasticity of infection and data
collection makes accurate inferences difficult. For example, neutral or
modestly deleterious SNVs may initially appear to be beneficial due to
a transient rise in frequency despite having no selective advantage.

To explore the effects offluctuations on estimates of transmission
effects, we first quantified the inferred selective advantage for all
variants ŵ (including both SNVs and collections of SNVs that are
strongly linked to one another, see the “Methods” section) in each
region, for each day that data was submitted to GISAID. As in the
previous section, data was filtered by submission date, such that
selection coefficients computed for a specific date used only

Fig. 2 | Inferred transmission effects of SARS-CoV-2 SNVs. a The majority of the
1320 nonsynonymous SNVs included in our study are inferred to have negligible
effects on transmission (that is, ŝ close to zero). However, a few SNVs have strong
effects, as evidenced by a large value of ŝ.b Patterns of transmission effects of SNVs
across the SARS-CoV-2 genome. Beneficial SNVs often cluster together in the
genome. Clustering is especially apparent for the S1 subunit of Spike, where many
SNVs that are inferred to have the largest effects on transmission are located. c Top
50mutations at the amino acid level, which can include the effects ofmultiple SNVs

for deletions and amino acid substitutions that are the result ofmultiple nucleotide
changes within a single codon, inferred to increase SARS-CoV-2 transmission the
most, the major variants in which they are observed, their phenotypic effects, and
selection coefficients (see Supplementary Table 1). The same colors are used to
represent each major variant in Figs. 3, 4 and Supplementary Fig. 4. We cluster
experimental phenotypic results into five categories: antibody evasion; other
immune evasion; increases in replication and/or infectivity; ACE2 receptor binding
and cell entry; and mutations affecting protein structure and/or cleavage.
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sequences thatwere submitted to GISAID on or before that date. Here,
we progressively step through time in each region, adding sequences
according to their submission date and re-analyzing the data in each
region separately.

Although variation in sampling could produce temporary spikes
in inferred selection coefficients, we reasoned that large ŵ are much
more likely to be observed for variants with real, substantial advan-
tages in transmission. To test this reasoning, we used the ŵ to identify
variants with especially large inferred effects on transmission, which
we refer to as high growth (HG) variants (ŵ> θ for some threshold
value θ). In each region, we began at the first time point that data was
submitted to GISAID and stepped through each subsequent upload

date. At each step, we classified strongly linked SNVs with ŵ>θ as HG
and excluded these SNVs from future analysis in the same region.

While it is difficult to conclusively determine whether the classi-
fication of a group of SNVs as HG is “correct” or “incorrect”, we con-
servatively assumed that (groups of) SNVs in major variants denoted
byGreek charactersor theB.1 variant shouldbe correctly labeled asHG
(true positives), and any other SNVs classified as HG constitute false
positives. With this convention, the fraction of true positives increases
steadily alongwith the threshold θ, such thatmore than95%of variants
classified as HG are true positives for θ ≥ 18.5% (Supplementary Fig. 6).
Thus, variants with inferred selection coefficients ŵ> 18:5% in any
region and at any time are highly likely to have a substantial trans-
mission advantage. This threshold could then be used to highlight new
variants of particular interest.

We further studied the cumulative fraction of variant-defining
SNVs that were classified as HG for 10major SARS-CoV-2 variants, over
time and in 7 broad geographical regions (Supplementary Fig. 7).
Despite our stringent threshold of θ = 18.5%, a large fraction of variant-
defining SNVs are ultimately found in HG groups in one or more
regions. HGgroups encompassingmost SARS-CoV-2 variantswere also
independently detected across different regions, usually within a short
period. Importantly, for these variants, around 10–30% of variant-
defining SNVs were classified as HG before the variants began wide
circulation among humans. This means that not only were some
variant-defining SNVs observed in prior variants, but they were also
highlighted in our approach as SNVs that were likely to substantially
increase SARS-CoV-2 transmission.

Features of HG SNVs not in major variants
At the threshold value of θ = 18.5%, we found 38 groups of strongly
linked SNVs that did not belong to major, Greek letter variants or B.1.
Some of these groups of SNVs may have been identified as HG due to
samplingnoise. However, othersmayhavebiological effects that affect
transmission, but not enough to outcompete more transmissible var-
iants. Thus, we investigated whether SNVs in this list could have
plausibly affected transmission.

Of the 38 groups, 12 sets of SNVs included Spike mutations at the
amino acid level with experimentally demonstrated effects or that lie
in functionally important locations. Mutations A879S and A626S were
experimentally shown to reduce sensitivity to convalescent sera26,52.

Fig. 4 | Our model rapidly infers increased transmission for Alpha, Delta, and
Omicron (BA.1) SNVs. Inferred selection coefficients for novel SNVs in Alpha in
Great Britain (a), Delta in Great Britain (b), and Omicron (BA.1) in South Africa (c)
over time. Selection coefficients were computed over time according to GISAID

data filtered by collection date or submission date. Selection coefficients
given for a particular date include only data collected or submitted on or
before that date. Variant frequencies are computed using sequence data fil-
tered by collection date.

Fig. 3 | Multiple SARS-CoV-2 variants strongly increase transmission rate. Fre-
quencies of major variants and their total inferred selection coefficients, shown as
mean values ± one s.d. from bootstrap subsampling of regional data (see the
“Methods” section), defined relative to the WIV04 reference sequence. Selection
coefficients for variants withmultiple SNVs are obtained by summing the effects of
all variant-defining SNVs.
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D138Y and W152R/L were shown to escape neutralization by specific
antibodies31,53, and N439K had reduced sensitivity to sera and
antibodies52,54. N439K and A520S increase binding to the ACE2
receptor54,55. In addition, I794N lies on the fusion peptide and on the
surface of the Spike protein56, while Q677P and S680P lie on the furin
cleavage site57,58. In summary, a substantial fraction of HG Spike SNVs
that are not present in major variants could plausibly affect transmis-
sion, even if their effects are more modest than some SNVs in major
variants.

Discussion
Quantifying the effects of mutations on viral transmission is an impor-
tant but challenging problem. We developed a flexible, branching
process-based epidemiological model that provides analytical estimates
for the transmission effects of SNVs from genomic surveillance data.
Applying our model to SARS-CoV-2 data, we identified SNVs that sub-
stantially increase viral transmission, including both experimentally
validated Spikemutations and other, less-studiedmutations that may be
promising targets for future investigation. Importantly, we found that
our model is sensitive enough to detect substantial transmission
advantages for SNVs belonging to major variants even when they com-
prised only a small fraction of the total number of infections in a region.

Distinct from our method, current approaches to estimate chan-
ges in viral transmission often rely on phylogenetic analyses or fitting
changes in variant frequencies to logistic or multinomial growth
models5,46,47,59–61. Phylogenetic analyses for viruses can be challenging
due to a highdegree of sequence similarity, which implies that the data
canbe explained equallywell by a number of different trees62, and they
also typically rely on Markov chain Monte Carlo sampling that
becomes intractable for large data sets. Growth models have been
commonly applied to predict relative growth of SARS-CoV-2 variants,
and have been incorporated into the popular NextStrain tool63. These
models can estimate the difference in transmissibility between one
variant and others circulating in the same region. However, their
estimates may be difficult to compare for variants that arose in other
regions or with different genetic backgrounds, and they typically do
not identify specific SNVs responsible for changes in transmission.

Our approach differs from these due to our focus on explaining
transmission differences between variants by the fitness contributions
of individual SNVs. The scalable, analytical form of our estimator for
fitness effects also allows for the natural integration of data from
multiple regions. The predictions of our model are strongly supported
by biological and experimental data. Phenotypic effects have been
established for nearly all (i.e., 48 of the top 50; Supplementary Table 1)
of the SNVs that we infer to be most beneficial for SARS-CoV-2 trans-
mission. Our approach is based on a branching process epidemiologi-
cal model of viral transmission. This is distinct from “black box” deep
learning methods (including large language models) that have been
proposed to address related but distinct problems, such as character-
izing antigenic evolution and antibody escape dynamics64,65. Other
groups have taken complementary approaches to inferring differences
in SARS-CoV-2 transmission that include individual SNV effects, incor-
porating different phenotypic effects66 or transmission models60.

The epidemiological model that we have introduced has limita-
tions. We assumed a fairly short generation time, which is appropriate
for a virus such as SARS-CoV-2. A different approach would be needed
to consider the spread of viruses where many transmission events are
from long-term infections, such as HIV. We also assume that SNVs
contribute additively to fitness and that selection coefficients are
constant in time. Our model does not delineate intrinsic (e.g., func-
tional) effects of SNVs on transmission from selection advantages due
to immune escape; though for many of the SNVs inferred most
strongly to affect the transmission, there is independent experimental
evidence to suggest that each (or both) of these factors are important
(Supplementary Table 1). In principle, selection for immune escape is

likely to be time-varying, as the buildup of population immunity
reduces the selective advantage of escape mutations over time67.
Simulations show that if selection is time-varying, the constant selec-
tion coefficients thatwe infer reflect averages of time-varying selection
over the time that the variant was observed (Supplementary Fig. 8).
Epistasis could also lead to over- or under-estimation of selection
coefficients for specific SNVs, but total contributions to transmission
frommultiple SNVs are typically estimated accurately (Supplementary
Fig. 9). We have also assumed that serial intervals are constant in time,
but variants may differ in the typical time between infections68 which
could influence relative growth rates. Differences in antigenicity could
also generate fitness differences that are intransitive and which
depend on immune history. A model that explicitly incorporates
antigenicity would be needed to account for this effect. Finally, we
note that no model based solely on dynamics, including ours, could
distinguish the independent effects of different SNVs that exclusively
appear together on the same genetic background.

Our ability to rapidly identify new, high-growth variants is naturally
limited by the public availability of sequence data. Time lags between
when sequencing is performed and when sequences are uploaded, in
particular, can lead to delays. As shown in Fig. 4, filtering sequences by
collection date rather than submission date typically leads to much
faster detection of variant growth. The disparity is especially large for
Omicron: sequence data from samples collected by mid-October 2021
already shows a substantial transmission advantage for this variant. In
Great Britain, early Alpha sequences were significantly more likely to
have short delays between collection and submission, causing Alpha
sequences to be over-represented in early data and closing the gap
between selection estimates. Even in this unusual case, however, earlier
reporting substantially reduces noise. Thus, reducing the time between
when sequencing is performed and when sequence data is publicly
shared could facilitate the detection of new variants with increased
transmission and help prepare for growing outbreaks.

Our focus on quantifying the effects of individual SNVs on viral
transmission alsomitigates some data limitations. Even in cases where
sequencedata for a novel variant is limited, emerging variants could be
identified for further attention based on the presence of previously
observed SNVs. For example, Alpha, Delta, and Omicron (BA.1) would
have had estimated selection coefficients of ŵ = 18%, 17%, and 66%,
respectively (relative to the WIV04 reference sequence), immediately
prior to their first observations in sequence data. More generally, as
shown in Supplementary Fig. 7, for multiple major variants there is
evidence that some of their variant-defining SNVs substantially
increase transmission prior to the wide circulation of those variants
among humans.

While our study has focused on SARS-CoV-2, the epidemiological
model that we have developed is very general. The samemethodology
could be applied to study the transmission of other pathogens such as
influenza. Combined with thorough genomic surveillance data, our
model provides a powerful method for rapidly identifying more
transmissible viral lineages and quantifying the contributions of indi-
vidual SNVs to changes in transmission.

Methods
Epidemiological model
We use a discrete-time branching process to model the spread of
infection. Individuals can be infected by any one of M viral variants,
which are represented by genetic sequences g = {g1, g2,…, gL} of length
L. For simplicity, we will first assume that alleles at each site i in the
genetic sequence for variant a are either equal to the “wild-type” or
reference (ga

i =0) or mutants (ga
i = 1). Later we will relax this assump-

tion to consider genetic sequences with five possible states at each site
(four nucleotides or a gap). We call na(tm) the number of individuals
infected by variant a at time tm. To allow for super-spreading, the
number of newly infected individuals at time tm+1 follows a negative
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binomial distribution12–17, P naðtm+ 1ÞjnaðtmÞ, k,Ra

� �
=PNB r,pð Þ, where

r = nak, p = k/(k +Ra), and Ra =R(1 +wa). Here r and p are the negative
binomial distribution parameters, k is the dispersion, R is the effective
reproductive number of the reference variant, and wa encodes the
variant dependence of the infectivity. The parameters n, k, and R can
be time-varying. For instance, a time-varying R can represent a change
in the number of susceptible and recovered individuals as well as the
effects of public health interventions or changes in behavior that
modify viral transmission.

Defining the frequency of variant a as ya = na/∑bnb, the probability
that the frequency vector is y(tm+1) = {y1(tm+1), y2(tm+1), …} given the
initial frequency vector y(t0), is

PððyðtmÞÞTm= 1jyðt0ÞÞ=
YT�1

m=0

Pðyðtm+ 1ÞjyðtmÞÞ : ð2Þ

Derivation of the estimator
BecauseEq. (2) is difficult toworkwith directly,we follow the approach
of ref. 18. We introduce a “diffusion approximation” where we assume
that the total number of infected individuals is large and the effects of
mutations on transmission are small. Similar approximations have
beenwidely used in population genetics69–71. Under these assumptions,
the probability distribution for the variant frequencies satisfies a
Fokker–Planck equation with terms derived from the first and second
moments of the frequency changes ya(tm+1)−ya(tm) under the negative
binomial distributions above.

However, the genotype space is high-dimensional (dimension
2L, with either a mutant or wild-type allele at each site) and
undersampled, making inference of selection for genotypes
extremely challenging. To simplify the inference problem, we
assume that selection is additive, so the total selection coefficient
wa for variant a is the sum of selection coefficients si for mutant
alleles at each site i:

wa =
XL
i = 1

ga
i si : ð3Þ

We can then derive a Fokker–Planck expression for the dynamics of
mutant allele frequencies

xi =
XM
a= 1

ga
i ya : ð4Þ

At the allele level, the Fokker–Planck equation has a drift vector
given by

diðxÞ = xið1� xiÞsi +
PL

j = 1, j≠i
ðxij � xixjÞsj , ð5Þ

and a diffusion matrix

Cij =
1
k + 1

R

� �
×

xij � xixj i≠j

xið1� xiÞ i= j

�
, ð6Þ

where xij is the frequency of infected individuals that have mutant
alleles at both site i and site j at time t. In deriving Eq. (5) we have
assumed that the selection coefficients satisfy si≪ 1 such that wa≪ 1.
Despite this technical assumption, our simulations demonstrate that
selection can be accurately inferred even when selection is strong
(Supplementary Fig. 10). The drift vector describes the expected
change in allele frequencies over time. Eq. (5) consists of two terms.
The first describes the expected change in the frequency of allele i due
to selection at that site. The second termaccounts for linkage, that is, it

quantifies how the genetic background alters the expected frequency
change of an allele.

The Fokker–Planck equation can then be used to derive a path
integral, which gives the probability of an entire evolutionary history
or “path” (i.e., frequencies of genetic variants over time, xðtmÞTm= 1). In
Supplementary Information, we derive the path integral expression
following a similar approach to the one described in ref. 18. The path
integral is

P ðxðtmÞÞTm= 1jxðt0Þ, s,n
� �

�
YT�1

m=0

1ffiffiffiffiffiffiffiffiffiffiffiffi
detC

p n
2πΔtm


 �L=2YL
i= 1

dxiðtm+ 1Þ
 !

exp �n
2
S ðxðtmÞTm=0Þ
�� �

,

ð7Þ

where

S ðxðtmÞTm=0Þ
�

=
XT�1

m=0

xðtm+ 1Þ � xðtmÞ
Δtm

� dðxðtmÞÞ
� 


C�1ðxðtmÞÞ

xðtm+ 1Þ � xðtmÞ
Δtm

� dðxðtmÞÞ
� 


:

ð8Þ

Here n =
PM

a = 1na is the total number of individuals infected by all
variants and Δtm = tm+1−tm. The path integral in Eq. (7) has a form that
is similar to the one obtained in ref. 18. The path integral quantifies
the probability density for paths of mutant allele frequencies in the
evolutionary history of the pathogen. We can then use Bayesian
inference to find the maximum a posteriori estimate for the selection
coefficients given the frequencies, the infected population size, the
parameters R and k. The posterior probability of the selection coef-
ficients is

P sjðxðtmÞ,nÞTm=0

� �
/ P ðxðtmÞÞTm= 1jxðt0Þ, s,n

� �
×PPriorðsÞ , ð9Þ

where P ðxðtmÞÞTm= 1jxðt0Þ, s,n
� �

is the probability of a path given by Eq.
(7) and the PPrior(s) is a Gaussian prior probability for the selection
coefficients with zero mean and covariance matrix σ2I. Here, I is the
identity matrix and σ2 is the variance of the prior. We call the precision
γ = 1/σ2. In Supplementary Information, we show that the selection
coefficients that maximize Eq. (9) are

ŝ = γI +
XT�1

m=0

nk2R2

ðk +RÞ2
ΔtmCðtmÞ

" #�1 XT�1

m=0

nkR
k +R

xðtm+ 1Þ � xðtmÞ
� �" #

,

ð10Þ

where the parameters k, R, and n are implicit functions of t.
There are two interesting limiting forms of the estimator. First, we

define the new matrix �C whose entries are

�Cij =
xijðtmÞ � xiðtmÞxjðtmÞ i≠j

xiðtmÞð1� xiðtmÞÞ i= j

�
: ð11Þ

In the limit that k→∞, the negative binomial distribution for new
infections becomes a Poisson distributionwith rate λ = R. In this special
case, the model is equivalent to the Wright–Fisher model from popu-
lation genetics. The estimator reduces to

ŝ = γI +
XT�1

m=0

nR�C

" #�1 XT�1

m=0

nR xðtm+ 1Þ � xðtmÞ
� �" #

: ð12Þ
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The opposite limit k→0 corresponds to a distribution for new
infectionswith extremely heavy tails, i.e., onewhere super-spreading is
dominant. In this case, the drift in Eq. (5), which quantifies expected
frequency changes due to selection, is unchanged. However, the dif-
fusion matrix, which encodes linkage as well as the changes in fre-
quency that are due to the stochastic nature of infection transmission,
diverges. In this case, diffusion dominates the process entirely.

Simplifying the estimator and robustness to incomplete
knowledge of time-varying parameters
While our model has the ability to account for the time dependence of
parameters appearing in Eq. (10), such as the infected population size
n, the dispersion k, and themean reproductive number R, these can be
challenging to reliably estimate from data. However, we generally do
not require full knowledge of these time-dependent parameters to
accurately estimate selection.

In fact, due to finite sampling noise, estimates of selection pro-
duced by assuming constant (and incorrect) parameters are more
accurate than estimates that use the true time-varying parameters
(Supplementary Fig. 11). The naive estimator in Eq. (10) implies that
time points or regions with larger R, n, or k should be weighted more
heavily in the estimate. However, frequency information is always
inaccurate due to noise from finite sampling, so weighing some time
points or regions significantly more than others based on the para-
meters alone means that undue weight is given to the uncertain
information available from these times and regions.

For this reason, we assume parameters that are spatially and
temporally constant in all of the following analyses, as discussed
below. This allows the estimator to be simplified substantially. If we
assume constant parameters and scale the regularization γ by nkR/
(k +R) in the numerator in Eq. (10), the parameter dependence in the
numerator and the denominator is identical and cancels out (due to
the additional factor of (k + R)/kR in the definition of the covariance
matrix). With the same definition of the matrix �C as above, and addi-
tionally defining �Cint =

PT�1
m=0Δtm�C and γ0 = γnkR=ðk +RÞ, the simplified

estimator is given by

ŝ = γ0I + �Cint

� ��1
xðtT Þ � xðt0Þ
� �

: ð13Þ

This form of the estimator is similar to the estimator for selection
coefficients in the Wright–Fisher model18, except that it omits con-
tributions from themutation termbecause themutation rate for SARS-
CoV-2 is small. Practically, Eq. (13) has significant advantages over Eq.
(10). The most important is that the difficult-to-estimate parameters k
and n are no longer required. In addition, R does not need to be
estimated. For methods of inferring these parameters as well as
discussions about the difficulty of inferring them, see refs. 72–81.

Extension to multiple regions and multiple SNVs at each site
The model can easily incorporate data from multiple regions or out-
breaks at different times. If the probability of the evolutionary path in
each region is independent, which is the case if there is no travel
between regions, then theprobability of all of the evolutionarypaths in
all of the regions is simply the product of the probabilities of the paths
in each region, given by Eq. (7). Bayesian inference can be applied in
the same way as before, resulting in the estimator

ŝ = γ0I +
XQ
r = 1

�Cr, int

" #�1 XQ
r = 1

xrðtr,Tr
Þ � xrðtr, 0Þ

" #
, ð14Þ

where Q is the number of regions, tr is the time in region r, tr,Tr
is the

final time in region r, tr,0 is the initial time in region r,xr is the frequency
in region r, and �Cr, int is the scaled integrated covariance matrix in

region r given by integrating Eq. (11) over time. The estimator can
further be extended to allow for multiple different nucleotides at each
site by simply letting each different nucleotide have its own entry in
the frequency vector xi. If there are Jmutations at each site this results
in a frequency vector of length LJ, and a covariance matrix of size
LJ × LJ. By convention, reference sequence alleles have selection coef-
ficients of zero, so the mutant allele selection coefficients at each site
arenormalizedby subtracting the inferred coefficient for the reference
allele.

Branching process simulations
We implemented the superspreading branching process for the
number of infected individuals in Python.We used a negative binomial
distribution for the number of secondary infections caused by a group
of individuals infected with the same pathogen variant. To test how
finite sampling affects model estimates, we sampled ns genomes per
time point to use for analysis. We computed the single and double
mutant frequencies, xi and xij, respectively, from the sampled
sequences and estimated the selection coefficients from these using
Eq. (1), possibly extended to account for multiple outbreaks or multi-
ple alleles at each locus as described above. For the analysis of how
finite sampling affects estimates, shown in Supplementary Fig. 11, we
use the full version of the estimator given by Eq. (10). For all other
simulations, we assume that the parameters n, k, and R are not known
for inference and so we use the simplified estimator in Eq. (14) for
inferring selection.

Regions and time-series for SARS-CoV-2 analysis
Weused sequence alignments andmetadata downloaded fromGISAID
(ref. 19) on January 26, 2024, which includes more than 7.4 million
sequences.Onepotential caution in interpreting this data is that not all
sequences in the database will have been generated from unbiased
surveillance efforts.

Ideally, we would like to divide this data into the smallest
separate areas that have outbreaks that are largely independent of
those in the surrounding regions, so as to avoid biases due to travel
between regions or unequal sampling in different locations. How-
ever, this needs to be balanced with the limitations of the data, since
regions with poor sampling could contribute more noise than signal.
We, therefore, divided data into the smallest regions available in the
metadata that are still large enough such that infections resulting
from travel outside of the region are likely to be far less frequent than
transmission within the region. This results in the inclusion of mostly
separate countries in Europe states in North America, and a combi-
nation of countries and states in South America and Asia—dependent
upon the size of the location. Two exceptions to this are that we
separate northern and southern California due to the geographical
separation of population centers, and we separate Northern Ireland
from the rest of the United Kingdom due to its geographical
isolation.

To minimize the effects of sampling noise, we chose regions and
time-series within these regions based on the following criteria:

• In any period of 5 days within the time-series there are at least 20
total samples.

• The number of days in the time-series is >20.
• The number of new infections per day is at least 100.

The last criterion ensures that there are enough infected individuals
that transmission is not driven overwhelmingly by stochasticity. We
assessed the number of newly infected individuals by using the esti-
mates provided by the Institute of Health Metrics and Evaluations82.
Since the dates provided in their estimates correspond to dates when
individuals were infected, and dates in the GISAID sequence data
correspond to dates when individuals were sequenced, we shifted the
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dates in the IHME data 5 days forward to roughly compensate for
delays between infection and sequencing. We then eliminated days on
which the estimated number of new infections was smaller than 100.

Our results are robust to reasonable variation in theseparameters.
Comparing the number of locations used and the sample sizes shown
in Supplementary Fig. 12 in the data to those used in the simulations
shown in Supplementary Fig. 1, we expect our inference to accurately
distinguish beneficial, deleterious, and neutral SNVs fromone another.

Data processing
We perform a number of preprocessing steps to ensure data quality.
We first eliminated incomplete sequences with gaps or ambiguous
nucleotides at more than 1% of the genome. We then removed sites
from our analysis where gaps are observed at >95% frequency, since
these sitesmay represent very rare insertions or sequencing errors.We
also removed sites in noncoding regions of the SARS-CoV-2 genome
and ones where all observed SNVs are synonymous. We imputed gaps
that are not associated with known variants and ambiguous nucleo-
tides with the nucleotide at the same site that occurs most frequently
in other sequences from the same region.

For the remaining sites, in each region we excluded rare SNVs
whose frequency is not larger than 1% for at least 5 consecutive days.
These sites, if included, are almost always inferred to have extremely
small selection coefficients. Furthermore, since their frequencies are
so small, their covariancewith other sites is also small and is, therefore,
unlikely to have a large effect on inference. We verified that different
reasonable values for these cutoffs result in essentially identical
selection coefficients (Supplementary Fig. 13).

Calculating frequency changes and covariances
To increase robustness to finite sampling in time, we integrated terms
in Eq. (10) and other time-dependent equations over time by assuming
that frequencies are piecewise linear, rather than summing contribu-
tions from each time point18. This results in diagonal terms of the
integrated covariance given by

XT�1

m=0

Δtm
ð3� 2xiðtm+ 1ÞÞðxiðtmÞ+ xiðtm+ 1ÞÞ

6
� x2i ðtmÞ

3

� 

, ð15Þ

and off-diagonal elements

XT�1

m=0

Δtm
xijðtmÞ + xijðtm + 1Þ

2
� xiðtmÞxjðtmÞ+ xiðtm+ 1Þxjðtm + 1Þ

3
� xiðtmÞxjðtm + 1Þ + xiðtm+ 1ÞxjðtmÞ

6

� 

:

ð16Þ

For obtaining reliable estimates of the changes in SNV frequencies
(the term x(tT)−x(t0) in Eq. (13)), it is important to have enough
sequences to avoid large errors due to finite sampling. On the other
hand, if a large number of days are used at the end or the start of the
time-series to calculate the frequencies, then the frequency changes
are likely underestimates. To balance these competing issues, we cal-
culated x(tT) as the frequencies in the window of the final 15 days and
x(t0) as the frequencies in the windowof the first 15 days for each time-
series and region with poor sampling. This smoothing is necessary
especially in regions where sampling is sparse, where the number of
genomes sampled on a particular daymay be as small as 1 or 2. If there
are at least 200 sampled sequences in a period of less than 15 days at
the start or the end of the time-series, then the window size was taken
as the smallest number of days in which there was a total of at least
200 sequences.We confirmed that our results are robust to reasonable
changes in this window size of 15 days (Supplementary Fig. 13).We also
normalized time in units of serial intervals or “generations” by dividing
the integrated covariance matrix by 5, following results that the serial
interval for SARS-CoV-2 is roughly 5 days83–85. This allows us to convert
from units of time in days to generations, as in Eq. (13).

Calculating selection coefficients
After the above preprocessing there remain 1320 SNVs observed at a
frequency above 1% for at least 5 consecutive days in at least one region
andobserved at least 5 times.We assumeconstant values forR,n, and k
in all regions, and use Eq. (14) to estimate selection. When R, n, and k
are constant, these terms can be effectively absorbed into the reg-
ularization γ0.

We normalize selection coefficients such that the nucleotide for
the WIV04 reference sequence at each site has a selection coefficient
of 0. To do this, we subtract the selection coefficient for the reference
nucleotide from the inferred coefficient for eachother allele at that site
after all selection coefficients have been computed.

We used these estimates for the selection coefficients for non-
synonymous SNVs to estimate the corresponding selection coeffi-
cients for amino acid substitutions (Supplementary Table 1). If there
were multiple SNVs in a codon that result in the same amino acid
variant but are not strongly linked to one another, then the selection
coefficient for the amino acid was calculated as the largest (in absolute
value) of the SNVs. If there weremultiple SNVs in the same codon that
yield the same amino acid and these SNVs are strongly linked to one
another, then the selection coefficient for the mutant amino acid was
calculated as the sum of the selection coefficients for the SNVs. Our
reasoning behind this choice is that selection coefficients that are
extremely close to zero are mostly for alternative nucleotides that are
observed very infrequently in the data, and so the inferred coefficients
for thesenucleotides are unlikely to reflect the typical effects of a given
mutation.

We calculated selection coefficients for major variants by sum-
ming the individual nucleotide SNVs that define the variant, which
follows from our assumption of additive fitness. The SNVs for major
named variants such as Alpha and Delta were identified according to
the mutations provided by https://covariants.org. Results of this ana-
lysis are shown in Figs. 2, 3, Supplementary Figs. 3–5 and 14, 15 and
Supplementary Table 1. Supplementary Figs. 14, 15 quantify uncer-
tainty in the inferred selection coefficients, based on both theoretical
uncertainty in the selection coefficient estimator and finite sampling
noise. For a detailed discussion, see Supplementary Information.

Computational complexity
Here we briefly discuss the computational complexity of our method.
The steps in our data processing are:

• Clean the data (eliminate sequences with large numbers of Ns or
gaps, etc.).

• Separate the data by time and region.
• Identify SNVs observed above the minimum frequency threshold.
• Compute SNV covariance matrices/changes in SNV frequencies in
each region and integrate them over time.

• Infer the selection coefficients, which involves inverting the total
integrated SNV covariance matrix.

Let L be the length of the SARS-CoV-2 sequence (roughly 3 × 104 bps)
and letMbe the total number of sequences (roughly 107, includingdata
taken up until January 26th, 2024). Then, steps 1 and 2 involve
computations that scale as OðMÞ. Step 3 is OðMLÞ. This step also
introduces a new parameter relevant to the scaling of the problem,
which is the fraction of SNVs that are observed at high enough
frequencies to be included in our analysis. Let us call this fraction p,
which is roughly 0.35 with our current settings. Naively, step 4 then
involves a computation that scales like OðMðpLÞ2Þ. However, the
calculation of the covariance can easily be parallelized across regions.
In each individual region, the fraction of SNVs that areobserved at high
enough frequencies to be included is a different parameter q and the
number of sequences in the region is a parameterMr. The largestq that
we find in the regions analyzed is around 0.05. For Nr separate regions
(149 in our analysis), step 4 then involvesNr parallel computations that
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scale-like OðMrðqLÞ2Þ. Due to the matrix inversion, step 5 requires
OððpLÞ3Þ computations to complete.

Choice of regularization
In principle, the regularization strength γ0 is related to the width of
the prior distribution for SNV selection coefficients. The regular-
ization strength also plays a role in reducing noise in selection
coefficient estimates due to the finite sampling of viral sequences.
This is especially important for SNVs that are observed only briefly in
data, as they will have small integrated variances in the “denomi-
nator” of Eq. (10). Larger values of the regularization more strongly
suppress noise, but they also shrink inferred selection coefficients
towards zero.

We use a regularization strength of γ0 =40. For much smaller
values of γ0, selection coefficient estimates are unstable due to sam-
pling noise. However, inferred selection coefficients stabilize and
become insensitive to the precise value of γ0 for γ0≳10 (Supplementary
Fig. 13). Larger values of γ0 will result in selection coefficients with
smaller absolute values, but for large enough γ0 the rank ordering of
inferred selection coefficients is highly reliable. In summary, the
coefficients that appear to be themostbeneficial or deleterious remain
this way regardless of reasonable choices for γ0, though their precise
values scale with the regularization strength.

Identification of HG SNVs
To estimate how quickly we can detect a transmission advantage for a
new SNV or variant, and to explore the sensitivity of this detection, we
inferred selection coefficients for all variants ŵ (including SNVs and
collections of SNVs that are strongly linked to one another), for every
day in every region separately. To determine sets of strongly linked
SNVs, we considered the following statistics. If the number of genomes
with an SNV at site i is called hi and the number of genomes with SNVs
at both site i and site j is hij, then we say that two sites i and j are
strongly linked if hij/hi and hij/hj are both >80%.

To form sets of strongly linked SNVs, we combined all pairs of
strongly linked SNVs that share SNVs in common. For example, if SNV i
is strongly linked with SNV j, and SNV j is strongly linked with SNV k,
then {i, j, k} forms one set of strongly linked SNVs. With the frequency
cutoff that we have used for the definition of strongly linked SNVs
(80%), the great majority of SNVs in each set of strongly linked SNVs
are strongly linked to all other SNVs in the same set. We computed
selection coefficients for sets of strongly linked SNVs by summing the
contributions from individual SNVs.

Data was trimmed by submission date such that the selection
coefficients for a specific day were calculated using only sequences
that were submitted to GISAID on or before that day. We then pro-
gressively step through time in each region, adding newly submitted
sequences and reanalyzing the data again. At each time point in every
region, groups of strongly linked SNVs are recalculated using the
method described above, and selection coefficients for the collections
are computed again. To compare the HG SNVs with well-studiedmajor
SARS-CoV-2 variants,which arewidely understood tohave a significant
transmission advantage relative to ancestral SARS-CoV-2, we per-
formed this analysis using data from the beginning of the pandemic
through June 2022.

As described in the main text, we suspect that collections of SNVs
with large inferred selection coefficients are much more likely to
exhibit real advantages in transmission. Therefore, we used a classifi-
cation scheme where variants with selection coefficients ŵ>θ for
some cutoff θ are classified as “high growth (HG)” variants. At each
time step, we removed any SNVs that were classified as HG from all
future analyses in that region. In this way, any SNV can only contribute
to the detection of a single variant in a region (e.g., for a mutation that
belongs to both Alpha andOmicron, if themutationwas labeled as HG
during the riseof Alpha in a given region, then thatmutationwill not be

considered when analyzing later Omicron sequences in the same
region).

After a mutation is detected in a region, we also remove all other
nucleotidemutations at that site fromfuture analysis in the region. The
reason for this is the following. The choice of a normal prior dis-
tribution on the selection coefficients enforces that the sum of the
selection coefficients for a specific site is zero. We then re-normalize
the selection coefficients so that the selection coefficient for the
WIV04 reference nucleotide is set to zero. This is done by subtracting
its value from the selection coefficients for all other nucleotides at that
site, as described above. In the ordinary situation where only two dif-
ferent nucleotides are observed at a site, this normalization procedure
results in the apparent inflation of selection coefficients for unob-
served nucleotides at the same site. If one of these other nucleotides is
later observed at a low frequency, this could result in an incorrect
detection. For this reason, we remove all nucleotides at the same site
from consideration in a region after any single nucleotide has been
detected.

We performed inference for the detection of HG variants across
each region individually, as the same new variant is unlikely to first
appear at identical times in multiple regions. This limits the strength
of statistical information to infer selection because information is
not aggregated across regions. For this reason, we used a lower
regularization of γ0 = 10 for regional analysis to prevent the strong
suppression of inferred selection coefficients. Tuning the threshold
of detection θ allows one to adjust the tradeoff between noise, which
may lead to false positives and detection speed. Results of this
analysis are presented in Supplementary Figs. 6, 7. The analysis
shown in Fig. 4 uses an analogous approach where selection coeffi-
cients were computed over time for Alpha, Delta, and Omicron
(BA.1) SNVs in specific regions, but without the additional step of
classifying SNVs as HG.

To succinctly visualize HG SNVs linked with major variants (Sup-
plementary Fig. 7), we grouped the regions into 7 broad categories,
allowing for clearer trend analysis. For eachmajor variant within these
broad regions, we identified HG groups with associatedmutations and
plotted the cumulative fraction of variant-defining mutations over
time. Data regarding variant-defining mutations was sourced from
https://covariants.org.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Original SARS-CoV-2 sequence data and metadata used in this
project are available through GISAID. A full list of originating and
submitting laboratories for the sequences used in our analysis
can be found at https://www.gisaid.org using the EPI-SET-ID:
EPI_SET_240815xt. Other processed data and data from simula-
tions are available at the GitHub repository86, https://github.com/
bartonlab/paper-SARS-CoV-2-inference.

Code availability
Computer code and scripts that we have used in our analysis are
available in the GitHub repository86, https://github.com/bartonlab/
paper-SARS-CoV-2-inference. This repository also contains Jupyter
notebooks that can be run to reproduce our results, based on the data
described above. Code for analysis iswritten in Python (version 3.11.11),
including packages numpy (version 1.26.4), scipy (version 1.14.1),
pandas (version 2.2.2), and matplotlib (version 3.9.3).
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