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Abstract

Aims: The aim of this study was to assess the validity of undertaking time-series analyses

on both fatal and non-fatal drug overdose outcomes for the surveillance of emerging

drug threats, and to determine the validity of analyzing non-fatal indicators to support

the early detection of fatal overdose outbreaks.

Design, setting and participants: Time-series analyses using county-level data containing

fatal overdoses and non-fatal overdose counts were collected at monthly intervals

between 2015 and 2021 in California and Florida, USA. To analyze these data, we used

the Farrington algorithm (FA), a method used to detect aberrations in time-series data

such that an abnormal increase in counts relative to previous observations would result

in an alert. The FA’s performance was compared with a bench-mark approach, using the

standard deviation as an aberration detection threshold. We evaluated whether monthly

alerts in non-fatal overdose can aid in identifying fatal drug overdose outbreaks, defined

as a statistically significant increase in the 6-month overdose death rate. We also con-

ducted analyses across regions, i.e. clusters of counties.

Measurements: Measurements were taken during emergency department and emer-

gency medical service visits.

Findings: Both methods yielded a similar proportion of alerts across scenarios for non-

fatal overdoses, while the bench-mark method yielded more alerts for fatal overdoses.

For both methods, the correlations between surveillance evaluations were relatively

poor in the detection of aberrations (typically < 35%) but were high between evaluations

yielding no alerts (typically > 75%). For ongoing fatal overdose outbreaks, a strategy

based on the detection of alerts at the county level from either method yielded a sensi-

tivity of 66% for both California and Florida. At the regional level, the equivalent ana-

lyses had sensitivities of 81% for California and 77% for Florida.

Conclusion: Aberration detection methods can support the early detection of fatal drug

overdose outbreaks, particularly when methodologies are applied in combination rather

than individual methods separately.
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INTRODUCTION

In 2022 there were more than 100 000 drug overdose deaths in the

United States, which represented the highest number on record for a

single year [1]. While the origins of the crisis stem from extra-medical

use and diversion of prescription opioids, the situation evolved as

regulations curtailed the accessibility of these medicines and heroin

availability and affordability increased. Potent synthetic opioids pene-

trated the drug supply leading to much higher overdose mortality

rates, and both polysubstance use of opioids and stimulants, as well as

the increased adulteration of the supply with a range of psychoactive

substances, have further complicated the overdose epidemic [2]. In

addition to the structural issues driving the overdose crisis, including

weak welfare and health-care systems, other factors have com-

pounded it, including the COVID-19 pandemic [3]. The high levels of

variability in the production of synthetic opioids have increased the

likelihood of emerging drug overdose epidemics, as users and dealers

do not know the strength or effects of new drugs [4]. This constant

evolution means that, over relatively short periods, different (and

sometimes novel) identification approaches are needed to respond to

the specific public health challenges associated with each epidemic,

which might also be affecting different demographic groups in distinct

geographic areas.

Given this situation, it is critical that overdose outbreaks are

detected as early as possible so that public health organizations can

take appropriate measures to mitigate the health impacts of newly

introduced, harmful substances within the local drug supply [5]. To

this end, abnormally high overdose counts at a given time-point can

be indicative of new substances, drug use patterns or demographic

groups engaging in drug use, potentially leading to an outbreak. Time-

series methods provide an effective means for establishing whether

overdose counts are abnormally high, depending on whether or not

overdose counts exceed pre-specified forecasts based on historical

overdose trends. While the availability of overdose mortality data

from US Centers for Disease Control and Prevention (CDC) WONDER

and some local coroner’s offices has permitted the implementation of

these methods [6], the lag in public data dissemination mean that it is

not conducive to the development of a real-time surveillance mecha-

nism [7]. The potential benefits of using alternative metrics—such as

emergency department (ED) and emergency medical system (EMS)

visits related to drug use—have been demonstrated in specific locali-

ties [8]. Indeed, non-fatal overdose is a key predictor of fatal overdose

at the individual level and therefore we expect it to be a strong indica-

tor at the population level [9–11]. While there is no nationally coordi-

nated scheme in place to systematically collect and make these data

publicly available at county level, as per the mortality data from CDC

WONDER, non-fatal drug overdose statistics are often collected by

states [8, 12, 13].

In this study we sought to investigate the suitability of using non-

fatal overdose drug data for the early detection of fatal overdose out-

comes, using data from California and Florida, as these two states

publicly share non-fatal overdose data at county level and at monthly

intervals. We apply the Farrington algorithm (FA), a statistical method

widely used in the field of infectious diseases to detect aberrations in

time-series data, such that an abnormal increase in counts, relative to

previous observations, would result in an alert. We compare the FA’s

performance to that of a bench-mark approach, using the standard

deviation as an aberration detection threshold, to evaluate their

potential contributions to overdose surveillance efforts, both sepa-

rately and in combination with one another.

The aims of the study are twofold. First, it aims to assess the

validity of undertaking time-series analyses on both fatal and non-

fatal drug overdose outcomes for the surveillance of emerging drug

threats in real time. We evaluate whether monthly alerts in non-fatal

overdose identified through aberration detection methods can aid in

identifying spikes in fatal overdose occurring during the same month.

The second aim is to explore the use of non-fatal overdose outcomes

to support the ‘early detection’ of fatal drug overdose outbreaks,

which we define as a statistically significant increase in the 6-month

overdose death rate. This second analysis addresses the frequent ran-

dom fluctuations in fatal overdose rates, which may not necessarily

reflect changing trends in mortality and could potentially lead to

unfounded alerts. By defining a fatal overdose outbreak as a long-

term significant increase in overdose deaths, we aim to focus on the

early identification of fundamental changes in the drug supply, drug

use patterns or communities involved which pose an emerging threat

in the context of the overdose crisis. To achieve this, we assess

whether a surveillance system using aberration detection analyses to

detect monthly alerts in non-fatal overdose outcomes can support in

identifying an ongoing, long-term, fatal overdose outbreak.

METHODS

Data sets

Monthly drug overdose death counts for all counties in California and

Florida between 2015 and 2021 were extracted from the CDC

WONDER restricted database (using underlying cause of death codes

X40–44, X60–64, X85 and Y10–14). Monthly drug-related ED visit

counts for 55 counties in California between 2016 and 2021 were

obtained from the EpiCenter webpage [14]. These counts reflect visits

meeting the criteria for the ‘Poisoning: Drug’ category of the ICD-10–

CM external cause-of-injury matrix for reporting mechanism and intent

of injury [15]. Monthly counts of overdose-suspected emergency

medical service (EMS) visits were obtained from the Florida Department

of Health for all 67 counties in Florida between 2015 and 2020. These

data were collected through the Florida EMS Tracking and Reporting

System and recorded events were based on the Enhanced State Opioid

Overdose Surveillance (ESOOS) criteria, as defined by the state of

Florida, intended to detect incidents involving any drug overdose.

It is important to acknowledge the differences between ED and

EMS data for the assessment of drug overdose trends. ED data cap-

ture information on individuals receiving care in a hospital setting,

while those treated by EMS responders may or may not be trans-

ported to a hospital for further care. A study of data from nine US
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states has shown that opioid-involved overdose encounters captured

in EMS data were consistently higher than the number of encounters

captured in ED data [16]. A variety of reasons have been put forward

to explain the refusal of people treated by EMS responders to go for

further care. These include experiences of intolerable withdrawal

symptoms after receiving naloxone, as well as concerns regarding the

adequacy of care for withdrawal symptoms and stigma from health-

care professionals at hospitals [17]. Despite these differences,

the work by Casillas and colleagues shows that ED and EMS data

provide comparable and relevant metrics for identifying spikes or

anomalies [16].

In addition to county-level analyses, we also investigated fatal

and non-fatal overdose outcomes at the regional level. In California,

regions were defined based on Covered California’s 19 rating regions,

each of which has different pricing and health insurance options [18].

Two regions in this system fall within Los Angeles county and were

therefore grouped together. For Florida, regions were defined based

on Florida’s Statewide Medicaid Managed Care (SMMC) program, cor-

responding to eleven regions [19]. See Supporting information,

Appendix A for more information on these administrative divisions.

The Institutional Review Board of the University of California San

Diego determined that an ethics review was not required for this

study because it is certified as not human subjects research according

to the Code of Federal Regulations, Title 45, part 46 and UCSD

Standard Operating Policies and Procedure (reference no. 807788).

The analysis was not pre-registered and the results should be consid-

ered exploratory.

Using the Farrington algorithm as a surveillance tool

There is an extensive list of methods available for the purposes of aber-

ration detection within syndromic surveillance systems [20]. Deciding on

a method is complicated, given that there are many factors that can

influence the performance of an algorithm, including the characteristics

of the time-series being monitored and those of the epidemic that is the

target of the surveillance [20]. The FA method was chosen for use in the

current study for pragmatic reasons. First, it is widely used by public

health authorities for the surveillance of epidemiological data to detect

abnormal increases in time-series data for different types of health

harms [21]. Secondly, the availability of an established and accessible R

software package should facilitate the implementation of this approach

by overdose surveillance teams, increasing the likelihood of its scale-up

if found to perform well [22]. We applied an algorithm that fitted a nega-

tive binomial regression model with spline terms to monthly count data

from the previous 3 years to characterize time trends for the outcomes

of interest. This approach was applied separately for each geographical

jurisdiction, i.e. separate models fitted for each unique county or region.

The model includes an offset term capturing the county population size

given that the likelihood of an opioid-involved event occurring is an

expected increase with population size, all other things being equal. This

model establishes a threshold value for the next time-point, above which

observed counts are assumed to reflect a deviation from expectations,

based on the negative binomial regression model fitted to previous

observed values; that is, beyond a chance occurrence. If the observed

count exceeds the threshold value, an alarm is raised by the model.

All analyses presented in this paper have been carried out using

the surveillance package in R [22]. A tutorial paper, associated with

the surveillance package, demonstrates how the FA model should be

implemented in R using example data sets [23]. The package requires

the user to format and provide time-series data for analysis, as well as

specifying parameters related to the model specification and the cal-

culation of the threshold value. A key methodological consideration

when specifying the model is the choice of the upper percentile of the

distribution (a) to represent the threshold. For example, if we assume

that parameter a equals 0.05 then this denotes a threshold above

which values are expected to occur with an associated likelihood of

5% or less, based on trends in the past data. All else being equal, a

smaller value of a will correspond to a higher threshold value and

a smaller likelihood of a resulting alert from the algorithm. Ultimately,

the value selected denotes the strength of evidence against the null

hypothesis; i.e. that deviations in the observed count from expecta-

tions result from random fluctuations. If this value is set too high,

important aberrations could be missed, but setting the limit too low

could result in frequent false alarms. As such, we explore a range of

values (0.01, 0.05, 0.10) for this parameter, as the optimal value is

expected to vary among counties due to differences in population

size, the degree of measurement error in count estimates and the clin-

ical implications of a false positive or false negative.

When applying the FA the analyst also needs to specify the num-

ber of years of data that will be fitted in the model, known as the

baseline data. We use 3 years of baseline data to ensure that there

are enough data points to fit the regression model, which is in keeping

with findings in the methodological literature which propose that this

is the minimum time-frame required for the estimation of robust

results [20]. No additional covariates were included in the model. In

certain applications, covariates may be included if they are important

predictors of the time-series data and can provide better forecasts,

e.g. weather covariates for heat-related illnesses [24]. However, while

potential covariates, including MOUD and naloxone coverage, were

considered, data were not available at the county-level for both states

during the period investigated.

Bench-mark surveillance approach: standard deviation

An alternative approach for generating alerts was also tested based

on estimates of the mean and standard deviation for the previous

3 years of count data (alerts only occur in counts ≥ 4). To promote

comparability between the two methods, we also varied the statistical

inference criteria for the standard deviation approach, so that it would

correspond to an a of 0.01, 0.05 and 0.10, respectively. The standard

deviation approach was chosen based on reports from collaborators

at public health departments describing its application to support their

surveillance efforts and based on its widespread use as a standard sta-

tistical measure.
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Comparison of alerts generated with monthly fatal and
non-fatal data

We assessed the degree of alignment between the monthly alerts

generated from fatal and non-fatal data using a variety of metrics.

Sensitivity and specificity for the detection of a spike in the fatal over-

dose count were estimated based on alerts detected using non-fatal

overdose data relative to those detected using the equivalent fatal

overdose data. Positive and negative predictive values (PPV and NPV)

were also estimated, indicating the likelihood that an alert in the non-

fatal outcome data would successfully identify an alert identified in

the overdose mortality data.

Use of monthly non-fatal overdose data for the early
detection of ongoing fatal overdose outbreaks

We define a fatal overdose outbreak as a statistically significant

increase in the 6-month overdose death rate. A statistically

significant difference was assumed when the 95% confidence interval

for a given 6-month period was higher than, and non-overlapping

with, the 95% confidence interval for the previous 6-month period.

To examine the potential early detection of ongoing fatal overdose

outbreaks using non-fatal overdose data, we calculated the number of

alerts generated over 6 months by applying the FA and the standard

deviations method to non-fatal data when a fatal overdose outbreak

occurred versus when it did not occur.

Diagnostics

There are stark contrasts between counties in terms of their popula-

tion sizes. For the 55 counties in California included in the analysis,

the population sizes ranged between 8527 and 9 761 210 in

2023 [25]. In Florida, the county population sizes ranged between

7831 and 2 757 592 in 2022 [26]. These differences in population

size inevitably give rise to overdose counts (both fatal and non-fatal)

that vary in magnitude throughout counties, regardless of the corre-

sponding rates, conditional on population size. This situation can pre-

sent a challenge when making inferences concerning changing

overdose rates for jurisdictions with small populations compared to

those with larger populations, all other things being equal. In anticipa-

tion of this concern, we sought to examine variations in the statistical

power of time-trend parameter estimates for the FA models among

population sizes and achieved this by illustrating P-value significance

test estimates across counties.

RESULTS

Descriptive statistics for fatal and non-fatal drug
outcomes in California and Florida

At the state level, there were increases in drug-related outcomes

over time in both California and Florida (see Figure 1a,b). Overdose

death rates were generally higher in Florida than in California at

equivalent time-points and both states exhibited notable increases in

2020. Fatal and non-fatal outcomes showed similar trends in both

states aside from a deviation in ED visits in California in 2020, due

to most probably disruptions in health-care services resulting from

F I GU R E 1 (a) Overdose death rates and drug-related emergency department (ED) admissions in California (per 100 k); (b) overdose death
rates and drug-related emergency medical system (EMS) visit in Florida (per 100 k).

T AB L E 1 Correlations in fatal and non-fatal outcomes.

Year California Florida

2015 NA 0.81

2016 0.94 0.78

2017 0.96 0.83

2018 0.96 0.86

2019 0.97 0.89

2020 0.97 0.86

2021 0.98 NA

All years 0.93 0.84

Abbreviation: NA = not available.
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the COVID-19 pandemic. At the county level, the correlations

between fatal and non-fatal outcomes were high in both states (see

Table 1).

Descriptive statistics for surveillance evaluation of
fatal and non-fatal outcomes

The proportion of evaluations with alerts generated was higher as the

parameter value a increased, regardless of the outcome or state under

investigation. This finding can be seen in Tables 2 and 3, which also

show that the standard deviation approach yields a larger proportion

of alerts compared to the FA method in the fatal outcome data across

all scenarios. Specifically, 3–22% of monthly evaluations led to an

alert, corresponding to an average of approximately one to eight alerts

per county during a 3-year period. The two approaches yield a similar

proportion of alerts throughout scenarios (5–23%) with the non-fatal

outcome data. The estimates corresponding to the ‘Alert from either

method’ show the proportion of alerts generated when alerts from

either or both methods are detected. This approach yields the largest

proportion of alerts, although the divergence from the other three

approaches is larger for the non-fatal outcome data, which indicates

an incongruity in trends across the two outcomes. The estimates cor-

responding to the ‘Alert from both methods’ approach shows the

degree of overlap between the FA method and the standard deviation

rule, capturing the data points where alerts were yielded for both

methods. For this approach, the proportion of alerts is either equal to

or smaller than those obtained using a single method, and these esti-

mates indicate a greater degree of overlap between the methods in

the fatal data compared to the non-fatal data. The analyses of region-

level data yielded larger proportions of evaluations with alerts

(i.e. greater overlap) compared to those conducted at the county level

(see Supporting information, Tables S1a and S2a for details).

Assessment of alerts generated with monthly non-
fatal data to identify spikes in monthly fatal
overdose data

Tables 4 and 5 show that correlations between surveillance evalua-

tions on county-level fatal and non-fatal data yielding alerts are rela-

tively poor, i.e. less than 35% sensitivity for most of the scenarios

considered. In contrast, the correlation between evaluations yielding

no alerts is high, i.e. more than 75% specificity for most of the scenar-

ios considered. The results in Tables 5 and 6 correspond to analyses

with the parameter value alpha set to 0.05. Additional results can be

found in the Supporting information with different alpha values

(Supporting information, Tables S4a and S4b). These results show that

correlations between surveillance evaluations on county-level fatal

and non-fatal data yielding alerts increase as the α is increased. In con-

trast, correlation between evaluations yielding no alerts decrease as

the alpha term is increased. The correlations between evaluations on

T AB L E 2 Proportion of monthly surveillance evaluations on county-level fatal opioid overdose data yielding an alert.

Alert from Farrington algorithm Alert from standard deviation rule Alert from either method Alert from both methods

California

1. Alpha = 0.01 0.03 0.08 0.08 0.03

2. Alpha = 0.05 0.09 0.17 0.18 0.08

3. Alpha = 0.10 0.13 0.22 0.24 0.11

Florida

1. Alpha = 0.01 0.03 0.04 0.05 0.02

2. Alpha = 0.05 0.06 0.08 0.10 0.04

3. Alpha = 0.10 0.09 0.11 0.14 0.06

T AB L E 3 Proportion of monthly surveillance evaluations on county-level non-fatal overdose data yielding an alert.

Alert from Farrington algorithm Alert from standard deviation rule Alert from either method Alert from both methods

California

1. Alpha = 0.01 0.05 0.05 0.07 0.02

2. Alpha = 0.05 0.12 0.12 0.16 0.07

3. Alpha = 0.10 0.18 0.18 0.24 0.12

Florida

4. Alpha = 0.01 0.06 0.07 0.09 0.04

5. Alpha = 0.05 0.14 0.15 0.20 0.10

6. Alpha = 0.10 0.21 0.23 0.29 0.14
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region-level fatal and non-fatal data yielding alerts are consistently

higher, albeit still modest at best, in comparison to those on the

county-level analyses. The differences between correlations among

evaluations yielding no alerts at the region-level compared to those at

the county-level were mixed.

Assessment of alerts generated using non-fatal data
for the early detection of overdose outbreaks

Tables 6 and 7 show the test performance of using monthly non-fatal

surveillance evaluations for the early detection of fatal overdose

T AB L E 4 Correlations between monthly fatal and non-fatal surveillance evaluations at county and region-level for California.

Alert from Farrington algorithm Alert from standard deviation rule Alert from either method Alert from both methods

County-level

1. Sensitivity 0.17 0.19 0.25 0.11

2. Specificity 0.89 0.90 0.85 0.93

3. PPV 0.13 0.27 0.27 0.12

4. NPV 0.92 0.84 0.84 0.92

Region-level

1. Sensitivity 0.21 0.29 0.34 0.14

2. Specificity 0.82 0.87 0.80 0.89

3. PPV 0.19 0.52 0.47 0.18

4. NPV 0.84 0.71 0.69 0.85

Abbreviations: PPV = positive predictive value; NPV = negative predictive value.

T AB L E 5 Correlations between monthly fatal and non-fatal surveillance evaluations and region-level for Florida.

Alert from Farrington algorithm Alert from standard deviation rule Alert from either method Alert from both methods

County-level

1. Sensitivity 0.32 0.25 0.34 0.20

2. Specificity 0.87 0.85 0.82 0.91

3. PPV 0.14 0.13 0.17 0.09

4. NPV 0.95 0.93 0.92 0.96

Region-level

1. Sensitivity 0.39 0.43 0.52 0.24

2. Specificity 0.87 0.81 0.76 0.91

3. PPV 0.40 0.33 0.42 0.25

4. NPV 0.87 0.87 0.82 0.91

Abbreviations: PPV = positive predictive value; NPV = negative predictive value.

T AB L E 6 Testing performance of using non-fatal surveillance evaluations for the early detection of fatal overdose outbreaks in California.

Farrington algorithm Standard deviation rule Alert from either method Alert from both methods

County-level

1. Sensitivity 0.51 0.55 0.66 0.40

2. Specificity 0.57 0.59 0.47 0.70

3. PPV 0.34 0.37 0.35 0.37

4. NPV 0.73 0.76 0.76 0.73

Region-level

1. Sensitivity 0.73 0.69 0.81 0.59

2. Specificity 0.50 0.57 0.40 0.68

3. PPV 0.56 0.58 0.54 0.61

4. NPV 0.69 0.68 0.72 0.66

Abbreviations: PPV = positive predictive value; NPV = negative predictive value.
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outbreaks (defined as a statistically significant increase in the fatal

overdose rate during a 6-month period). We can see that during fatal

overdose outbreaks, a strategy based on the detection of alerts from

either the FA or standard deviation methods consistently yielded the

highest sensitivity estimates of the four approaches considered, with

66% sensitivity at county-level for both California and Florida and

81 and 77% sensitivity at regional level for California and Florida,

respectively. However, specificity was low for this scenario at 40–

47% throughout the two states at county and region-level. During the

phases without fatal overdose outbreaks, a strategy guided by

the detection of no alerts on both the FA and standard deviation

methods yielded the highest specificity (68–79%). The PPV and NPV

varied less across scenarios, but using ‘alerts from both methods’
yielded better outcomes overall (i.e. higher PPV with relatively low

impact on NPV) at both county and region-level for both states. Based

on the sensitivity and PPV results, we can see that the region-level

analyses were better for the identification of true positives (i.e. cases

where there is an ongoing fatal overdose outbreak) compared to the

county-level analyses. Building on the PPV results we observed

increases in the likelihood of a statistically significant fatal overdose

outbreak having occurred, as the number of non-fatal alerts increased

within a 6-month time-frame (see Supporting information, Tables S5a

to S5d). This trend did not always exhibit a clear significance, how-

ever, which may be partly due to the limited number of observations.

Among false negatives at the county level in California, 72% of cases

had at least one alert (with the FA or standard deviation method)

when looking at the corresponding region-level evaluations. This

equated to 38% of all county-level evaluations yielding no alert. In

Florida, 49% of the false negatives at the county level had at least one

alert for the corresponding region-level evaluations, which equated to

26% of all the county-level evaluations with no alert. The specificity

and NPV results indicate that the county-level analyses were superior

for the identification of true negatives (i.e. cases without fatal over-

dose outbreaks) compared to the region-level analyses.

Figures in the Supporting information (S2–S152) show time-series

data for non-fatal overdose data for all the counties and regions in

California and Florida, as well as the timing of alerts generated with

the different methods and the timing of fatal overdose outbreaks. For

these plots, the surveillance algorithms may be regarded as exhibiting

a good performance if two sets of characteristics are observed:

(i) alerts are raised only during ongoing fatal overdose outbreaks (indi-

cated by shaded regions) and (ii) each distinct fatal overdose outbreak

phase exhibits at least one alert raised by a surveillance algorithm.

There are 10 counties (Kern, Lassen, Los Angeles, Madera, Orange,

Riverside, San Francisco, Santa Cruz, Tehama and Tulare) exhibiting

these characteristics in California and eight counties (Broward, Clay,

Collier, Duval, Gulf, Levy, Palm Beach and Pinellas) exhibiting them in

Florida. In contrast, the surveillance algorithms may be regarded as

exhibiting a bad performance if two sets of characteristics are

observed: (i) alerts are only raised at time-points outside the fatal

overdose outbreak phases and (ii) there are overdose outbreak phases

observed without any alerts. There are four counties (Imperial, Marin,

Placer and Plumas) exhibiting these characteristics in California and

six counties (Bradford, Calhoun, Columbia, Hernando, Manatee and St

Johns) exhibiting them in Florida.

Diagnostics

There was variation throughout counties in the proportion of surveil-

lance evaluations meeting P-value significance criteria associated

with the time trends in the FA models. Figures S1a–S1d in the Sup-

porting Information show that counties with smaller populations

(fewer than 500 k) were less likely to exhibit low P-values compared

to those with larger populations (greater than 500 k). This finding is

important, because results in the Supporting information (Tables S2a

and S2b) show that the proportion of surveillance evaluations yield-

ing an alert changes if a significance cut-off criterion is employed,

along the lines of the original FA method [27]. The region-level

analyses exhibited higher proportions of surveillance evaluations

meeting P-value significance criteria compared to the county-level

analyses (see Supporting information, Tables S3a and S3b), providing

further evidence on the robustness of the FA method in larger

populations.

T AB L E 7 Testing performance of using non-fatal surveillance evaluations for the early detection of fatal overdose outbreaks in Florida.

Farrington algorithm Standard deviation rule Alert from either method Alert from both methods

County-level

1. Sensitivity 0.53 0.54 0.66 0.39

2. Specificity 0.59 0.59 0.47 0.72

3. PPV 0.32 0.32 0.31 0.34

4. NPV 0.78 0.78 0.79 0.76

Region-level

1. Sensitivity 0.65 0.64 0.77 0.52

2. Specificity 0.66 0.54 0.43 0.79

3. PPV 0.57 0.49 0.48 0.63

4. NPV 0.73 0.68 0.73 0.70

Abbreviations: PPV = positive predictive value; NPV = negative predictive value.
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DISCUSSION

This paper represents an important contribution to the published lit-

erature as the first study, to our knowledge, applying the FA method

to time-series overdose data for the surveillance of overdose spikes

and outbreaks. We find that the application of aberration methods to

monthly non-fatal overdose to detect monthly fatal overdose spikes

has a relatively low performance due to erratic fatal overdose out-

comes (i.e. relatively small numbers). However, the performance is

improved in the context of ongoing fatal overdose outbreaks, espe-

cially when assessing alerts at the regional level rather than the

county level. This finding aligns with guidance recommending that

the target geographical area for assessing the number of overdoses

should have a minimum population of 500 000 people [28]. In con-

trast, county-level surveillance appears to be more appropriate for

ruling out the possibility of an overdose outbreak. We recommend

that future research should explore the use of decision tree classifica-

tion methods to identify the optimal combination of the aberration

detection outputs for predicting the occurrence of overdose out-

breaks [29]. These extensions might also explore the use of variables

reflecting county characteristics and the patterns of alerts accruing

over time.

Regardless of the model specification used to interpret the aber-

ration detection outputs, analysts inevitably encounter a trade-off

between sensitivity and specificity when formulating a strategic

response to these outputs. As such, the analyst must (implicitly or

explicitly) weigh up the implications of all the possible outcomes

(i.e. true positive, false negative, true negative, false positive). A chal-

lenge herein lies in the need to characterize the strategic response

that would be implemented in the face of an outbreak, as well as

anticipating the benefits and costs associated with the potential out-

comes. Harm reduction strategies play a critical role in preventing

opioid-related overdoses, but research has shown that an understand-

ing of the engagement of people who use drugs with these services is

needed to ensure effective implementation [30]. Given that overdose

outbreaks have historically tended to coincide with changes in the

drug supply and/or an identifiable change in health behaviors associ-

ated with drug use [2, 3], a starting-point for health departments in

responding to future outbreaks should be identifying the causes

and/or populations of interest through qualitative assessments. A suc-

cessful example of this type of response was documented in Connect-

icut in 2019, when an alert was raised by the state-wide surveillance

program following EMS visits for suspected overdoses among people

smoking crack cocaine [31]. The alert prompted a response from local

harm reduction groups involving the distribution of fentanyl test strips

and naloxone to people using crack cocaine, as well as warnings

regarding the dangers of using alone. In addition to this, it is important

that any overdose surveillance systems and outbreak detection

methods are constantly evaluated to ensure that the surveillance sys-

tem is promoting the best use of public health resources and that it is

operating efficiently [32].

Strengths and limitations

This paper demonstrates the surveillance potential of using aberra-

tion detection methods to identify drug overdose outbreaks. More

work is needed to determine the validity of the methods throughout

a broader range of geographical areas, given that the present study

only looks at data from two states. Furthermore, the generalizability

of the findings in the study may be limited by the time-frames over

which data were available, and so additional research should apply

aberration detection methods to future data. The latter point is par-

ticularly relevant, given that the time-points evaluated in this study

cover the onset of the COVID-19 pandemic. More generally, it is

important to acknowledge that there are a multitude of possible

surveillance methods available, beyond those employed in this

study, that future work should refer to in order to integrate for the

surveillance of drug overdose outcomes [33]. This study has demon-

strated that the combination of two surveillance methods for the

detection of overdose outbreaks is more productive than one

method, indicating that the adoption of additional methods could

yield further gains. Future work might also consider incorporating

data on the geospatial proximity of overdose in nearby counties

with geographical weights which can improve stability in outbreak

detection [34]. In addition, evaluating the strength of other potential

population-level fatal overdose predictors, such as the incidence of

soft-tissue infections, endocarditis and other drug-related harms,

might lead to improved performance, particularly in the context of

highly adulterated drug supplies [35]. Finally, it is important to

acknowledge that while this work might help in mitigating the

impacts of future overdose outbreaks, it does not address the

structural drivers of the overdose crisis in the United States. To this

end, policymakers must tackle root causes of the overdose crisis,

including the lack of economic opportunities, poor working and

housing conditions and eroded social support for depressed

communities [36].

CONCLUSIONS

This study assesses the validity of employing aberration detection

methods for the surveillance of emerging drug threats in real time.

The results indicate that these methods can be used to support

the early detection of fatal drug overdose outbreaks, particularly

when assessing data from regions comprised of multiple counties

rather than single counties alone. Furthermore, we observe that

early detection is improved when multiple aberration detection

methodologies are applied in combination rather, than individual

methods separately. Health departments are recommended to use

these methods within a surveillance system, in combination with

qualitative assessments to identify changes in the drug supply

and/or identifiable changes in health behaviors associated with

drug use.
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