Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Jul 15;17(14):4092–4100. doi: 10.1093/emboj/17.14.4092

Solution structure of the antitermination protein NusB of Escherichia coli: a novel all-helical fold for an RNA-binding protein.

M Huenges 1, C Rölz 1, R Gschwind 1, R Peteranderl 1, F Berglechner 1, G Richter 1, A Bacher 1, H Kessler 1, G Gemmecker 1
PMCID: PMC1170742  PMID: 9670024

Abstract

The NusB protein of Escherichia coli is involved in the regulation of rRNA biosynthesis by transcriptional antitermination. In cooperation with several other proteins, it binds to a dodecamer motif designated rrn boxA on the nascent rRNA. The antitermination proteins of E.coli are recruited in the replication cycle of bacteriophage lambda, where they play an important role in switching from the lysogenic to the lytic cycle. Multidimensional heteronuclear NMR experiments were performed with recombinant NusB protein labelled with 13C, 15N and 2H. The three-dimensional structure of the protein was solved from 1926 NMR-derived distances and 80 torsion angle restraints. The protein folds into an alpha/alpha-helical topology consisting of six helices; the arginine-rich N-terminus appears to be disordered. Complexation of the protein with an RNA dodecamer equivalent to the rrn boxA site results in chemical shift changes of numerous amide signals. The overall packing of the protein appears to be conserved, but the flexible N-terminus adopts a more rigid structure upon RNA binding, indicating that the N-terminus functions as an arginine-rich RNA-binding motif (ARM).

Full Text

The Full Text of this article is available as a PDF (703.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altieri A. S., Mazzulla M. J., Zhou H., Costantino N., Court D. L., Byrd R. A. Sequential assignments and secondary structure of the RNA-binding transcriptional regulator NusB. FEBS Lett. 1997 Sep 29;415(2):221–226. doi: 10.1016/s0014-5793(97)01128-9. [DOI] [PubMed] [Google Scholar]
  2. Banner D. W., Kokkinidis M., Tsernoglou D. Structure of the ColE1 rop protein at 1.7 A resolution. J Mol Biol. 1987 Aug 5;196(3):657–675. doi: 10.1016/0022-2836(87)90039-8. [DOI] [PubMed] [Google Scholar]
  3. Battiste J. L., Mao H., Rao N. S., Tan R., Muhandiram D. R., Kay L. E., Frankel A. D., Williamson J. R. Alpha helix-RNA major groove recognition in an HIV-1 rev peptide-RRE RNA complex. Science. 1996 Sep 13;273(5281):1547–1551. doi: 10.1126/science.273.5281.1547. [DOI] [PubMed] [Google Scholar]
  4. Berglechner F., Richter G., Fischer M., Bacher A., Gschwind R. M., Huenges M., Gemmecker G., Kessler H. Studies on the NusB protein of Escherichia coli--expression and determination of secondary-structure elements by multinuclear NMR spectroscopy. Eur J Biochem. 1997 Sep 1;248(2):338–346. doi: 10.1111/j.1432-1033.1997.00338.x. [DOI] [PubMed] [Google Scholar]
  5. Berglund H., Rak A., Serganov A., Garber M., Härd T. Solution structure of the ribosomal RNA binding protein S15 from Thermus thermophilus. Nat Struct Biol. 1997 Jan;4(1):20–23. doi: 10.1038/nsb0197-20. [DOI] [PubMed] [Google Scholar]
  6. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  7. Biamonti G., Riva S. New insights into the auxiliary domains of eukaryotic RNA binding proteins. FEBS Lett. 1994 Feb 28;340(1-2):1–8. doi: 10.1016/0014-5793(94)80162-2. [DOI] [PubMed] [Google Scholar]
  8. Biou V., Shu F., Ramakrishnan V. X-ray crystallography shows that translational initiation factor IF3 consists of two compact alpha/beta domains linked by an alpha-helix. EMBO J. 1995 Aug 15;14(16):4056–4064. doi: 10.1002/j.1460-2075.1995.tb00077.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Burd C. G., Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science. 1994 Jul 29;265(5172):615–621. doi: 10.1126/science.8036511. [DOI] [PubMed] [Google Scholar]
  10. Bycroft M., Grünert S., Murzin A. G., Proctor M., St Johnston D. NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5. EMBO J. 1995 Jul 17;14(14):3563–3571. doi: 10.1002/j.1460-2075.1995.tb07362.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cai Z., Gorin A., Frederick R., Ye X., Hu W., Majumdar A., Kettani A., Patel D. J. Solution structure of P22 transcriptional antitermination N peptide-boxB RNA complex. Nat Struct Biol. 1998 Mar;5(3):203–212. doi: 10.1038/nsb0398-203. [DOI] [PubMed] [Google Scholar]
  12. Calnan B. J., Biancalana S., Hudson D., Frankel A. D. Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. Genes Dev. 1991 Feb;5(2):201–210. doi: 10.1101/gad.5.2.201. [DOI] [PubMed] [Google Scholar]
  13. Cheng S. W., Lynch E. C., Leason K. R., Court D. L., Shapiro B. A., Friedman D. I. Functional importance of sequence in the stem-loop of a transcription terminator. Science. 1991 Nov 22;254(5035):1205–1207. doi: 10.1126/science.1835546. [DOI] [PubMed] [Google Scholar]
  14. Clore G. M., Kay L. E., Bax A., Gronenborn A. M. Four-dimensional 13C/13C-edited nuclear Overhauser enhancement spectroscopy of a protein in solution: application to interleukin 1 beta. Biochemistry. 1991 Jan 8;30(1):12–18. doi: 10.1021/bi00215a002. [DOI] [PubMed] [Google Scholar]
  15. Court D. L., Patterson T. A., Baker T., Costantino N., Mao X., Friedman D. I. Structural and functional analyses of the transcription-translation proteins NusB and NusE. J Bacteriol. 1995 May;177(9):2589–2591. doi: 10.1128/jb.177.9.2589-2591.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. DeVito J., Das A. Control of transcription processivity in phage lambda: Nus factors strengthen the termination-resistant state of RNA polymerase induced by N antiterminator. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8660–8664. doi: 10.1073/pnas.91.18.8660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Eberle W., Pastore A., Sander C., Rösch P. The structure of ColE1 rop in solution. J Biomol NMR. 1991 May;1(1):71–82. doi: 10.1007/BF01874570. [DOI] [PubMed] [Google Scholar]
  18. Friedman D. I., Schauer A. T., Baumann M. R., Baron L. S., Adhya S. L. Evidence that ribosomal protein S10 participates in control of transcription termination. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1115–1118. doi: 10.1073/pnas.78.2.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gaal T., Bartlett M. S., Ross W., Turnbough C. L., Jr, Gourse R. L. Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. Science. 1997 Dec 19;278(5346):2092–2097. doi: 10.1126/science.278.5346.2092. [DOI] [PubMed] [Google Scholar]
  20. Garcia C., Fortier P. L., Blanquet S., Lallemand J. Y., Dardel F. Solution structure of the ribosome-binding domain of E. coli translation initiation factor IF3. Homology with the U1A protein of the eukaryotic spliceosome. J Mol Biol. 1995 Nov 24;254(2):247–259. doi: 10.1006/jmbi.1995.0615. [DOI] [PubMed] [Google Scholar]
  21. Harada K., Martin S. S., Frankel A. D. Selection of RNA-binding peptides in vivo. Nature. 1996 Mar 14;380(6570):175–179. doi: 10.1038/380175a0. [DOI] [PubMed] [Google Scholar]
  22. Hoffman D. W., Query C. C., Golden B. L., White S. W., Keene J. D. RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprotein analyzed by NMR spectroscopy is structurally similar to ribosomal proteins. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2495–2499. doi: 10.1073/pnas.88.6.2495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Holm L., Sander C. Protein structure comparison by alignment of distance matrices. J Mol Biol. 1993 Sep 5;233(1):123–138. doi: 10.1006/jmbi.1993.1489. [DOI] [PubMed] [Google Scholar]
  24. Kang C., Chan R., Berger I., Lockshin C., Green L., Gold L., Rich A. Crystal structure of the T4 regA translational regulator protein at 1.9 A resolution. Science. 1995 May 26;268(5214):1170–1173. doi: 10.1126/science.7761833. [DOI] [PubMed] [Google Scholar]
  25. Karn J., Graeble M. A. New insights into the mechanism of HIV-1 trans-activation. Trends Genet. 1992 Nov;8(11):365–368. doi: 10.1016/0168-9525(92)90284-b. [DOI] [PubMed] [Google Scholar]
  26. Kay L. E., Clore G. M., Bax A., Gronenborn A. M. Four-dimensional heteronuclear triple-resonance NMR spectroscopy of interleukin-1 beta in solution. Science. 1990 Jul 27;249(4967):411–414. doi: 10.1126/science.2377896. [DOI] [PubMed] [Google Scholar]
  27. Kharrat A., Macias M. J., Gibson T. J., Nilges M., Pastore A. Structure of the dsRNA binding domain of E. coli RNase III. EMBO J. 1995 Jul 17;14(14):3572–3584. doi: 10.1002/j.1460-2075.1995.tb07363.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Laskowski R. A., Rullmannn J. A., MacArthur M. W., Kaptein R., Thornton J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996 Dec;8(4):477–486. doi: 10.1007/BF00228148. [DOI] [PubMed] [Google Scholar]
  29. Lazinski D., Grzadzielska E., Das A. Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. Cell. 1989 Oct 6;59(1):207–218. doi: 10.1016/0092-8674(89)90882-9. [DOI] [PubMed] [Google Scholar]
  30. Liljas A., Garber M. Ribosomal proteins and elongation factors. Curr Opin Struct Biol. 1995 Dec;5(6):721–727. doi: 10.1016/0959-440x(95)80003-4. [DOI] [PubMed] [Google Scholar]
  31. Löhr F., Rüterjans H. H2NCO-E.COSY, a simple method for the sterospecific assignment of side-chain amide protons in proteins. J Magn Reson. 1997 Jan;124(1):255–258. doi: 10.1006/jmre.1996.1050. [DOI] [PubMed] [Google Scholar]
  32. Markus M. A., Hinck A. P., Huang S., Draper D. E., Torchia D. A. High resolution solution structure of ribosomal protein L11-C76, a helical protein with a flexible loop that becomes structured upon binding to RNA. Nat Struct Biol. 1997 Jan;4(1):70–77. doi: 10.1038/nsb0197-70. [DOI] [PubMed] [Google Scholar]
  33. Mason S. W., Li J., Greenblatt J. Direct interaction between two Escherichia coli transcription antitermination factors, NusB and ribosomal protein S10. J Mol Biol. 1992 Jan 5;223(1):55–66. doi: 10.1016/0022-2836(92)90715-v. [DOI] [PubMed] [Google Scholar]
  34. Mogridge J., Mah T. F., Greenblatt J. A protein-RNA interaction network facilitates the template-independent cooperative assembly on RNA polymerase of a stable antitermination complex containing the lambda N protein. Genes Dev. 1995 Nov 15;9(22):2831–2845. doi: 10.1101/gad.9.22.2831. [DOI] [PubMed] [Google Scholar]
  35. Musco G., Stier G., Joseph C., Castiglione Morelli M. A., Nilges M., Gibson T. J., Pastore A. Three-dimensional structure and stability of the KH domain: molecular insights into the fragile X syndrome. Cell. 1996 Apr 19;85(2):237–245. doi: 10.1016/s0092-8674(00)81100-9. [DOI] [PubMed] [Google Scholar]
  36. Nagai K., Oubridge C., Jessen T. H., Li J., Evans P. R. Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature. 1990 Dec 6;348(6301):515–520. doi: 10.1038/348515a0. [DOI] [PubMed] [Google Scholar]
  37. Nagai K. RNA-protein complexes. Curr Opin Struct Biol. 1996 Feb;6(1):53–61. doi: 10.1016/s0959-440x(96)80095-9. [DOI] [PubMed] [Google Scholar]
  38. Neri D., Szyperski T., Otting G., Senn H., Wüthrich K. Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry. 1989 Sep 19;28(19):7510–7516. doi: 10.1021/bi00445a003. [DOI] [PubMed] [Google Scholar]
  39. Nilges M., Clore G. M., Gronenborn A. M. Determination of three-dimensional structures of proteins from interproton distance data by dynamical simulated annealing from a random array of atoms. Circumventing problems associated with folding. FEBS Lett. 1988 Oct 24;239(1):129–136. doi: 10.1016/0014-5793(88)80559-3. [DOI] [PubMed] [Google Scholar]
  40. Nodwell J. R., Greenblatt J. Recognition of boxA antiterminator RNA by the E. coli antitermination factors NusB and ribosomal protein S10. Cell. 1993 Jan 29;72(2):261–268. doi: 10.1016/0092-8674(93)90665-d. [DOI] [PubMed] [Google Scholar]
  41. Nodwell J. R., Greenblatt J. The nut site of bacteriophage lambda is made of RNA and is bound by transcription antitermination factors on the surface of RNA polymerase. Genes Dev. 1991 Nov;5(11):2141–2151. doi: 10.1101/gad.5.11.2141. [DOI] [PubMed] [Google Scholar]
  42. Puglisi J. D., Chen L., Blanchard S., Frankel A. D. Solution structure of a bovine immunodeficiency virus Tat-TAR peptide-RNA complex. Science. 1995 Nov 17;270(5239):1200–1203. doi: 10.1126/science.270.5239.1200. [DOI] [PubMed] [Google Scholar]
  43. Su L., Radek J. T., Hallenga K., Hermanto P., Chan G., Labeots L. A., Weiss M. A. RNA recognition by a bent alpha-helix regulates transcriptional antitermination in phage lambda. Biochemistry. 1997 Oct 21;36(42):12722–12732. doi: 10.1021/bi971408k. [DOI] [PubMed] [Google Scholar]
  44. Su L., Radek J. T., Labeots L. A., Hallenga K., Hermanto P., Chen H., Nakagawa S., Zhao M., Kates S., Weiss M. A. An RNA enhancer in a phage transcriptional antitermination complex functions as a structural switch. Genes Dev. 1997 Sep 1;11(17):2214–2226. doi: 10.1101/gad.11.17.2214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Taura T., Ueguchi C., Shiba K., Ito K. Insertional disruption of the nusB (ssyB) gene leads to cold-sensitive growth of Escherichia coli and suppression of the secY24 mutation. Mol Gen Genet. 1992 Sep;234(3):429–432. doi: 10.1007/BF00538702. [DOI] [PubMed] [Google Scholar]
  46. Van Gilst M. R., Rees W. A., Das A., von Hippel P. H. Complexes of N antitermination protein of phage lambda with specific and nonspecific RNA target sites on the nascent transcript. Biochemistry. 1997 Feb 11;36(6):1514–1524. doi: 10.1021/bi961920q. [DOI] [PubMed] [Google Scholar]
  47. Wolberger C. Homeodomain interactions. Curr Opin Struct Biol. 1996 Feb;6(1):62–68. doi: 10.1016/s0959-440x(96)80096-0. [DOI] [PubMed] [Google Scholar]
  48. Xing Y., Guha Thakurta D., Draper D. E. The RNA binding domain of ribosomal protein L11 is structurally similar to homeodomains. Nat Struct Biol. 1997 Jan;4(1):24–27. doi: 10.1038/nsb0197-24. [DOI] [PubMed] [Google Scholar]
  49. Ye X., Gorin A., Ellington A. D., Patel D. J. Deep penetration of an alpha-helix into a widened RNA major groove in the HIV-1 rev peptide-RNA aptamer complex. Nat Struct Biol. 1996 Dec;3(12):1026–1033. doi: 10.1038/nsb1296-1026. [DOI] [PubMed] [Google Scholar]
  50. Ye X., Kumar R. A., Patel D. J. Molecular recognition in the bovine immunodeficiency virus Tat peptide-TAR RNA complex. Chem Biol. 1995 Dec;2(12):827–840. doi: 10.1016/1074-5521(95)90089-6. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES