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Abstract

Background: Bioinformatics is fundamental to biomedical sciences, but its mastery presents a steep learning curve for bench biologists
and clinicians. Learning to code while analyzing data is difficult. The curve may be flattened by separating these two aspects and
providing intermediate steps for budding bioinformaticians. Single-cell analysis is in great demand from biologists and biomedical
scientists, as evidenced by the proliferation of training events, materials, and collaborative global efforts like the Human Cell Atlas.
However, iterative analyses lacking reinstantiation, coupled with unstandardized pipelines, have made effective single-cell training a
moving target.

Findings: To address these challenges, we present a Multi-Interface Galaxy Hands-on Training Suite (MIGHTS) for single-cell RNA
sequencing (scRNA-seq) analysis, which offers parallel analytical methods using a graphical interface (buttons) or code. With clear, in-
teroperable materials, MIGHTS facilitates smooth transitions between environments. Bridging the biologist-programmer gap, MIGHTS
emphasizes interdisciplinary communication for effective learning at all levels. Real-world data analysis in MIGHTS promotes crit-
ical thinking and best practices, while FAIR data principles ensure validation of results. MIGHTS is freely available, hosted on the
Galaxy Training Network, and leverages Galaxy interfaces for analyses in both settings. Given the ongoing popularity of Python-based
(Scanpy) and R-based (Seurat & Monocle) scRNA-seq analyses, MIGHTS enables analyses using both.

Conclusions: MIGHTS consists of 11 tutorials, including recordings, slide decks, and interactive visualizations, and a demonstrated
track record of sustainability via regular updates and community collaborations. Parallel pathways in MIGHTS enable concurrent
training of scientists at any programming level, addressing the heterogeneous needs of novice bioinformaticians.

Keywords: training, STEM education, Galaxy project, single-cell RNA-seq analysis, scRNA-seq, bioinformatics, reproducibility, sustain-

ability

Introduction search [9-13]. As such, many bioinformaticians rarely receive for-

Although bioinformatics is critical to basic biological and applied
biomedical research, there remains a shortage of scientists with
bioinformatics expertise [1]. As computational domains of biology
continue to grow, bioinformatics play an important role in ground-
breaking discoveries [2-5]. Thinking computationally about bio-
logical processes has been shown to produce more accurate mod-
els [6] and enhance problem-solving [7]. However, it is important
to note that bioinformatics often requires many expensive re-
sources, such as computational infrastructure, maintenance, and
training [8]. Financial barriers can limit access to training and re-

mal trainingin the field [8], and teaching bioinformatics is notably
difficult.

Integrating bioinformatics into undergraduate curricula may
address this gap [1, 14]. Bioinformatics has been introduced in
high schools, where it was shown to improve awareness, engage-
ment, and self-efficacy of students, leading to increased interest
in STEM careers [15]. Pharmaceutical companies need biomedi-
cal analysts [16], most employers in the life sciences prefer some
competency in software analyses [17], and the use of bioinfor-
matic analyses to characterize novel cell types and lineages [18]

Received: August 13, 2024. Revised: October 28, 2024. Accepted: November 26, 2024

© The Author(s) 2025. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided
the original work is properly cited.


https://orcid.org/0009-0002-1327-0424
https://orcid.org/0009-0001-2017-8805
https://orcid.org/0000-0002-3026-9049
https://orcid.org/0000-0003-3803-468X
https://orcid.org/0009-0008-9422-6380
https://orcid.org/0000-0001-6979-6930
https://orcid.org/0000-0002-3483-8456
https://orcid.org/0000-0002-9856-1679
https://orcid.org/0000-0002-7901-7109
https://orcid.org/0000-0001-9760-8992
https://orcid.org/0000-0002-4181-2676
https://orcid.org/0000-0002-1748-2806
https://orcid.org/0000-0002-5192-126X
https://orcid.org/0000-0002-8170-8806
mailto:wendi.bacon@open.ac.uk
https://creativecommons.org/licenses/by/4.0/

2 | GigaScience, 2025, Vol. 14

has surged. In response, institutes are beginning to teach founda-
tional computing skills to biologists [14, 19].

Materials that focus on problem-solving, interactivity, and co-
operative learning have demonstrated enhanced learning out-
comes [20], and bioinformatics has effectively been taught
by emphasizing interdisciplinary problem-solving [21]. To stan-
dardize training, a list of “rules” was identified to teach sci-
entists to program: beginning with the end in mind, tak-
ing small steps forward, and focusing on individual tasks
[20]. The “end in mind” requires domain-specific understand-
ing (l.e., identifying cell types via marker genes) while the
individual tasks require programming skills (R, Python, trou-
bleshooting, etc.). This duality forces new biofinformaticians
to learn and apply 2 new skill sets simultaneously [22-24].
The need to embed computing into science is not novel [25],
but blending skills across disciplines is not without challenges
[26].

The Galaxy Training Network (GTN) boasts tutorials for anal-
ysis across a range of fields, all publicly available and accessi-
ble by URL [27]. The GTN provides free training infrastructure to
fast-track trainees via live courses in which trainers are avail-
able to monitor and assist participants [28]. This supports all, but
especially low-resource institutions’, engagement with bioinfor-
matic training and has additionally been tested for native Spanish
speakers [28]. Integrating these free resources into undergraduate
curricula has been successful [27], as training materials include
interactive features based on research-backed pedagogies. Sepa-
ration of learning components has previously been suggested as
an effective method [29] but raises the question: how can cod-
ing and complex bioinformatic analyses be isolated from one an-
other?

Here, we directly address the need to separate the two for
training. Leveraging the Galaxy Graphical User Interface (GUI)
and the GTN, we present the Multi-Interface Galaxy Hands-on
Training Suite (MIGHTS): a single-cell RNA sequencing (SCRNA-
seq) tutorial suite enabling a smooth transition from data anal-
ysis in a button-based, user-friendly environment [30] to a more
advanced, flexible programming environment. Using a sample
dataset, MIGHTS guides users through the steps necessary to
accomplish commonly published scRNA-seq analyses and visu-
alizations, including generating a matrix, combining datasets,
filtering, plotting, and general exploration of the data, as well
as trajectory inference of a dataset known to represent a de-
velopmental spectrum. The sample dataset provided for use
with the suite reveals a delay in thymic maturation in growth-
restricted neonatal mice [31]. MIGHTS offers multiple routes of
scRNA-seq analysis, allowing a button-based or coding-based
version of the same commonly published workflows. Notably,
MIGHTS offers opportunities for a heterogeneous student pop-
ulation ranging from programming-friendly to programming-
fearful, expanding access to critical skills required for effec-
tive bioinformatic analyses and biomedical and life science re-
search.

Methods

Multienvironment

MIGHTS consists of 11 tutorials: 6 button-based (BB) and 5 in
a programming environment (PE) each making use of common
analysis packages (Table 1).

The Galaxy GUI features “click-to-run” buttons that execute
programming functions [30].Users select andset parameters from

drop-down lists and input boxes (Fig. 1, left column: button-
based). Each tool includes help text to guide users anddescribe
the flexibility ofthe tool’s function.

Galaxy's interactive programming environments [61] are where
the PE tutorials take place. Tutorials may be downloaded as
RMarkdown or Jupyter notebooks [62, 63], or users may copy, paste,
and run each executable code-containing cell from the PE text
(Fig. 1, right column: programming environment). Jupyter and
RMarkdown notebooks may be exported at the conclusion of each
coded tutorial for easy reference or repetition.

Multilevel

MIGHTS caters to the following 3 learning pathways: BB to PE,
straight to PE, and PE with BB (Fig. 2).

In the first case, BB tutorials guide beginners through the key
steps of scRNA-seq analysis, establishing familiarity with the
methods and learning to interpret results. Next, users may repeat
the analysis in the PE, focusing on programming skills while be-
coming familiar with the languages and libraries commonly used
for scRNA-seq analysis (Fig. 2A). If a user has experience program-
ming and wants a more flexible analysis, they may begin with the
PE tutorials, learning methods with more advanced functionality
(Fig. 2B). Alternatively, experienced bioinformaticians may utilize
Galaxy’s Interactive Environments to learn new analyses or run
computationally demanding steps that they are unable to do lo-
cally (Fig. 2C).

Multilanguage

scRNA-seq analysis is commonly performed in both R-based
(using Seurat [46-50] & Monocle [56]) and Python-based (using
Scanpy [41]) environments. Therefore, parallel analyses were cre-
ated across BB and PE as well as across programming languages—
effectively demonstrating multiple methods of analysis and data
validation (Fig. 3). Users may conduct a typical, full scRNA-seq
analysis workflow in R or Python in addition to on a GUI orin a PE.

Research-relevant skills

MIGHTS demonstrates the use of many frequently used data
types and packages for scRNA-seq analyses (Table 1), preparing
users with research-relevant skills. Broadly applicable use of pro-
gramming functions, algorithms, and troubleshooting lends itself
to increased creativity and critical thinking [64, 65]. This also im-
proves users’ employability and reaches scientists in various re-
search groups, regardless of the method they prefer.

Tutorials

Each tutorial begins with data import. The data used in MIGHTS
come from a published study by Bacon et al. [31], describing a
mouse model of fetal growth restriction that is publicly avail-
able from the EMBL-EBI ArrayExpress under accession number E-
MTAB-6945 and may additionally be explored in the Single Cell Ex-
pression Atlas [66]. Tutorials in MIGHTS work with the same data
throughout to demonstrate analyses using different methods and
tools. Tutorials use real, uncurated data, which have simply been
subsampled to enhance computational efficiency. The source data
are the same, but each analysis allows import of a unique data file
to start. Tutorials are designed to be completed in order but may
be performed out of order—if a user wishes to learn how to clus-
ter cells using Scanpy (RRID:SCR_018139), for example, they may
select the dedicated tutorial and start with the provided, prepro-
cessed file(s).


https://scicrunch.org/resolver/RRID:SCR_018139

Table 1: MIGHTS tutorials with used packages and data types
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Analysis Environment | tutorial (Package/Language) Packages Data types
Preprocessing BB | Generating a single-cell matrix using Alevin Salmon [32] with Alevin [33] FASTQ
BB | Combining single-cell datasets after preprocessing dropletUtils [34, 35] (emptyDrops FASTA
[34)
PE | Generating a single-cell matrix using Alevin and atlas-gene-annotation-manipulation ~ GTF
combining datasets (bash + R [36]) [37]
tximeta [38] (PE) SingleCellExperiment
Object
biomaRt [39, 40] (PE) SummarizedExperiment;
AnnData
Plotting and in- BB | Filter, plot, and explore single-cell RNA-seq data (Scanpy) Scanpy [41] AnnData

terpretation
PE | Filter, plot, and explore single-cell RNA-seq data (Scanpy, igraph [43] (PE)
Python [42])
louvain [44] (PE)
pandas [45] (PE)
BB | Filter, plot, and explore single-cell RNA-seq data (Seurat)  Seurat [46-50] AnnData (for conversion to
Seurat)
PE | Filter, plot, and explore single-cell RNA-seq data (Seurat, —Matrix [51] (PE) Seurat Object
R)
dplyr [52] (PE)
Trajectories BB | Inferring single-cell trajectories (Scanpy) Scanpy [41] AnnData
PE | Inferring single-cell trajectories (Scanpy, Python) fa2 [53] (PE)

BB | Inferring single-cell trajectories (Monocle3)
PE | Inferring single-cell trajectories (Monocle3, R)

igraph [43] (PE)
louvain [44] (PE)
numpy [54] (PE)
matplotlib [S5] (PE)
Monocle [56]
anndata [57] (PE)

Cell Data Set

AnnData (for conversion to
Cell Data Set)

viridislite [58] (PE)

magrittr [59] (PE)

Repp [60] (PE)

biomaRt [39, 40] (PE)

MIGHTS’s full workflow consists of three sequential analyses
aligning with standard scRNA-seq pipelines [67] and allowing
users to compare results across methods.

Generating a single-cell matrix using Alevin and combining
datasets

The first two tutorials demonstrate the transformation of a FASTA
sequencing file into a count matrix (Fig. 4, Supplementary Figs. S1,
S2). The BB tutorial describes principles of transcriptome quan-
tification, while the PE tutorial introduces users to the many
means of installing required packages. This tutorial will take users
from aligned read counts to a single-cell experiment (SCE) ob-
ject, which may be further analyzed and converted in RStudio
(RRID:SCR_000432) or Jupyter Notebook.

Users first generate a transcript-to-gene map using FASTQ files,
a GTF file, and a reference FASTA transcriptome. A Salmon index
of the transcriptome is created, and a cell-by-gene count matrix is
built using Alevin. The BB tutorial combines these two steps using
one Galaxy tool and demonstrates basic quality control checks,
including a description of the barcode rank plot “knee detection”
method.

The PE tutorial identifies empty droplets, adds cell and gene-
level metadata, and flags empty droplets based on transcript
count. Droplet annotation is corrected for false discovery, and
the matrix is filtered before combining the datasets manually. PE
users save and export files while converting formats to SCE so they
are compatible with downstream analyses.

The BB tutorial incorporates metadata straight from a GTF file
using a tool to extract gene names and IDs and to label mitochon-
drial transcripts. The generated gene information is assigned to
the matrix, which is subsequently transposed for compatibility
with tools meant for 10x Genomics software. EmptyDrops is then
used to remove empty droplets.

Half of the remaining suite emphasizes use of AnnData-
compatible packages. To prepare users, tutorials conclude with
1 final format conversion from SCE to AnnData with the SCEasy
tool. Once each object has been converted, the BB user concate-
nates them with a Galaxy tool. The BB tutorial sets the user and
their objects up for the next tutorial by adding a number of useful
metrics to help visualize the data in the coming tutorial(s). Work-
flows for each tutorial are shown in Fig. 4.

Filter, plot, and explore with Scanpy

These tutorials filter and analyze a preprocessed scRNA-seq ma-
trix using Scanpy (Fig. 5). PE users leverage Python via a Jupyter
Notebook to filter the data for noise, as well as accomplish com-
mon visualizations and differential expression analysis across
clusters for the purpose of cell type labeling.

The PE tutorial imports a raw AnnData file and demonstrates
storage as a pandas dataframe, while users iteratively visualize
data with violin and scatter plots to determine filtering thresh-
olds. Users filter the data to remove technical artifacts and poor-
quality cells. The PE alternatively uses Boolean indexing for this
rather than Scanpy’s built-in functions. Users remove transcripts


https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae107#supplementary-data
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Figure 1: Performing the same step (plotting a marker gene: 112ra on UMAP embedding) using Galaxy GUI and programming environment with both
Python-based Scanpy and R-based Seurat packages. The resulting plots, although slightly different, represent the same biological information, no

matter if the BB or PE method was used.

no longer expressed in more than 3 cells and are prompted to
compare different thresholds for the filtering of genes.

Log normalization aligns gene expression along a normal dis-
tribution. The PE tutorial includes a description of how normal-
ization works and what other methods exist. Variable genes are
flagged for use in more computationally demanding steps. Scaling
the data ensures all genes have equal variance and a zero mean,
creating a matrix that is compatible with downstream analyses.

Users next reduce the dimensionality of the matrix to allow
visualization and interpretation. Principal component analysis
(PCA) is performed to calculate the most descriptive principal

components (PCs). Users plot PCs against the standard variation
they describe, visualizing how PCs relate to variance in their data.
The PCs are used to compute a k-nearest-neighbors graph, stor-
ing a representation of connections between and across cells. Fi-
nal dimensionality reductions are performed with t-distributed
stochastic neighbor embedding (tSNE) [68] and Uniform Manifold
Approximation and Projection (UMAP) [69]—both methods reduc-
ing the data down to 2 dimensions for visualization.

Scanpy’s clustering function(s) assign each cell to a cluster
based on transcriptomic similarity. The tutorials describe clus-
tering algorithms and prompt users to experiment with multi-
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Figure 2: Representation of 3 possible user journeys using MIGHTS. (A) A beginner starting from button-based (BB) tutorials who can then move to the
programming environment (PE). (B) An experienced programmer who can start the analysis directly from the PE, skipping introductory BB tutorials. (C)
A skilled user who can optimize analyses by swapping between Galaxy GUI to perform computationally intensive steps and a programming

environment for more flexible analyses.
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Figure 3: A diagram of the connections of tutorials. It highlights that the languages and packages used in BB and PE tutorials are consistent and allow

moving between them easily.

ple clustering resolutions, adjusting such that the assigned clus-
ters visually represent what is understood to be biologically accu-
rate. Scanpy’s rank_genes_groups identifies the most representa-
tive transcripts for each cluster and genotype, and PE users trans-
form the output into a data frame.

Users visualize all three dimensionality reductions, different
clustering resolutions, and the expression of marker genes. A ta-
ble of marker genes per cell type from the literature is provided
so that the user may inspect their expression patterns and map
them to the correct cluster(s). Users label each cluster with a cell
type, and plots are saved to the Galaxy history or notebook to
be exported. BB users are additionally introduced to the CELLx-

GENE (RRID:SCR_021059) [70] tool: an interactive environment for
visualizing and exploring scRNA-seq data. Tutorial workflows are
shown in Fig. 5 and Supplementary Fig. S3.

Filter, plot, and explore with Seurat

These tutorials closely resemble the workflows of the preceding
Scanpy ones, this time making use of the R package Seurat. The
workflows teach users the basics of scRNA-seq data analysis, in-
cluding typical preprocessing; basic visualization with Feature-
Plots, DimPlots, and UMAPs; and exploration of differentially ex-
pressed genes across clusters and experimental variables (Fig. 6
and Supplementary Fig. 54).


https://scicrunch.org/resolver/RRID:SCR_021059
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae107#supplementary-data
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Figure 4: A diagram of workflows in the preprocessing tutorials. (A) Workflow for tutorial “Generating a single-cell matrix using Alevin.” Solid stars
denote steps specific to the PE tutorial while unfilled stars represent BB-specific ones. (B) Workflow for tutorial “Combining single-cell datasets after
pre-processing.” Both workflows featured in the BB tutorial are combined in the PE. A figure of an extracted Galaxy workflow is available in
Supplementary Figs. S1 and S2.
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Figure 5: Workflows of plotting and interpretation tutorials: filter, plot, and explore with Scanpy. Features creation of single-cell objects, normalizing
data, identifying variable genes, performing dimensionality reduction, identifying clusters, finding marker genes, and interpreting plots. A figure of the
extracted Galaxy workflow is available in Supplementary Fig. S3.
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Figure 6: Workflow of the Filter, Plot, and Explore tutorial with Seurat. Features generation of a Seurat object, quality control plots, filtering cells,
processing, dimensionality reduction, clustering, finding marker genes, and creating many plots to analyze the results. A figure of the extracted Galaxy

workflow is available in Supplementary Fig. S4.

Users import raw counts in both the PE and BB pathways.
PE users transition to Galaxy’s Interactive RStudio environment,
where they are shown how to set up an environment and given
an explanation of how and why packages must be loaded prior
to use, as well as how to use Galaxy’'s gx_get() function for data
import. Users manually change the column names of the experi-
mental design data for compatibility with Seurat.

Users next generate a Seurat object: BB users with Seurat’s
Read10X function and PE users by manually applying barcode and
feature labels to the matrix for input to Seurat’s CreateSeuratOb-
ject function. Each method is accompanied by descriptions of the
alternatives for creating the same Seurat object.

Users apply cell-level metadata to their objects. PE users incor-
porate percent of gene expression (per cell) mapping to the mito-
chondrial genome—a commonly used parameter for quality con-
trol and filtering. Tools are currently being updated to enable BB
users to do the same.

Users produce and interpret quality control plots to identify fil-
tering thresholds: assessing potential confoundersin the data and
developing an understanding of how different variables drive this
process. The purpose and theory behind commonly used filtering
parameters are described so that users may bring the same (or dif-
ferent) strategies to their own analyses. PE users are additionally
shown how to preview the number of cells that would be included
based on their choice of filtering parameters.

Both users subset their Seurat object-removing cells outside
the chosen threshold(s). PE users additionally remove genes that
are now expressed at such low frequencies that they will not con-
tribute biological insight.

Next, users process their filtered object. In the BB, processing of
the data includes sequentially normalizing the data, identifying
variable features, and scaling. In a more recent update to Seu-
rat’s workflow, the SCTransform function [71, 72] was introduced,
which combinatorially conducts the three steps in a manner op-
timized for downstream analyses. SCTransform is used in the PE
tutorial while the BB tutorial follows a similar workflow to the one
originally published by Seurat. Both users subsequently cover di-
mensionality reduction via PCA, deciding on the number of PCs to
use, finding neighbors, identifying clusters, and using UMAP be-
fore guided visualization and exploration of the data.

Inferring single-cell trajectories with Scanpy

Trajectory inferences (TIs), or pseudotime analysis, provide an al-
ternative means of grouping cells based on gradients of expres-
sion. It is worth noting that not all TI algorithms are fit for all
datasets—these tutorials begin to explore the reasons why and
guide users through the decision-making process. These parallel
tutorials conduct the typical TI pipeline using Galaxy buttons or in
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infer the cells’ trajectory in pseudotime. A figure of the extracted Galaxy workflow is available in Supplementary Fig. S5.

a Python coded environment to characterize transitions between
cell states using Scanpy.

Tutorials are significantly based on Scanpy documentation, be-
ginning with import of an annotated AnnData object into Galaxy.
Users filter the data to retain a single cell type. The PE tutorial ad-
ditionally demonstrates installation of modules before transfer-
ring their h5ad data to their Jupyter Notebook with the Galaxy-
Jupyter cross-talk feature.

Users calculate force directed graphs (FDGs), which represent
the data more appropriately for TI than the previously generated
tSNE or UMAP visualizations [73]. Optionally, they may create dif-
fusion maps, which can be used in place of PCs to recompute the
nearest neighbors visualized in the FDGs.

Both BB and PE users order cells in pseudotime using Scanpy’s
diffusion approach, which accepts root cluster assignment in-
dicating to the algorithm which population of cells the trajec-
tory begins with. Users visualize inferred trajectories colored
by pseudotime, as well as save and export their data, plots,
and notebook. Users are encouraged to consider other changes
across the identified trajectories beyond the scope of the tuto-
rial. Tutorial workflows are shown in Fig. 7 and Supplementary
Fig. S5.

Inferring single-cell trajectories with Monocle3

Similarly to the aforementioned, the Monocle3 tutorials teach
users to conduct TI (Fig. 8 and Supplementary Fig. S6). These tu-
torials demonstrate the variability that may arise when trajecto-
ries are inferred by different algorithms—this time using the algo-
rithms employed by Monocle3. PE users may implement RStudio
or Jupyter Notebook through Galaxy’s Interactive Environments.
In collaboration with the Scanpy TI tutorial, users accomplish an-
other TI method to additionally validate their results.

PE users are shown the installation of necessary libraries and
modules, and they import a filtered AnnData object and familiar-
ize themselves with the data’s structure. They extract the expres-
sion matrix, cell, and gene metadata and prepare them for gen-

eration of a Cell Data Set (CDS) object—Monocle’s preferred data
type—with format and column name changes, as well as trans-
position. BB users may import a CDS file ready for downstream
analysis in Monocle or the precursor files to create a CDS manu-
ally.

PE users utilize the BioMart database to retrieve gene symbols
and associated gene IDs. Although not necessary to complete the
tutorial’s workflow, this ability is of use to users analyzing their
own data.

Users preprocess with Monocle3, beginning with dimensional-
ity reduction. PCA is the method used in these tutorials, although
latent semantic indexing (LSI), UMAP, and tSNE options are also
available. PE users visualize each PC in relation to gene variance:
to identify how many PCs are needed to capture appropriate vari-
ability. Users are provided with visualizations of the output data
given different choices in PC.

BB users plot the data in a PCA space, visualizing the effects
of various experimental design variables. PE users may optionally
correct for batch effects and enjoy customizable plots for a more
tailored analysis prior to final dimensionality reduction.

Users cluster the data using Monocle3 as the tutorial describes
the differences between clusters and partitions. The PE tutorial
additionally demonstrates manual partitioning of cells: an impor-
tant step for reliable trajectory inference.

The PE tutorial demonstrates three combined means of assign-
ing cell types to the clusters—a supervised, an unsupervised, and
an automated method. Users next infer trajectories relying on
Monocle’s trajectory graph. Once cells have been ordered in pseu-
dotime, starting from the user-directed root cell, cells are visu-
alized colored by pseudotime. BB users end here, comparing the
results of the Monocle3-derived trajectory with the Scanpy algo-
rithms.

PE users are presented with more options for differential ex-
pression analysis, visualizing results, identifying the visualization
method best suited for them, and exporting plots, data, and their
Python or RStudio notebook.
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Discussion

We present MIGHTS, a Multi-Interface Galaxy Hands-on Training
Suite, where users may embark on three possible learning tra-
jectories: (i) first learning to analyze scRNA-seq data with but-
tons in a GUI and subsequently performing the same, more flex-
ible analysis in a programming environment; (ii) learning to run
the code behind commonly published scRNA-seq analyses; or (iii)
supplementing their preexisting analyses and skills with Galaxy
tools.

MIGHTS performs analysis from raw reads, guiding users
through filtering, normalization, dimensionality reduction, data
quality assessment, and biological interpretations. The suite
demonstrates filtering, clustering, annotation, and trajectory in-
ference for a well-rounded scRNA-seq skill set. Each analysis
is demonstrated using methods based on different packages, li-
braries, and programming languages with the hope that MIGHTS
will prepare users to conduct their own, more complex, analyses.

Training features

Users of MIGHTS may start at any step by importing preprocessed
input files, using output files from the preceding tutorial or their
own data. Regardless, the analyses will be replicated across lan-
guages, methods, and starting points (Fig. 9), allowing users to
follow the trajectory best suited for their skill level and analy-
sis goals. To facilitate choosing the correct starting point depend-

ing on experience and goals, single-cell-oriented Learning Path-
ways were introduced. “Applying single-cell RNA-seq analysis”
[74] and “Applying single-cell RNA-seq analysis in Coding Envi-
ronments” [75] pathways are based on BB and PE tutorials, respec-
tively, and may be used to facilitate a smooth transition between
button-based tutorials and a programming environment (Fig. 2A)
or a direct start in the programming environment (Fig. 2B). Addi-
tionally, to allow for easy identification of the tutorials described
here, each tutorial has been tagged and can be found by enter-
ing “MIGHTS” in the GTN search box to get access to the relevant
materials.

Each tutorial builds on the preceding, with no behind-the-
scenes data formatting or annotation required between tutori-
als. With visual examples and analysis of various data types, live
training courses found that trainees who performed tutorials dur-
ing the day could successfully apply the analyses to their own data
in the evenings [27, 28].

Learning how to set parameters has long been a difficulty in
bioinformatics training [76]. By highlighting parameters that are
adjusted often, users learn to prioritize what would otherwise be a
never-ending list of decision-making. These “Decision-Time” fea-
tures enable training for individuals and groups, with the option
to vary parameter values and compare results (Fig. 10).

Testing of this feature has shown that, broadly, results remain
the same regardless of parameter choice, demonstrating the rele-
vance of robust, iterative analyses and data validation [27, 28].
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Figure 10: Exemplary “Decision-Time” feature box in tutorial “Filter, plot and explore single-cell RNA-seq data (Scanpy).”

To facilitate effective comprehension and a self-led learning
environment, tutorials are interspersed with question boxes and
collapsible solutions, allowing users to solidify their understand-
ing of the material while they learn.

MIGHTS additionally pilots multiple import strategies, ensur-
ing reliability for live training events. This includes direct import
from Zenodo [77], import tools linked to data atlases [66], and im-
port from “input” and “answer-key” Galaxy histories—which led to

the development of a new feature within the GTN to signpost the
option as supporting material (Fig. 11).

“Answer-key” histories follow datasets along every step of anal-
yses, providing a final contingency for delivering live training and
protecting users from frustration. Tutorials are additionally ac-
companied by slide decks (which can act as a general introduction
to the topic), as well as recordings of the step-by-step analysis per-
formed by an instructor.
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Learn to code in a beginner-friendly way

As sequencing strategies and tools continue to advance, it is im- [/ \ ]
portant that the field of bioinformatics “trains the trainer” in re- ‘ .
sponse to continued growth. To support comprehension, each [—

tutorial provides detailed explanations of biological and com-
putational concepts, including simplified troubleshooting and
multiple interactive elements. By showing alternative methods
to perform a single analysis, users become familiar with the
most common programming languages used in the life sciences:
Python and R, as well as command language Bash. This pro-
vides users with well-rounded examples of how to analyze scRNA- PRt ——
seq data and how they may begin to leverage analyses (and
Galaxy) as a means to learn new programming skills [78]. These
PE tutorials introduce users to relevant packages, functions, and
data types used in today’s published bicinformatic analyses (Ta-
ble 1).

The transition from Galaxy-button tutorials into the coded
environment is facilitated by interactive tools such as RStudio
or Jupyter Notebook, such that all the analysis may be com-
pleted within Galaxy as opposed to on local computers. Im-
portantly, there is no need for any software installation—all
tutorials provide necessary tools to complete them, including
example datasets, slides, videos, workflows, and public Galaxy

User
(researcher)

Tool
development

Training
material

Figure 12: Galaxy Circle of Life demonstrating the interdisciplinary,
multilevel sustainability practiced by the GTN. Users report changes
they wish to see made in the training material, prompting new tool
development and updates that can be sustainably utilized and tested by

servers where the analysis may be performed. Internet access
is the only additional necessary resource [79]. This approach
specifically facilitates accessible bioinformatics analyses by elim-
inating installation hang-ups, minimizing the time spent set-
ting one’s environment, and increasing computing capacity for
users.

Additionally, if users embrace programming such that they
are looking to program their own button-based tools or create
new training material, opportunities to do so exist on GTN pages
dedicated to development in Galaxy [80] and contributing to the
Galaxy Training Material [81].

researchers.

FAIR data

MIGHTS tutorials were created on an interface with embedded
findable, accessible, interoperable, and reusable (FAIR) data usage
[80]. The FAIR principles can and should be applied in all life sci-
ence domains where large amounts of data are produced. FAIR
data management is particularly important in scRNA-seq anal-
ysis, which looks at large expression matrices. Unfortunately, it
is often the case that published datasets come with missing, or
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Table 2: Number of revisions made to each tutorial featured in MIGHTS as of August 2024

Tutorial topic

BB tutorials

PE tutorials

Months since tutorial Number of Months since tutorial Number of
publication revisions publication revisions

Generating a single-cell matrix using Alevin 41 16 8 2
Combining single-cell datasets after preprocessing 23 16

Filter plot explore scRNA-seq data with Scanpy 40 18 11 9
Filter plot and explore scRNA-seq data with Seurat 4 3 10 8
Inferring single-cell trajectories with Scanpy 8 5 40 15
Inferring single-cell trajectories with Monocle3 22 19 15 10

incomplete, metadata—rendering the dataset less useful than it
would be with complete annotation(s). By completing MIGHTS tu-
torials, users become equipped with the skills helpful in format-
ting such demanding datasets.

Sustainable

An important feature characterizing MIGHTS is its sustainability.
As previously reported, the evolving nature of bioinformatics re-
quires a sustainable bridge between the fields of biology and in-
formatics [81]. Therefore, collaboration between developers and
domain experts is critical. The GTN emphasizes that users be in-
cluded in this collaboration, whereby users have the opportunity
to report issues and request additional resources. This facilitates
involvement of developers who are aware of user needs and users
who are actively contributing to the improvement of materials.
Any issues may be reported back to tutorial developers them-
selves, demonstrating the sustainability of Galaxy’s Circle of Life
(Fig. 12).

Tutorials on the GTN are, at minimum, updated annually in
preparation for the Galaxy Community Conference (GCC). The
Galaxy Circle of Life functions such that tutorials will continue to
meet evolving user needs—largely thanks to the commitment of
the growing Galaxy Single-Cell & Spatial Omics Community. No-
tably, MIGHTS tutorials have been updated, on average, 7 times a
year since their respective publication (Table 2).

The number of revisions demonstrates continued sustainabil-
ity of tutorials featured in the suite.

Notably, the GTN offers tutorials on additional bioinformatic
analyses in a variety of fields. These tutorials are similarly mon-
itored and revised, although the rate of growth specifically for
single-cell tutorials is worth noting.

Addressing modern challenges in bioinformatics

MIGHTS addresses many broad challenges of bioinformatics
training, emphasizing that effective bioinformatics involves un-
derstanding key principles and gaining experience [22] with real-
world data, problem-solving [24], reproducibility [82], and valida-
tion [83].

One challenge in bioinformatics is the application of analyses
from training courses to real, messy, lab-generated data. Uniquely,
MIGHTS uses raw, unannotated data from a published analysis—
Bacon et al. [31]—and guides users through reformatting, anno-
tating, and conducting biological analyses.

Reproducibility and reinstantiation, keystones of quality bioin-
formatic analyses, are ensured by MIGHTS thanks to published
workflows and answer key histories for each dataset (Fig. 11).
Workflows are available on the Galaxy servers, providing a sta-
ble way to perform a particular analysis in an identical environ-
ment. By linking detailed tool versions to the tutorial workflows

themselves, it is possible to submit new input files, adjust param-
eter thresholds, and wait for an output. This is particularly help-
ful for analyzing multiple samples that require the same pipeline,
allowing reproducible results, minimizing time spent rerunning
code, and eliminating the need for complex coding skills to de-
velop pipelines.

To address another challenge of the field, MIGHTS emphasizes
the importance of validating one’s results: to determine whether
results reflect an actual biological process versus artifacts of the
pipeline. Using tools based in various programming languages and
multiple algorithms allows users to feel confident that their re-
sults are uncovering true biological insights no matter the anal-
ysis method used (Fig. 9). MIGHTS can act as a guide on how to
validate results. The suite may additionally be used directly by
novice to intermediate bioinformaticians to check whether their
results are consistent via alternative methods without needing to
learn another programming language.

Because bioinformatics combines numerous STEM fields, it
facesinterdisciplinary and intergenerational challenges [84]. Soft-
ware developers often do not understand the underlying biology
their programs analyze, and biologists often do not know how an-
alytical algorithms function [85]. MIGHTS aims to fill this gap by
introducing step-by-step analyses, while simultaneously demon-
strating the biological interpretation of results and how they were
uncovered. Coded tutorials provide additional opportunities to be-
come familiar with the algorithms behind the analyses. The suite
can act as a resource to educate and inspire future generations
of bioinformaticians: ones who are able to speak across disci-
plines, effectively identify areas for improvement, and build flexi-
ble, long-term solutions. Tutorials are available by link on Galaxy
[86-96]

Limitations and further steps

The main limitation of the Galaxy GUI tutorials is that the anal-
yses are limited to the packages and functions that have been
wrapped into tools. As such, some analysis steps might be limited
in the BB tutorials. However, users have the opportunity to submit
“tool requests”: an ongoing effort to mitigate this limitation.

Additionally, tool versions must be compatible with one an-
other. To mitigate this limitation, tools are regularly tested and
updated to allow for analysis using the most recent versions and
ensuring outputs are compatible inputs for downstream steps. Is-
sues with tools may be reported on Galaxy forums, where experts
and developers respond quickly to issues.

The main limitations of the PE tutorials are limited resources
allocated to Interactive Environments and inconsistencies be-
tween the notebooks on different public Galaxy servers (.eu vs.
.org vs. .au). However, the educational purpose of the coded-
tutorials is to familiarize users with coding environments, so
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downsampled data provide the same benefits and enable most
analyses to be done within the resource limit. Even so, should a
user need or want more resources allocated, they can request that
from the Galaxy admins.

There are ongoing efforts to expand the functionality of
MIGHTS to enable more bespoke analyses of datasets, in response
to community needs.

Availability of Source Code and
Requirements

® Project name: Multi-Interface Galaxy Hands-on Training
Suite for scRNA-seq

® Project  homepage: https://github.com/galaxyproject/
training-material/tree/main/topics/single-cell/tutorials

® Operating system(s): web-based, platform independent

® Programming languages: R, Python, Bash

® License: MIT

Additional Files

Supplementary Fig. S1. Galaxy workflow for tutorial “Generating
a single-cell matrix using Alevin.” The tools used for the analysis
are shown, together with their outputs and connectivities, as well
as high-level descriptors of performed steps. Solid stars denote
steps specific to the PE tutorial while unfilled stars represent BB-
specific ones.

Supplementary Fig. S2. Galaxy workflow for tutorial “Combining
single-cell datasets after pre-processing.” All tools used for the
analysis are shown, as well as their connectivities and high-level
descriptors of performed steps. Solid star denotes steps specific to
the PE tutorial.

Supplementary Fig. S3. Galaxy workflow for tutorial “Filter, plot
and explore single-cell RNA-seq data (Scanpy).” All tools used for
the analysis are shown, as well as their connectivities and high-
level descriptors of performed steps.

Supplementary Fig. S4. Galaxy workflow for tutorial “Filter, plot
and explore single-cell RNA-seq data (Seurat).” All tools used for
the analysis are shown, as well as their connectivities and high-
level descriptors of performed steps.

Supplementary Fig. S5. Galaxy workflow for tutorial “Inferring
single-cell trajectories (Scanpy).” All tools used for the analysis are
shown, as well as their connectivities and high-level descriptors
of performed steps.

Supplementary Fig. S6. Galaxy workflow for tutorial “Inferring
single-cell trajectories (Monocle3).” All tools used for the analysis
are shown, as well as their connectivities and high-level descrip-
tors of performed steps.

Abbreviations

BB: button based; CDS: cell data set; DPT: diffusion pseudotime;
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