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Abstract 

Bac kgr ound: Bioinformatics is fundamental to biomedical sciences, but its mastery presents a steep learning curve for bench biologists 
and clinicians. Learning to code while analyzing data is difficult. The curve may be flattened by separating these two aspects and 

providing intermediate steps for budding bioinformaticians. Single-cell analysis is in great demand from biologists and biomedical 
scientists, as evidenced by the proliferation of training events, materials, and collaborative global efforts like the Human Cell Atlas. 
How ever, iter ative analyses lacking reinstantiation, coupled with unstandardized pipelines, have made effective single-cell training a 
mo ving tar get. 

Findings: To address these challenges, we present a Multi-Interface Galaxy Hands-on Training Suite (MIGHTS) for single-cell RNA 

sequencing (scRN A-seq) analysis, whic h offers par allel analytical methods using a graphical interface (buttons) or code. With clear, in- 
ter opera b le materials, MIGHTS facilitates smooth transitions between environments. Bridging the biolo gist–pro grammer gap, MIGHTS 
emphasizes interdisciplinary communication for effective learning at all levels. Real-world data analysis in MIGHTS promotes crit- 
ical thinking and best practices, while FAIR data principles ensure validation of results. MIGHTS is freely available, hosted on the 
Galaxy Training Network, and lev era ges Galaxy interfaces for analyses in both settings. Given the ongoing popularity of Python-based 

(Scanpy) and R-based (Seurat & Monocle) scRNA-seq analyses, MIGHTS enables analyses using both. 

Conclusions: MIGHTS consists of 11 tutorials, including recordings, slide decks, and interacti v e visualizations, and a demonstrated 

tr ac k record of sustainability via regular updates and community collabor ations. Par allel pathways in MIGHTS enable concurrent 
training of scientists at any programming lev el, addr essing the heterogeneous needs of novice bioinformaticians. 

Ke yw or ds: tr aining, STEM education, Galaxy project, single-cell RNA-seq analysis, scRNA-seq, bioinformatics, reproducibility, sustain- 
ability 
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Introduction 

Although bioinformatics is critical to basic biological and applied 

biomedical r esearc h, ther e r emains a shorta ge of scientists with 

bioinformatics expertise [ 1 ]. As computational domains of biology 
continue to grow, bioinformatics play an important role in ground- 
br eaking discov eries [ 2–5 ]. Thinking computationall y about bio- 
logical processes has been shown to produce more accurate mod- 
els [ 6 ] and enhance problem-solving [ 7 ]. Ho w ever, it is important 
to note that bioinformatics often r equir es man y expensiv e r e- 
sources, such as computational infrastructure , maintenance , and 

training [ 8 ]. Financial barriers can limit access to training and re- 
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earch [ 9–13 ]. As such, many bioinformaticians rarely receive for-
al training in the field [ 8 ], and teaching bioinformatics is notably

ifficult. 
Integrating bioinformatics into undergraduate curricula may 

ddr ess this ga p [ 1 , 14 ]. Bioinformatics has been intr oduced in
igh sc hools, wher e it w as sho wn to impr ov e awar eness, enga ge-
ent, and self-efficacy of students, leading to increased interest 

n STEM careers [ 15 ]. Pharmaceutical companies need biomedi-
al analysts [ 16 ], most emplo y ers in the life sciences prefer some
ompetenc y in softw ar e anal yses [ 17 ], and the use of bioinfor-
atic analyses to characterize novel cell types and lineages [ 18 ]
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as surged. In response, institutes are beginning to teach founda-
ional computing skills to biologists [ 14 , 19 ]. 

Materials that focus on pr oblem-solving, inter activity, and co-
per ativ e learning hav e demonstr ated enhanced learning out-
omes [ 20 ], and bioinformatics has effectiv el y been taught
y emphasizing interdisciplinary problem-solving [ 21 ]. To stan-
ardize training, a list of “rules” was identified to teach sci-
ntists to pr ogr am: beginning with the end in mind, tak-
ng small steps forw ar d, and focusing on individual tasks
 20 ]. The “end in mind” r equir es domain-specific understand-
ng (i.e., identifying cell types via marker genes) while the
ndividual tasks r equir e pr ogr amming skills (R, Python, tr ou-
leshooting, etc.). This duality forces new biofinformaticians
o learn and a ppl y 2 new skill sets sim ultaneousl y [ 22–24 ].
he need to embed computing into science is not novel [ 25 ],
ut blending skills across disciplines is not without challenges
 26 ]. 

The Galaxy Training Network (GTN) boasts tutorials for anal-
sis across a range of fields, all publicly available and accessi-
le by URL [ 27 ]. The GTN provides free training infrastructure to
ast-tr ac k tr ainees via liv e courses in whic h tr ainers ar e av ail-
ble to monitor and assist participants [ 28 ]. This supports all, but
speciall y low-r esource institutions’, enga gement with bioinfor-
atic training and has additionally been tested for native Spanish

peakers [ 28 ]. Integrating these free resources into undergraduate
urricula has been successful [ 27 ], as training materials include
nter activ e featur es based on r esearc h-bac ked peda gogies. Sepa-
ation of learning components has pr e viousl y been suggested as
n effective method [ 29 ] but raises the question: how can cod-
ng and complex bioinformatic analyses be isolated from one an-
ther? 

Her e, we dir ectl y addr ess the need to separ ate the two for
r aining. Le v er a ging the Galaxy Gr a phical User Interface (GUI)
nd the GTN, we present the Multi-Interface Galaxy Hands-on
raining Suite (MIGHTS): a single-cell RNA sequencing (scRNA-
eq) tutorial suite enabling a smooth transition from data anal-
sis in a button-based, user-friendly environment [ 30 ] to a more
dv anced, flexible pr ogr amming envir onment. Using a sample
ataset, MIGHTS guides users through the steps necessary to
ccomplish commonly published scRNA-seq analyses and visu-
lizations, including generating a matrix, combining datasets,
ltering, plotting, and general exploration of the data, as well
s trajectory inference of a dataset known to represent a de-
elopmental spectrum. The sample dataset provided for use
ith the suite r e v eals a delay in thymic maturation in growth-

estricted neonatal mice [ 31 ]. MIGHTS offers multiple routes of
cRN A-seq analysis, allo wing a button-based or coding-based
ersion of the same commonly published w orkflo ws. Notably,
IGHTS offers opportunities for a heterogeneous student pop-
lation ranging from programming-friendly to programming-
earful, expanding access to critical skills r equir ed for effec-
ive bioinformatic analyses and biomedical and life science re-
earch. 

ethods 

ultienvironment 
IGHTS consists of 11 tutorials: 6 button-based (BB) and 5 in
 pr ogr amming envir onment (PE) eac h making use of common
nal ysis pac ka ges (Table 1 ). 

The Galaxy GUI features “click-to-run” buttons that execute
r ogr amming functions [ 30 ].Users select andset parameters from
rop-down lists and input boxes (Fig. 1 , left column: button-
ased). Each tool includes help text to guide users anddescribe
he flexibility ofthe tool’s function. 

Galaxy’s inter activ e pr ogr amming envir onments [ 61 ] ar e wher e
he PE tutorials take place. Tutorials may be downloaded as
Markdown or Jupyter notebooks [ 62 , 63 ], or users may copy, paste,
nd run each executable code-containing cell from the PE text
Fig. 1 , right column: pr ogr amming envir onment). Jupyter and
Markdown notebooks may be exported at the conclusion of each
oded tutorial for easy r efer ence or repetition. 

ultilevel 
IGHTS caters to the following 3 learning pathways: BB to PE,

traight to PE, and PE with BB (Fig. 2 ). 
In the first case, BB tutorials guide beginners through the k e y

teps of scRNA-seq analysis, establishing familiarity with the
ethods and learning to inter pr et r esults . Next, users ma y repeat

he analysis in the PE, focusing on programming skills while be-
oming familiar with the languages and libraries commonly used
or scRNA-seq analysis (Fig. 2 A). If a user has experience pr ogr am-

ing and wants a more flexible analysis, they may begin with the
E tutorials, learning methods with mor e adv anced functionality
Fig. 2 B). Alternativ el y, experienced bioinformaticians may utilize
alaxy’s Inter activ e Envir onments to learn ne w anal yses or run
omputationally demanding steps that they are unable to do lo-
ally (Fig. 2 C). 

ultilanguage 

cRNA-seq analysis is commonly performed in both R-based
using Seurat [ 46–50 ] & Monocle [ 56 ]) and Python-based (using
canpy [ 41 ]) en vironments . T herefore , parallel analyses were cre-
ted across BB and PE as well as across programming languages—
ffectiv el y demonstr ating m ultiple methods of anal ysis and data
alidation (Fig. 3 ). Users may conduct a typical, full scRNA-seq
nalysis w orkflo w in R or Python in addition to on a GUI or in a PE.

esearch-rele v ant skills 

IGHTS demonstrates the use of many frequently used data
ypes and pac ka ges for scRNA-seq anal yses (Table 1 ), pr eparing
sers with r esearc h-r ele v ant skills. Br oadl y a pplicable use of pro-
ramming functions , algorithms , and troubleshooting lends itself
o increased creativity and critical thinking [ 64 , 65 ]. This also im-
r ov es users’ emplo y ability and r eac hes scientists in v arious r e-
earc h gr oups, r egardless of the method they prefer. 

utorials 

ach tutorial begins with data import. The data used in MIGHTS
ome from a published study by Bacon et al. [ 31 ], describing a
ouse model of fetal growth restriction that is publicly avail-

ble from the EMBL-EBI ArrayExpress under accession number E-
TAB-6945 and may additionally be explored in the Single Cell Ex-

ression Atlas [ 66 ]. Tutorials in MIGHTS work with the same data
hr oughout to demonstr ate anal yses using differ ent methods and
ools. Tutorials use r eal, uncur ated data, whic h hav e simpl y been
ubsampled to enhance computational efficiency. The source data
re the same, but each analysis allows import of a unique data file
o start. Tutorials are designed to be completed in order but may
e performed out of order—if a user wishes to learn how to clus-
er cells using Scanpy ( RRID:SCR _ 018139 ), for example, they may
elect the dedicated tutorial and start with the pr ovided, pr epr o-
essed file(s). 

https://scicrunch.org/resolver/RRID:SCR_018139
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Table 1: MIGHTS tutorials with used pac ka ges and data types 

Analysis Environment | tutorial (Package/Language) Packages Data types 

Preprocessing BB | Generating a single-cell matrix using Alevin Salmon [ 32 ] with Alevin [ 33 ] FASTQ 

BB | Combining single-cell datasets after pr epr ocessing dropletUtils [ 34 , 35 ] (emptyDrops 
[ 34 ]) 

FASTA 

PE | Generating a single-cell matrix using Alevin and 
combining datasets (bash + R [ 36 ]) 

atlas-gene-annotation-manipulation 
[ 37 ] 

GTF 

tximeta [ 38 ] (PE) SingleCellExperiment 
Object 

biomaRt [ 39 , 40 ] (PE) SummarizedExperiment; 
AnnData 

Plotting and in- 
terpretation 

BB | Filter, plot, and explore single-cell RNA-seq data (Scanpy) Scanpy [ 41 ] AnnData 

PE | Filter, plot, and explore single-cell RNA-seq data (Scanpy, 
Python [ 42 ]) 

igr a ph [ 43 ] (PE) 

louvain [ 44 ] (PE) 
pandas [ 45 ] (PE) 

BB | Filter, plot, and explore single-cell RNA-seq data (Seurat) Seurat [ 46–50 ] AnnData (for conversion to 
Seurat) 

PE | Filter, plot, and explore single-cell RNA-seq data (Seurat, 
R) 

Matrix [ 51 ] (PE) Seurat Object 

dplyr [ 52 ] (PE) 
Trajectories BB | Inferring single-cell trajectories (Scanpy) Scanpy [ 41 ] AnnData 

PE | Inferring single-cell trajectories (Scanpy, Python) fa2 [ 53 ] (PE) 
igr a ph [ 43 ] (PE) 
louvain [ 44 ] (PE) 
numpy [ 54 ] (PE) 
matplotlib [ 55 ] (PE) 

BB | Inferring single-cell trajectories (Monocle3) Monocle [ 56 ] Cell Data Set 
PE | Inferring single-cell trajectories (Monocle3, R) anndata [ 57 ] (PE) AnnData (for conversion to 

Cell Data Set) 
viridislite [ 58 ] (PE) 
magrittr [ 59 ] (PE) 
Rcpp [ 60 ] (PE) 
biomaRt [ 39 , 40 ] (PE) 
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MIGHTS’s full w orkflo w consists of thr ee sequential anal yses 
aligning with standard scRNA-seq pipelines [ 67 ] and allowing 
users to compare results across methods. 

Generating a single-cell matrix using Alevin and combining 

datasets 
The first two tutorials demonstrate the transformation of a FASTA 

sequencing file into a count matrix (Fig. 4 , Supplementary Figs. S1 ,
S2 ). The BB tutorial describes principles of transcriptome quan- 
tification, while the PE tutorial introduces users to the many 
means of installing r equir ed pac ka ges . T his tutorial will take users 
fr om aligned r ead counts to a single-cell experiment (SCE) ob- 
ject, which may be further analyzed and converted in RStudio 
( RRID:SCR _ 000432 ) or Jupyter Notebook. 

Users first generate a transcript-to-gene map using FASTQ files,
a GTF file, and a r efer ence FASTA tr anscriptome. A Salmon index 
of the transcriptome is created, and a cell-by-gene count matrix is 
built using Alevin. The BB tutorial combines these two steps using 
one Galaxy tool and demonstrates basic quality control checks,
including a description of the barcode rank plot “knee detection”
method. 

The PE tutorial identifies empty droplets, adds cell and gene- 
le v el metadata, and flags empty droplets based on transcript 
count. Droplet annotation is corrected for false discovery, and 

the matrix is filtered before combining the datasets manually. PE 
users save and export files while converting formats to SCE so they 
are compatible with downstream analyses. 
The BB tutorial incor por ates metadata str aight fr om a GTF file
sing a tool to extract gene names and IDs and to label mitochon-
rial transcripts . T he generated gene information is assigned to
he matrix, which is subsequently transposed for compatibility 
ith tools meant for 10x Genomics softwar e. EmptyDr ops is then
sed to r emov e empty droplets. 

Half of the remaining suite emphasizes use of AnnData- 
ompatible pac ka ges. To pr epar e users, tutorials conclude with
 final format conversion from SCE to AnnData with the SCEasy
ool. Once each object has been converted, the BB user concate-
ates them with a Galaxy tool. The BB tutorial sets the user and
heir objects up for the next tutorial by adding a number of useful

etrics to help visualize the data in the coming tutorial(s). Work-
ows for each tutorial are shown in Fig. 4 . 

ilter, plot, and explore with Scanpy 

hese tutorials filter and analyze a preprocessed scRNA-seq ma- 
rix using Scanpy (Fig. 5 ). PE users le v er a ge Python via a Jupyter
otebook to filter the data for noise, as well as accomplish com-
on visualizations and differ ential expr ession anal ysis acr oss

lusters for the purpose of cell type labeling. 
The PE tutorial imports a raw AnnData file and demonstrates 

tor a ge as a pandas dataframe, while users iter ativ el y visualize
ata with violin and scatter plots to determine filtering thresh-
lds. Users filter the data to r emov e tec hnical artifacts and poor-
uality cells . T he PE alternativ el y uses Boolean indexing for this
ather than Scanpy’s built-in functions. Users remove transcripts 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae107#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae107#supplementary-data
https://scicrunch.org/resolver/RRID:SCR_000432
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F igure 1: P erforming the same ste p (plotting a mark er gene: Il2ra on UMAP embed ding) using Galaxy GUI and pr ogr amming envir onment with both 
Python-based Scanpy and R-based Seurat packages . T he resulting plots, although slightly different, represent the same biological information, no 
matter if the BB or PE method was used. 
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o longer expressed in more than 3 cells and ar e pr ompted to
ompar e differ ent thr esholds for the filtering of genes. 

Log normalization aligns gene expression along a normal dis-
ribution. The PE tutorial includes a description of how normal-
zation works and what other methods exist. Variable genes are
agged for use in more computationally demanding steps. Scaling
he data ensures all genes have equal variance and a zero mean,
reating a matrix that is compatible with downstream analyses. 

Users next reduce the dimensionality of the matrix to allow
isualization and inter pr etation. Principal component analysis
PCA) is performed to calculate the most descriptive principal
omponents (PCs). Users plot PCs against the standard variation
hey describe, visualizing how PCs relate to variance in their data.
he PCs are used to compute a k-nearest-neighbors graph, stor-

ng a r epr esentation of connections between and acr oss cells. Fi-
al dimensionality reductions are performed with t-distributed
tochastic neighbor embedding (tSNE) [ 68 ] and Uniform Manifold
ppr oximation and Pr ojection (UMAP) [ 69 ]—both methods r educ-

ng the data down to 2 dimensions for visualization. 
Scanpy’s clustering function(s) assign each cell to a cluster

ased on transcriptomic similarity. The tutorials describe clus-
ering algorithms and prompt users to experiment with multi-
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Figure 2: Representation of 3 possible user journeys using MIGHTS. (A) A beginner starting from button-based (BB) tutorials who can then move to the 
pr ogr amming envir onment (PE). (B) An experienced pr ogr ammer who can start the anal ysis dir ectl y fr om the PE, skipping intr oductory BB tutorials. (C) 
A skilled user who can optimize analyses by swapping between Galaxy GUI to perform computationally intensive steps and a programming 
environment for more flexible analyses. 

Figure 3: A dia gr am of the connections of tutorials. It highlights that the languages and packages used in BB and PE tutorials are consistent and allow 

moving between them easily. 
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ple clustering resolutions, adjusting such that the assigned clus- 
ters visually represent what is understood to be biologically accu- 
r ate. Scanpy’s r ank_genes_gr oups identifies the most r epr esenta- 
tiv e tr anscripts for eac h cluster and genotype, and PE users tr ans- 
form the output into a data frame. 

Users visualize all three dimensionality reductions, different 
clustering resolutions, and the expression of marker genes. A ta- 
ble of marker genes per cell type from the literature is provided 

so that the user may inspect their expression patterns and map 

them to the correct cluster(s). Users label each cluster with a cell 
type, and plots are saved to the Galaxy history or notebook to 
be exported. BB users ar e additionall y intr oduced to the CELLx- 
a
ENE ( RRID:SCR _ 021059 ) [ 70 ] tool: an inter activ e envir onment for
isualizing and exploring scRNA-seq data. Tutorial workflows are 
hown in Fig. 5 and Supplementary Fig. S3 . 

ilter, plot, and explore with Seurat 
hese tutorials closel y r esemble the w orkflo ws of the preceding
canpy ones, this time making use of the R pac ka ge Seur at. The
 orkflo ws teach users the basics of scRNA-seq data analysis, in-

luding typical pr epr ocessing; basic visualization with Feature- 
lots , DimPlots , and UMAPs; and exploration of differentially ex-
r essed genes acr oss clusters and experimental v ariables (Fig. 6
nd Supplementary Fig. S4 ). 

https://scicrunch.org/resolver/RRID:SCR_021059
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae107#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae107#supplementary-data
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Figure 4: A dia gr am of workflows in the pr epr ocessing tutorials. (A) Workflow for tutorial “Generating a single-cell matrix using Alevin.” Solid stars 
denote steps specific to the PE tutorial while unfilled stars r epr esent BB-specific ones. (B) Workflow for tutorial “Combining single-cell datasets after 
pr e-pr ocessing.” Both w orkflo ws featur ed in the BB tutorial ar e combined in the PE. A figur e of an extr acted Galaxy w orkflo w is available in 
Supplementary Figs. S1 and S2 . 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae107#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae107#supplementary-data
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F igure 5: Workflo ws of plotting and inter pr etation tutorials: filter, plot, and explore with Scanpy. Featur es cr eation of single-cell objects, normalizing 
data, identifying variable genes, performing dimensionality reduction, identifying clusters, finding marker genes, and inter pr eting plots. A figure of the 
extracted Galaxy w orkflo w is available in Supplementary Fig. S3 . 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae107#supplementary-data
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F igure 6: Workflo w of the Filter, Plot, and Explor e tutorial with Seur at. Featur es gener ation of a Seur at object, quality contr ol plots , filtering cells , 
pr ocessing, dimensionality r eduction, clustering, finding marker genes, and creating many plots to analyze the results. A figure of the extracted Galaxy 
w orkflo w is available in Supplementary Fig. S4 . 
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Users import raw counts in both the PE and BB pathways.
E users transition to Galaxy’s Interactive RStudio environment,
here they are shown how to set up an environment and given
n explanation of how and why pac ka ges m ust be loaded prior
o use, as well as how to use Galaxy’s gx_get() function for data
mport. Users manually change the column names of the experi-

ental design data for compatibility with Seurat. 
Users next generate a Seurat object: BB users with Seurat’s

ead10X function and PE users by manually applying barcode and
eature labels to the matrix for input to Seurat’s CreateSeuratOb-
ect function. Each method is accompanied by descriptions of the
lternatives for creating the same Seurat object. 

Users a ppl y cell-le v el metadata to their objects. PE users incor-
orate percent of gene expression (per cell) mapping to the mito-
hondrial genome—a commonly used parameter for quality con-
rol and filtering. Tools are currently being updated to enable BB
sers to do the same. 

Users produce and interpret quality control plots to identify fil-
ering thresholds: assessing potential confounders in the data and
e v eloping an understanding of how differ ent v ariables driv e this
rocess . T he purpose and theory behind commonly used filtering
ar ameters ar e described so that users may bring the same (or dif-
er ent) str ategies to their own analyses. PE users are additionally
ho wn ho w to pr e vie w the number of cells that would be included
ased on their choice of filtering parameters. 
Both users subset their Seurat object–removing cells outside
he chosen threshold(s). PE users additionally remove genes that
r e now expr essed at suc h low fr equencies that they will not con-
ribute biological insight. 

Next, users process their filtered object. In the BB, processing of
he data includes sequentially normalizing the data, identifying
 ariable featur es, and scaling. In a mor e r ecent update to Seu-
at’s w orkflo w , the SCT r ansform function [ 71 , 72 ] was intr oduced,
hic h combinatoriall y conducts the thr ee steps in a manner op-

imized for downstream analyses. SCTransform is used in the PE
utorial while the BB tutorial follows a similar workflow to the one
riginally published by Seurat. Both users subsequently cover di-
ensionality reduction via PCA, deciding on the number of PCs to

se , finding neighbors , identifying clusters , and using UMAP be-
ore guided visualization and exploration of the data. 

nferring single-cell trajectories with Scanpy 

r ajectory infer ences (TIs), or pseudotime anal ysis, pr ovide an al-
ernative means of grouping cells based on gradients of expres-
ion. It is worth noting that not all TI algorithms are fit for all
atasets—these tutorials begin to explore the reasons why and
uide users through the decision-making process . T hese parallel
utorials conduct the typical TI pipeline using Galaxy buttons or in

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae107#supplementary-data
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F igure 7: Workflo w of inferring trajectories with Scanp y tutorial. Featur es methods suc h as force-dir ected gr a phs, diffusion ma ps, and PAGA used to 
infer the cells’ trajectory in pseudotime. A figure of the extracted Galaxy w orkflo w is available in Supplementary Fig. S5 . 
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a Python coded environment to characterize transitions between 

cell states using Scanpy. 
Tutorials ar e significantl y based on Scanpy documentation, be- 

ginning with import of an annotated AnnData object into Galaxy.
Users filter the data to retain a single cell type . T he PE tutorial ad- 
ditionall y demonstr ates installation of modules befor e tr ansfer- 
ring their h5ad data to their Jupyter Notebook with the Galaxy–
Jupyter cross-talk feature. 

Users calculate force directed graphs (FDGs), which represent 
the data mor e a ppr opriatel y for TI than the pr e viousl y gener ated 

tSNE or UMAP visualizations [ 73 ]. Optionally, they may create dif- 
fusion ma ps, whic h can be used in place of PCs to recompute the 
nearest neighbors visualized in the FDGs. 

Both BB and PE users or der cells in pseudotime using Scanp y’s 
diffusion a ppr oac h, whic h accepts r oot cluster assignment in- 
dicating to the algorithm which population of cells the trajec- 
tory begins with. Users visualize inferred trajectories colored 

by pseudotime, as well as save and export their data, plots,
and notebook. Users are encouraged to consider other changes 
across the identified trajectories beyond the scope of the tuto- 
rial. Tutorial w orkflo ws are sho wn in Fig. 7 and Supplementary 
Fig. S5 . 

Inferring single-cell trajectories with Monocle3 

Similarly to the aforementioned, the Monocle3 tutorials teach 

users to conduct TI (Fig. 8 and Supplementary Fig. S6 ). These tu- 
torials demonstrate the variability that may arise when trajecto- 
ries ar e inferr ed by differ ent algorithms—this time using the algo- 
rithms emplo y ed b y Monocle3. PE users may implement RStudio 
or Jupyter Notebook through Galaxy’s Inter activ e Envir onments.
In collaboration with the Scanpy TI tutorial, users accomplish an- 
other TI method to additionally validate their results. 

PE users are shown the installation of necessary libraries and 

modules, and they import a filtered AnnData object and familiar- 
ize themselves with the data’s structure . T hey extract the expres- 
sion matrix, cell, and gene metadata and pr epar e them for gen- 
ration of a Cell Data Set (CDS) object—Monocle’s preferred data
ype—with format and column name changes, as well as trans-
osition. BB users may import a CDS file ready for downstream
nalysis in Monocle or the precursor files to create a CDS manu-
lly. 

PE users utilize the BioMart database to r etrie v e gene symbols
nd associated gene IDs. Although not necessary to complete the
utorial’s w orkflo w, this ability is of use to users analyzing their
wn data. 

Users pr epr ocess with Monocle3, beginning with dimensional- 
ty reduction. PCA is the method used in these tutorials, although
atent semantic indexing (LSI), UMAP, and tSNE options are also
 vailable . PE users visualize each PC in relation to gene variance:
o identify how many PCs are needed to capture appropriate vari-
bility. Users ar e pr ovided with visualizations of the output data
iv en differ ent c hoices in PC. 

BB users plot the data in a PC A space , visualizing the effects
f various experimental design variables. PE users may optionally 
orrect for batch effects and enjoy customizable plots for a more
ailor ed anal ysis prior to final dimensionality r eduction. 

Users cluster the data using Monocle3 as the tutorial describes
he differences between clusters and partitions . T he PE tutorial
dditionall y demonstr ates manual partitioning of cells: an impor-
ant step for reliable trajectory inference. 

The PE tutorial demonstrates three combined means of assign- 
ng cell types to the clusters—a supervised, an unsupervised, and
n automated method. Users next infer trajectories relying on 

onocle’s trajectory graph. Once cells have been ordered in pseu-
otime, starting from the user-directed root cell, cells are visu-
lized colored by pseudotime. BB users end here, comparing the
esults of the Monocle3-derived trajectory with the Scanpy algo- 
ithms. 

PE users ar e pr esented with mor e options for differ ential ex-
r ession anal ysis, visualizing r esults, identifying the visualization
ethod best suited for them, and exporting plots, data, and their

ython or RStudio notebook. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae107#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae107#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae107#supplementary-data
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F igure 8: Workflo w of Monocle3 inferring tr ajectories tutorial. Featur es data type c hanges for pac ka ge compatibility, Monocle-specific pr epr ocessing, 
and trajectory inference on a CDS object, follo w ed b y differ ential gene expr ession. A figur e of an extr acted Galaxy w orkflo w is available in 
Supplementary Fig. S6 . 
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iscussion 

e present MIGHTS, a Multi-Interface Galaxy Hands-on Training
uite, where users may embark on three possible learning tra-
ectories: (i) first learning to analyze scRNA-seq data with but-
ons in a GUI and subsequently performing the same, more flex-
ble analysis in a programming environment; (ii) learning to run
he code behind commonly published scRNA-seq analyses; or (iii)
upplementing their preexisting analyses and skills with Galaxy
ools. 

MIGHTS performs analysis from raw reads, guiding users
hr ough filtering, normalization, dimensionality r eduction, data
uality assessment, and biological inter pr etations . T he suite
emonstrates filtering, clustering, annotation, and trajectory in-
erence for a well-rounded scRNA-seq skill set. Each analysis
s demonstrated using methods based on differ ent pac ka ges, li-
r aries, and pr ogr amming langua ges with the hope that MIGHTS
ill pr epar e users to conduct their own, more complex, analyses.

r aining fea tures 

sers of MIGHTS may start at any step by importing preprocessed
nput files, using output files from the preceding tutorial or their
 wn data. Regar dless, the analyses will be replicated across lan-
uages , methods , and starting points (Fig. 9 ), allowing users to
ollow the trajectory best suited for their skill level and analy-
is goals. To facilitate choosing the correct starting point depend-
ng on experience and goals, single-cell-oriented Learning Path-
 ays w er e intr oduced. “Appl ying single-cell RNA-seq anal ysis”

 74 ] and “Applying single-cell RNA-seq analysis in Coding Envi-
 onments” [ 75 ] pathways ar e based on BB and PE tutorials, respec-
iv el y, and may be used to facilitate a smooth transition between
utton-based tutorials and a pr ogr amming envir onment (Fig. 2 A)
r a direct start in the programming environment (Fig. 2 B). Addi-
ionally, to allow for easy identification of the tutorials described
er e, eac h tutorial has been tagged and can be found by enter-

ng “MIGHTS” in the GTN search box to get access to the relevant
aterials. 
Each tutorial builds on the preceding, with no behind-the-

cenes data formatting or annotation r equir ed between tutori-
ls. With visual examples and analysis of various data types, live
raining courses found that trainees who performed tutorials dur-
ng the day could successfully apply the analyses to their own data
n the e v enings [ 27 , 28 ]. 

Learning how to set parameters has long been a difficulty in
ioinformatics training [ 76 ]. By highlighting parameters that are
djusted often, users learn to prioritize what would otherwise be a
e v er-ending list of decision-making. These “Decision-Time” fea-
ur es enable tr aining for individuals and gr oups, with the option
o vary parameter values and compare results (Fig. 10 ). 

Testing of this feature has shown that, broadly, results remain
he same regardless of parameter choice, demonstrating the rele-
ance of robust, iterative analyses and data validation [ 27 , 28 ]. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae107#supplementary-data
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Figur e 9: T he final “cluster plot” as an output of plotting and inter pr etation tutorials acr oss 4 paths: BB tutorial with Scanp y, PE (Jup yter notebook) 
with Scanpy, BB tutorial with Seurat, and PE (RStudio) tutorial with Seurat. The numbers correspond to the identified clusters in the dataset. No matter 
which method (BB vs. PE) or language (Scanpy vs. Seurat) is used, the biological interpretation is consistent in identifying 7 clusters. 

Figure 10: Exemplary “Decision-Time” feature box in tutorial “Filter, plot and explore single-cell RNA-seq data (Scanpy).”
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To facilitate effective comprehension and a self-led learning 
envir onment, tutorials ar e interspersed with question boxes and 

collapsible solutions, allowing users to solidify their understand- 
ing of the material while they learn. 

MIGHTS additionall y pilots m ultiple import str ategies, ensur- 
ing reliability for live training events . T his includes direct import 
from Zenodo [ 77 ], import tools linked to data atlases [ 66 ], and im- 
port from “input” and “answer-k e y” Galaxy histories—which led to 
he de v elopment of a ne w featur e within the GTN to signpost the
ption as supporting material (Fig. 11 ). 

“Answer-k e y” histories follow datasets along e v ery step of anal-
ses , pro viding a final contingency for deli vering li v e tr aining and
r otecting users fr om frustr ation. Tutorials ar e additionall y ac-
ompanied by slide dec ks (whic h can act as a general introduction
o the topic), as well as recordings of the ste p-by-ste p analysis per-
ormed by an instructor. 
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Figure 11: An ov ervie w box found at the beginning of the BB tutorial “Combining single cell datasets after pr e-pr ocessing.” It showcases a header 
featur e, whic h allows for a quick access to the input histories (orange frame) and answer histories (green frame). 
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Figure 12: Galaxy Circle of Life demonstrating the interdisciplinary, 
m ultile v el sustainability practiced by the GTN. Users report changes 
they wish to see made in the training material, prompting new tool 
de v elopment and updates that can be sustainably utilized and tested by 
r esearc hers. 
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earn to code in a beginner-friendly way 

s sequencing strategies and tools continue to advance, it is im-
ortant that the field of bioinformatics “trains the trainer” in re-
ponse to continued growth. To support compr ehension, eac h
utorial provides detailed explanations of biological and com-
utational concepts, including simplified troubleshooting and
 ultiple inter activ e elements. By showing alternativ e methods

o perform a single analysis, users become familiar with the
ost common pr ogr amming langua ges used in the life sciences:

ython and R, as well as command language Bash. This pro-
ides users with well-rounded examples of how to analyze scRNA-
eq data and how they may begin to le v er a ge anal yses (and
alaxy) as a means to learn new programming skills [ 78 ]. These
E tutorials introduce users to r ele v ant pac ka ges , functions , and
ata types used in today’s published bioinformatic analyses (Ta-
le 1 ). 

The tr ansition fr om Galaxy-button tutorials into the coded
nvironment is facilitated by interactive tools such as RStudio
r Jupyter Notebook, such that all the analysis may be com-
leted within Galaxy as opposed to on local computers. Im-
ortantl y, ther e is no need for an y softwar e installation—all
utorials provide necessary tools to complete them, including
xample datasets , slides , videos , w orkflo ws, and public Galaxy
erv ers wher e the anal ysis may be performed. Internet access
s the only additional necessary resource [ 79 ]. This approach
pecifically facilitates accessible bioinformatics analyses by elim-
nating installation hang-ups, minimizing the time spent set-
ing one’s environment, and increasing computing capacity for
sers. 

Additionall y, if users embr ace pr ogr amming suc h that they
re looking to program their own button-based tools or create
e w tr aining material, opportunities to do so exist on GTN pa ges
edicated to de v elopment in Galaxy [ 80 ] and contributing to the
alaxy Training Material [ 81 ]. 
AIR data 

IGHTS tutorials were created on an interface with embedded
ndable , accessible , inter oper able, and r eusable (FAIR) data usage
 80 ]. The FAIR principles can and should be applied in all life sci-
nce domains where large amounts of data ar e pr oduced. FAIR
ata management is particularly important in scRNA-seq anal-
sis, which looks at large expression matrices. Unfortunately, it
s often the case that published datasets come with missing, or
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Table 2: Number of r e visions made to each tutorial featured in MIGHTS as of August 2024 

Tutorial topic BB tutorials PE tutorials 

Months since tutorial 
publication 

Number of 
revisions 

Months since tutorial 
publication 

Number of 
revisions 

Generating a single-cell matrix using Alevin 41 16 8 2 
Combining single-cell datasets after preprocessing 23 16 
Filter plot explore scRNA-seq data with Scanpy 40 18 11 9 
Filter plot and explore scRNA-seq data with Seurat 4 3 10 8 
Inferring single-cell trajectories with Scanpy 8 5 40 15 
Inferring single-cell trajectories with Monocle3 22 19 15 10 
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incomplete, metadata—rendering the dataset less useful than it 
would be with complete annotation(s). By completing MIGHTS tu- 
torials, users become equipped with the skills helpful in format- 
ting such demanding datasets. 

Sustainable 

An important feature characterizing MIGHTS is its sustainability.
As pr e viousl y r eported, the e volving natur e of bioinformatics r e- 
quires a sustainable bridge between the fields of biology and in- 
formatics [ 81 ]. Ther efor e, collabor ation between de v elopers and 

domain experts is critical. The GTN emphasizes that users be in- 
cluded in this collabor ation, wher eby users hav e the opportunity 
to report issues and request additional resources . T his facilitates 
involv ement of de v elopers who ar e awar e of user needs and users 
who ar e activ el y contributing to the impr ov ement of materials.
Any issues may be reported back to tutorial developers them- 
selv es, demonstr ating the sustainability of Galaxy’s Circle of Life 
(Fig. 12 ). 

Tutorials on the GTN are, at minimum, updated annually in 

pr epar ation for the Galaxy Community Conference (GCC). The 
Galaxy Circle of Life functions such that tutorials will continue to 
meet evolving user needs—largely thanks to the commitment of 
the growing Galaxy Single-Cell & Spatial Omics Community. No- 
tabl y, MIGHTS tutorials hav e been updated, on av er a ge, 7 times a 
year since their r espectiv e publication (Table 2 ). 

The number of r e visions demonstr ates continued sustainabil- 
ity of tutorials featured in the suite. 

Notably, the GTN offers tutorials on additional bioinformatic 
analyses in a variety of fields . T hese tutorials are similarly mon- 
itored and revised, although the rate of growth specifically for 
single-cell tutorials is worth noting. 

Addressing modern challenges in bioinformatics 

MIGHTS addr esses man y br oad c hallenges of bioinformatics 
tr aining, emphasizing that effectiv e bioinformatics involv es un- 
derstanding k e y principles and gaining experience [ 22 ] with real- 
world data, problem-solving [ 24 ], reproducibility [ 82 ], and valida- 
tion [ 83 ]. 

One challenge in bioinformatics is the application of analyses 
fr om tr aining courses to real, messy, lab-generated data. Uniquely,
MIGHTS uses raw, unannotated data from a published analysis—
Bacon et al. [ 31 ]—and guides users through reformatting, anno- 
tating, and conducting biological analyses. 

Reproducibility and reinstantiation, k e ystones of quality bioin- 
formatic anal yses, ar e ensur ed by MIGHTS thanks to published 

w orkflo ws and answ er k e y histories for each dataset (Fig. 11 ).
Workflows are available on the Galaxy servers , pro viding a sta- 
ble way to perform a particular analysis in an identical environ- 
ment. By linking detailed tool versions to the tutorial w orkflo ws 
hemselves, it is possible to submit new input files, adjust param-
ter thresholds, and wait for an output. This is particularly help-
ul for analyzing multiple samples that require the same pipeline,
llowing r epr oducible r esults, minimizing time spent r erunning
ode, and eliminating the need for complex coding skills to de-
elop pipelines. 

To address another challenge of the field, MIGHTS emphasizes 
he importance of validating one’s results: to determine whether 
 esults r eflect an actual biological pr ocess v ersus artifacts of the
ipeline. Using tools based in various programming languages and 

ultiple algorithms allows users to feel confident that their re-
ults ar e uncov ering true biological insights no matter the anal-
sis method used (Fig. 9 ). MIGHTS can act as a guide on how to
 alidate r esults . T he suite ma y additionall y be used dir ectl y by
ovice to intermediate bioinformaticians to c hec k whether their
 esults ar e consistent via alternativ e methods without needing to
earn another pr ogr amming langua ge. 

Because bioinformatics combines numerous STEM fields, it 
aces interdisciplinary and inter gener ational c hallenges [ 84 ]. Soft-
ar e de v elopers often do not understand the underlying biology

heir pr ogr ams anal yze, and biologists often do not know how an-
lytical algorithms function [ 85 ]. MIGHTS aims to fill this gap by
ntroducing ste p-by-ste p analyses, while simultaneously demon- 
trating the biological interpretation of results and how they were 
ncov er ed. Coded tutorials provide additional opportunities to be-
ome familiar with the algorithms behind the analyses . T he suite
an act as a resource to educate and inspir e futur e gener ations
f bioinformaticians: ones who are able to speak across disci-
lines, effectiv el y identify areas for improvement, and build flexi-
le , long-term solutions . Tutorials are a vailable by link on Galaxy
 86–96 ] 

imitations and further steps 

he main limitation of the Galaxy GUI tutorials is that the anal-
ses are limited to the pac ka ges and functions that have been
r a pped into tools. As suc h, some anal ysis steps might be limited

n the BB tutorials. Ho w e v er, users hav e the opportunity to submit
tool requests”: an ongoing effort to mitigate this limitation. 

Additionall y, tool v ersions m ust be compatible with one an-
ther. To mitigate this limitation, tools are regularly tested and
pdated to allow for analysis using the most recent versions and
nsuring outputs are compatible inputs for downstream steps. Is- 
ues with tools may be reported on Galaxy forums, where experts
nd de v elopers r espond quic kl y to issues. 

The main limitations of the PE tutorials are limited resources
llocated to Inter activ e Envir onments and inconsistencies be-
ween the notebooks on different public Galaxy servers (.eu vs.
org vs. .au). Ho w ever, the educational purpose of the coded-
utorials is to familiarize users with coding en vironments , so
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ownsampled data provide the same benefits and enable most
nalyses to be done within the resource limit. Even so, should a
ser need or want more resources allocated, they can request that
rom the Galaxy admins. 

Ther e ar e ongoing efforts to expand the functionality of
IGHTS to enable more bespoke analyses of datasets, in response

o community needs. 

vailability of Source Code and 

equirements 

� Project name: Multi-Interface Galaxy Hands-on Training
Suite for scRNA-seq 

� Pr oject homepa ge: https:// github.com/ galaxyproject/
tr aining-material/tr ee/main/topics/single-cell/tutorials 

� Operating system(s): web-based, platform independent 
� Pr ogr amming langua ges: R, Python, Bash 

� License: MIT 

dditional Files 

upplementary Fig. S1. Galaxy w orkflo w for tutorial “Generating
 single-cell matrix using Alevin.” The tools used for the analysis
re shown, together with their outputs and connectivities, as well
s high-le v el descriptors of performed steps. Solid stars denote
teps specific to the PE tutorial while unfilled stars r epr esent BB-
pecific ones. 
upplementary Fig. S2. Galaxy w orkflo w for tutorial “Combining
ingle-cell datasets after pr e-pr ocessing.” All tools used for the
nal ysis ar e sho wn, as w ell as their connectivities and high-le v el
escriptors of performed steps. Solid star denotes steps specific to
he PE tutorial. 
upplementary Fig. S3. Galaxy w orkflo w for tutorial “Filter, plot
nd explore single-cell RNA-seq data (Scanpy).” All tools used for
he anal ysis ar e sho wn, as w ell as their connectivities and high-
e v el descriptors of performed steps. 
upplementary Fig. S4. Galaxy w orkflo w for tutorial “Filter, plot
nd explore single-cell RNA-seq data (Seurat).” All tools used for
he anal ysis ar e sho wn, as w ell as their connectivities and high-
e v el descriptors of performed steps. 
upplementary Fig. S5. Galaxy w orkflo w for tutorial “Inferring
ingle-cell trajectories (Scanpy).” All tools used for the anal ysis ar e
ho wn, as w ell as their connectivities and high-le v el descriptors
f performed steps. 
upplementary Fig. S6. Galaxy w orkflo w for tutorial “Inferring
ingle-cell trajectories (Monocle3).” All tools used for the analysis
re shown, as well as their connectivities and high-le v el descrip-
ors of performed steps. 

bbreviations 

B: button based; CDS: cell data set; DPT: diffusion pseudotime;
MBL-EBI: European Molecular Biology Labor atory–Eur opean
ioinformatics Institute; FAIR: findable , accessible , inter oper able,
nd reusable; FDG: force-directed graph; GCC: Galaxy Community
onfer ence; GTF: gene tr ansfer format; GTN: Galaxy Tr aining Net-
ork; GUI: gr a phical user interface; LSI: latent semantic index-

ng; MIGHTS: Multi-Interface Galaxy Hands-on Training Suite for
cRNA-seq; PAGA: partition-based gr a ph abstr action; PC: principal
omponent; PCA: principal component analysis; PE: pr ogr amming
nvironment; QC: quality control; SCE: single-cell experiment;
cRN A-seq: single-cell RN A sequencing; SE: summarized experi-
ent; STEM: Science, Technology, Engineering, and Mathematics;
I: tr ajectory infer ence; tSNE: t-distributed stoc hastic neighbor
mbedding; UMAP: Uniform Manifold Approximation and Projec-
ion. 
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a ta Av ailability 

ll the tutorials are available at the dedicated Single Cell subpage
f the Galaxy Training Network (GTN) [ 97 ]. 

The used experimental data come from a published study by
acon et al. [ 31 ], which is publicl y av ailable fr om the EMBL-EBI
rr ayExpr ess under accession number E-MTAB-6945 and can also
e br owsed fr om the Single Cell Expression Atlas [ 66 ]. The input
atasets used in tutorials ar e stor ed at Zenodo [ 98–103 ], and all
enerated data files are available in the shared Galaxy histories,
ncluded in each tutorial. 

The tutorials comprise many different tools that can be freely
sed at the Galaxy public serv ers, suc h as Galaxy Europe [ 104 ],

https://github.com/galaxyproject/training-material/tree/main/topics/single-cell/tutorials
https://training.galaxyproject.org/training-material/topics/single-cell/tutorials/scrna-case_monocle3-trajectories/tutorial.html#Bacon2018
https://training.galaxyproject.org/training-material/topics/single-cell/tutorials/scrna-case_monocle3-trajectories/tutorial.html#Bacon2018
https://training.galaxyproject.org/training-material/topics/single-cell/tutorials/scrna-case_monocle3-trajectories/tutorial.html#Bacon2018
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Galaxy US [ 105 ], Galaxy Australia [ 106 ], and others . T he tool wrap- 
pers with detailed information are stored at the Galaxy ToolShed 

[ 107 ]. 
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