
Accessible Gesture Typing on Smartphones for People with Low
Vision

Dan Zhang,
Department of Computer Science, Stony Brook University New York, USA

William H Seiple,
Lighthouse Guild New York, USA

Zhi Li,
Department of Computer Science, Stony Brook University New York, USA

IV Ramakrishnan,
Department of Computer Science, Stony Brook University New York, USA

Vikas Ashok,
Department of Computer Science, Old Dominion University Virginia, USA

Xiaojun Bi
Department of Computer Science, Stony Brook University New York, USA

Abstract

While gesture typing is widely adopted on touchscreen keyboards, its support for low vision users

is limited. We have designed and implemented two keyboard prototypes, layout-magnified and

key-magnified keyboards, to enable gesture typing for people with low vision. Both keyboards

facilitate uninterrupted access to all keys while the screen magnifier is active, allowing people with

low vision to input text with one continuous stroke. Furthermore, we have created a kinematics-

based decoding algorithm to accommodate the typing behavior of people with low vision. This

algorithm can decode the gesture input even if the gesture trace deviates from a pre-defined word

template, and the starting position of the gesture is far from the starting letter of the target word.

Our user study showed that the key-magnified keyboard achieved 5.28 words per minute, 27.5%

faster than a conventional gesture typing keyboard with voice feedback.

Keywords

low vision; accessibility; smartphone keyboard; text input; gesture input; word gesture

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

zhang64@cs.stonybrook.edu .

HHS Public Access
Author manuscript
Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025
January 08.

Published in final edited form as:
Proc ACM Symp User Interface Softw Tech. 2024 ; 2024: . doi:10.1145/3654777.3676447.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1 INTRODUCTION

The text entry technology in smartphones has advanced rapidly. Gesture typing [19, 46–48]

allows users to enter text by gliding a finger over the letters of a word. This method

suits touch-based interaction and supports word-level input. It is available on all major

touchscreen keyboards, including Google’s Gboard, Microsoft’s SwiftKey, and iOS’s built-

in keyboard. Despite its popularity, many who could benefit from gesture typing, notably

people with low vision, are excluded. Low vision is vision loss uncorrectable by refractive

optics or surgery [35], encompassing conditions like limited vision field, light sensitivity,

blurry vision, or contrast issues. This paper focuses on low vision individuals who can

see keys after magnifying the keyboard. They often use screen magnifiers to interact with

smartphones. To type a word, they magnify the keyboard, pan to find each letter, and tap to

select it, repeating this for every letter. This process is slow and laborious. Gesture typing

could help by eliminating repetitive actions for each letter.

Existing gesture typing keyboards poorly support low vision users. Two challenges stand

out: (1) With the screen magnifier on, some keys on the soft keyboard become invisible

if they are outside the viewport. Consequently, words containing these letters cannot be

entered in one stroke. (2) Low vision users exhibit distinct input behaviors. The landing

position of the input finger may be far from the starting letter, and users often wiggle the

input finger due to delayed audio feedback and limited visual feedback. Current gesture

keyboards, like the SHARK2 decoding algorithm [19], match the input gesture’s shape with

pre-defined templates, assuming it will approximate the intended word’s shape—this does

not account for low vision users’ behaviors. Our user study I with 10 low vision users

showed that half could not use an existing gesture keyboard.

In this paper, we designed and implemented the prototypes of two gesture typing keyboards

for low vision users: layout-magnified and key-magnified keyboards (Figure 1). We have

made innovations in both the interface and decoding algorithm design. On the interface

front, the layout-magnified keyboard magnifies the entire keyboard layout and supports a

user to enter any letters in one continuous stroke; the key-magnified keyboard magnifies the

key underneath the finger only thus all the keys are visible and accessible during the gesture

input. On the algorithm front, we designed and implemented a kinematics-based decoding

algorithm which decodes a gesture input based on its kinematic features such as the distance

between the turning points and key centers, and the speed of the gesture as it crosses a letter.

This algorithm accommodates the unique input behavior of low vision people whose gesture

often deviates a great deal from the ideal template of entering a word (i.e., the polyline

prototype connecting the centers of keys).

We conducted a user study II to investigate the effectiveness of the two novel gesture

typing keyboards designed for users with low vision: layout-magnified and key-magnified

keyboards. The results showed the key-magnified keyboard improved typing speed for low

vision users compared to a conventional gesture typing keyboard with integrated voice

feedback. Participants achieved typing speeds of 5.28 words per minute (WPM) with

key-magnified keyboard, representing increases of 27.5%. Furthermore, these keyboards

outperformed a typical commercial implementation of tap typing keyboard with a TalkBack

Zhang et al. Page 2

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

default method. Typing speeds increased by 54.2% and 77.6% for layout-magnified and

key-magnified keyboards, respectively, with error rate reductions of 70.3% and 78.6%.

These findings demonstrate that the key-magnified keyboard has the potential to expand the

accessibility of gesture typing technology for users with low vision.

2 RELATED WORK

2.1 Text Entry Accessibility Tools on Smartphones

People with low vision rely on accessibility tools to interact with smartphones. The

commonly used accessibility features on a smartphone are magnification, text size, audio

feedback, contrast enhancement, black/white reverse [13, 49]. Among these, magnification

and audio feedback are the most widely adopted methods. Magnification allows people

to temporarily zoom into the screen and adjust the zoom level freely according to their

preference. Numerous studies have leveraged the magnifier effect to enhance text entry

such as ZoomBoard [29] and Swipeboard [8]. Audio feedback is an eyes-free technique

that guides users through on-screen content using simple gestures by audibly describing

interface elements, such as VoiceOver [39] on iPhone and TalkBack [36] on Android.

Additionally, color inversion and text size settings offer customization options to improve

visual clarity and reduce glare for users with low vision. Integrating these accessibility

features into smartphones is crucial to empower people with low vision to fully engage in

mobile technology.

Voice input is a popular method to input text on the phone. Early methods such as Dragon

Naturally Speaking [26] were for desktops. VoiceTyping [20] supports dictation using

speech recognition and works on mobile devices. Despite its popularity, researchers found

that incorrectly recognized voice input can be a major reason to impede the speech input

speed [1, 17].

2.2 Gesture Typing

Gesture typing is a word-level text entry method where users swipe on a keyboard to

connect the letters of a word, which is first proposed by Zhai and Kristensson [19, 46–48]

and has been adopted in various commercial keyboards. Compared to traditional tap typing,

gesture typing requires less precise motor control and allows for continuous text input,

potentially offering enhanced accessibility for low vision people.

Researchers have investigated the application of gesture typing across a spectrum of input

modalities and diverse usage scenarios. Bi et.al [3] broadened the gesture keyboard from

single-finger to multiple-finger input. Zhu et al. [51] proposed an eyes-free gesture typing

method using a touch-enabled remote control. Yeo et. al [42] implemented a tilt-based

gesture keyboard for single-handed text entry. Vulture [24] proposed mid-air gesture typing

by projecting hand movement onto a display. Yu et.al [45] explored head-based gesture

typing with head-mounted displays. Lin et al. showed that older adults typed 15% faster and

with 27% fewer errors using gesture typing on QWERTY keyboards on the smartphone [21].

While gesture typing is becoming more and more popular [9–11, 21, 46–48], low vision

people still face considerable barriers in using gesture typing on smartphones.

Zhang et al. Page 3

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.3 Text Entry Techniques for Low Vision People

Existing text entry techniques for users with low vision primarily focus on letter-level

input. Rakhmetulla et al. designed Senorita [30], a two-thumb virtual chorded keyboard

prioritizing comfort over speed for mobile devices. Lu et al. proposed a split keyboard

where users focus on the output text displayed in their remaining vision while keeping the

keyboard in their peripheral view [22]. VIP-Board [33] supports letter-level auto-correction

by improving the keyboard decoder. Zhu et. al. [50] explored the potential of invisible

keyboards on smartphones. Samanta et al. [31] proposed a text entry mechanism using

directional movement gestures. Various eyes-free techniques have been developed to support

text entry on a touch screen for low vision and blind people [6, 14, 25, 27, 28, 32, 37,

43]. These techniques include No-Look Notes by Bonner et al., allowing users to select

letters through two virtual keys [6], NavTouch by Oliveira et al., utilizing gestures for letter

navigation before selection [27], and Sánchez et al.’s method based on virtual key selection

[32]. Guerreiro et al. explored bimanual interaction and stereo speech to enhance QWERTY

keyboard speed, but this approach yielded limited benefits [16]. In addition, several recent

studies [15, 18, 34] identified promising avenues for future research in text entry design for

people with low vision.

AGTex [5] is the only well-established work that explored word-level text entry for people

with visual impairments. It utilizes audio feedback to compensate for the absence of visual

feedback. However, it does not fully utilize the user’s potential and accessibility features

such as the screen magnifier. To address this gap, this paper proposes a novel gesture

input method that uses both auditory feedback and the magnifier functionality. Additionally,

we introduce a customized decoder specifically designed to account for the unique input

behaviors of low vision users.

3 USER STUDY I: UNDERSTANDING GESTURE TYPING FOR LOW VISION

PEOPLE

Unlike previous researcher-centric approaches [15, 18], this paper adopts a user-informed

design methodology. We first conducted a formative user study to evaluate how low vision

participants use existing gesture typing keyboards. The insights from this user study guided

the development of gesture typing keyboards aimed at improving accessibility.

3.1 Participants and Apparatus

We recruited 10 low vision participants (6 females, 4 males) aged 36 to 75 years (average

57.9 ± 15.2). Participants were from a non-profit vision and healthcare organization. The

study was approved by the Institutional Review Board (IRB) and all participants provided

their informed consent. Table 1 presents participant demographics. All participants used

the index finger for text input. On a five-level Likert scale (1:never heard of - 5:expert),

participants had a median familiarity of 1 with gesture typing and 3 with the QWERTY

layout.

We used a Google Pixel 2 smartphone with a 5-inch 1920 × 1080 display running Android

11 for the study. We developed a web-based gesture typing keyboard resembling a modern

Zhang et al. Page 4

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

keyboard interface (see Figure 2) because commercial keyboards like Gboard or iPhone’s

built-in keyboard are incompatible with TalkBack and VoiceOver in gesture typing mode.

Our keyboard supports accessibility features such as screen magnifier, color inversion, and

voice feedback. It uses a SHARK2 decoder [19, 47] and a bigram language model (10k

unique words) to decode the user gesture.

3.2 Experiment Design

We adopted a text transcription task, where participants transcribe a set of phrases using

our web-based keyboard. The task consists of a warm-up session with five phrases and a

formal test session with 10 phrases. The warm-up phrases were randomly picked from a

versatile phrase set for evaluating typing task [38]. The test phrases were randomly picked

from the T-40 dataset [44]. All phrases were the same for each participant but presented

in a random order. Figure 2 shows a screenshot of the transcription task. We recorded the

following information for further analysis: timestamp, gesture trace, and current texts while

typing.

3.3 Procedure

After greeting the participants, we introduced the purpose and obtained informed consent.

We conducted a pre-study interview to collect demographic information, visual condition,

typing posture, expertise, and QWERTY familiarity. Before the formal study, we configured

the smartphone based on accessibility preferences (including the screen reader and color

inversion), provided a 5-minute tutorial on gesture typing, and held a warm-up session

with five phrases. During the formal study, participants were instructed to complete the

transcription task as accurately and fast as possible in a comfortable posture. They may skip

a word after five input attempts. They need to tap the submit button to complete a phrase.

The formal study was limited to 40 minutes to account for typing variations, even if they

unable to complete all phrases within this time. After the transcription task, participants

were invited to participate in a post-study survey. This survey aimed to collect valuable

feedback on potential areas for improvement in the gesture typing method. The user study

lasted about an hour.

3.4 Results

3.4.1 Completion Rate.—Table 2 presents the number of phrases completed by the

10 participants in the text transcription task. We can see that half of the participants were

unable to complete the entire task. Among them, four participants encountered significant

challenges during the warm-up session and were unable to transcribe any phrase. We

identified several potential factors: (1) Screen size: The user study used a 5-inch phone,

smaller than their usual phones (no less than 6 inches). This smaller screen size might have

made accurate gesture typing difficult. (2) False spelling: Gesture typing involves swiping

across multiple keys in sequence which requires users to coordinate finger movements.

Learning, memorizing and consistently executing these gestures can be challenging. (3)

Limited practice: Some participants (P4 and P7) mainly used voice input instead of on-

screen typing. Learning a new typing method like gesture typing requires dedicated practice

time.

Zhang et al. Page 5

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.4.2 Input Speed.—We measured the input speed of the participants based on their

completed phrases by Words Per Minute (WPM) [41]. The mean speed (SD) across the 10

participants is 3.1 WPM (SD=2.22). We observed that the participants spent a large amount

of time searching for letters.

3.4.3 Error Rate.—We looked into the Word Error Rate (WER) based on the completed

phrases. The WER was calculated based on the Minimum Word Distance (MWD) [2]. The

mean WER (SD) for all participants is 5.7% (SD = 11.16%).

3.4.4 Gesture Visualization.—To better understand how the typing error occurred, we

visualized some representative gesture traces in Figure 3. In Figure. 3a the trace wiggled

around the letter ‘Z’ which indicates that the participant was exploring the keyboard to find

the ‘X’ key. Near the ‘M’ key in Figure 3b and the ‘K’ key in Figure 3c, we can observe

a pattern of changing gliding directions. This pattern can be utilized to improve gesture

decoding performance.

3.4.5 User Feedback.—Some participants (ID: P2, P3, P8, P9) expressed a positive

reception for gesture typing and agreed that they could type faster after more practice. We

identified three main reasons based on their comments: First, gliding fingers on the screen

is natural and saves effort lifting the finger (P3: “I like the way sliding the finger to type”).

Second, there is less pressure for the eyes to recognize the keys and locate the finger on the

keyboard for they have the information about the relative positions of keys (P9: “Gliding the

fingers is easier for me and my eyes feel relieved”). Lastly, the practice of gesture typing

instills knowledge of word shapes in the participants’ minds, thus it becomes easier for them

to correct the errors (P8: “I can build Confidence in the gesture typing process”). There is

one interesting comment from P10 that gesture typing can improve the ability of spelling.

These comments highlight the potential importance of gesture typing as an option for text

entry for individuals with low vision.

3.5 Implications for Designing Keyboard for Low Vision People

The existing decoding algorithm (e.g. SHARK2) assumes that the gesture input of a user

approximates the predefined template of the intended word (i.e., the shape formed by

connecting centers of keys of the intended word with straight lines), while low vision

people’s gesture often deviates from such a template. We identified the following major

characteristics of gesture input for low vision people, and explained how we could improve

the gesture typing technique to accommodate low vision people:

• Inaccurate starting position. We observed that it is hard for low vision users to

accurately land the finger on the first character of a word to start the gesture.

The decoding algorithm should relax the constraint that the gesture needs to start

from a position near the first letter.

• Wiggling in the gesture. With a lack of visual feedback of where the finger lands

on the screen, low vision people tend to wiggle the input finger near the intended

key: they explore the region to confirm that the intended key was reached.

Because of these wiggling behaviors, the gesture input from low vision people

Zhang et al. Page 6

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

deviates from the pre-defined template of the intended word, which causes poor

gesture recognition results. We suggest leveraging such wiggling behavior to

improve the gesture recognition accuracy when designing the decoding algorithm

for low vision people.

• Pauses on intended keys. Low vision users usually dwell longer at an intended

key. Some possible reasons for such pause behavior are: (1) They need to wait

for the auditory feedback which indicates the gesture reached the desired key. (2)

They need to figure out in which direction to move based on their memory of the

keyboard layout.

• Cannot use the magnifier in gesture typing. As previously explained, gesture

typing requires a user to enter one word with one continuous gesture, and it

does not work with a screen magnifier because some keys will be displayed

outside the current viewport once the keyboard is magnified. The keyboard

should provide a mechanism that allows users to reach these inaccessible keys in

the middle of gesture typing.

• Suggestion bar is under-utilized. Participants rarely used the suggestion bar of

the keyboard in the study. They commented that the current keyboard interface

required them to switch the input focus to the suggestion bar to use it, which

broke their interaction flow so they rarely used it.

4 ACCESSIBLE GESTURE TYPING KEYBOARDS FOR PEOPLE WITH LOW

VISION

Based on the results obtained from user study I, we created two accessible gesture typing

keyboards for people with low vision. Our keyboards contribute to both interface design and

decoding algorithm design. Our keyboards allow users to access all keys when the magnifier

is turned on. we designed and implemented a new decoder (kinematics-based decoder) that

decodes the gesture based on kinematic features of gesture input of low vision people.

4.1 Keyboard Interface Design

We developed two keyboards, a layout-magnified keyboard and a key-magnified keyboard,

to address a key issue identified in our formative user study: the current on-screen magnifier

sometimes pushes keys out of the magnified viewport, making them inaccessible. The

layout-magnified keyboard automatically shifts the keyboard position to display keys

that are outside the viewport. In the key-magnified keyboard, all keys remain accessible

because the layout is not magnified. Both designs aim to enhance accessibility, with the

key-magnified keyboard providing a consistent layout that prevents any key from becoming

unreachable.

4.1.1 Layout-magnified Keyboard.—We first designed a keyboard with a magnified

layout that follows the movement of the typing finger. As shown in Figure 4b, a touchdown

event anywhere on the screen initiates a zoom-in effect of the keyboard centered at the touch

point. The keyboard continuously translates its location and moves towards the movement

direction of the user’s finger. The zoom-in effect disappears when the user lifts the finger up.

Zhang et al. Page 7

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4.1.2 Key-magnified Keyboard.—This keyboard magnified the key underneath the

input finger. As shown in Figure 4c, this keyboard has a static layout and provides an

overlay magnifier following the movement of the gliding finger. The magnifier is located at

the upper-left of the intended letter, intentionally avoiding any overlap. If the input finger

reaches the left edge of the keyboard, the magnifier’s placement shifts to the upper-right

region.

4.1.3 Suggestions.—Picking the intended word from the suggestions can save effort

from retyping it. The participants in user study I hardly used the suggestion bar due to the

lack of accessibility. To address this problem, we show the top suggestion with an enlarged

font (Figure 4d) and three suggestion words below it. The magnifier also works for the

suggestion bar.

We also show the just typed word at the same position with the top suggestion so that users

could check what has been inputted.

4.1.4 Voice Feedback.—Our keyboards also support voice feedback. Specifically, the

keyboard reads out every key underneath the finger. When the user lifts the finger from the

screen to complete a gesture typing, it also provides voice feedback for what is just typed.

When the user explores the suggestion bar, the keyboard reads out the word underneath the

finger as well.

4.2 Kinematics-based Decoding Algorithm for Low Vision People

We propose a kinematics-based decoding algorithm that determines the probability of

entering a letter by examining kinematic features of gesture such as whether the gesture

wiggles near a letter, whether the gesture pauses near a letter, and how long the pause is, etc.

Even though there are some widely used decoders such as SHARK2 [19], they are unsuitable

for our particular scenario. They overlook certain distinctive input patterns exhibited by

low vision users, as enumerated in Section 3.5: (1) ambiguous gesture starting position, (2)

wiggling in the gesture, (3) pause in the gesture. Our design also drew inspiration from

the GlanceWriter [9] which used probabilistic methods to infer the typed letter from the

trajectory of the gaze. Our algorithm stands apart by specifically addressing the finger-based

gesture input behavior (as mentioned above) exhibited by low vision users, in contrast to the

approaches in GlanceWriter that were tailored for gaze-based input.

4.2.1 Data Structure.—We used a Trie [40] (prefix tree) as the data structure to store all

the words in the lexicon with a size of 10k. The root of Trie is an empty node, and each of

the other nodes in the Trie represents a character. Each node has no more than 26 children

as there are 26 English letters. Each leaf node within the structure retains both the word and

its concluding character. In instances where a word includes successive identical characters,

these characters are symbolized using a solitary node. The children of a given node share a

common prefix, encompassing the path from the root node to their immediate parent node.

In the Trie structure, nodes possess two states: RELEASE and HOLD. RELEASE means

that the finger did not engage the corresponding key of the node, while HOLD signifies

engagement. The initial state of the root node is HOLD. When a touch point hypothetically

Zhang et al. Page 8

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

occurs within the key i, the decoder checks all the HOLD nodes’ children nodes: If the

character stored in a HOLD node’s child node is identical to key i, the HOLD node’s child

node is also transitioned to HOLD. The decoder computes the key score for all nodes in the

HOLD state and incorporates the words stored within such nodes, if present, into the output

candidate set.

4.2.2 Key Score.—Each node in Trie is associated with a key score, which considers

the pausing and wiggling behavior. Let K(i) denote the key score of key i, representing how

likely i is the desired key. To obtain K(i), we define k(i, p) as the key score for a given

touch point p at key i, where the touch point is sampled from the gesture trajectory at a

certain frequency by the smartphone operating system. In our algorithm, k(i, p) contains

three components: (1) distance score D(i, p), (2) pause score P(i, p), (3) wiggle score W(i,
p). Specifically, they are computed as follows:

Distance score D(i, p).: The distance score captures the space likelihood of a key i being the

target given a touch point p. We assume that the distance d from p to i’s key center follows

a Gaussian distribution. Then, we define the distance score using the Gaussian probability

density function as follows:

D(i, p) = 1
σ 2πe−(d − μ)2/2σ2,

(1)

where we assume μ to be 0 and we empirically set σ to 0.4.

Pause score P(i, p).: It measures how long a user spends on the key i till the touch point p.

P(i, p) = tp − t0
N ,

(2)

where tp denotes the timestamp for touch point p and t0 represents the timestamp the finger

left the most recent key distinct from i, measured in milliseconds. We empirically set N as

100 to adjust the metric. A prolonged pause suggests a higher likelihood that i is the target

key.

Wiggle score W(i, p).: It quantifies the extent to which a user’s gesture path wiggles around

key i at touch point p. We define W(i, p) as the number of occurrences that a user’s finger

enters i in a L-size window (measured in the number of touch points) right before touch

point p. In order to count the occurrences W(i, p), we need to determine the time range, i.e.

the L. We set L to

L = f ⋅ Δt,

(3)

Zhang et al. Page 9

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where f denotes the frequency at which touchpoints are sampled, Δt is the expected time that

the finger stays on each key given the input phrases. Let S be the phrases (without space),

and j be a character, we compute the Δt as follow:

Δt = ∑j ∈ S tj
l − tj

e

S

(4)

where tj
e represents the first time point that the user’s finger enters the key j, and tj

l indicates

the time that the user’s finger leaves the key. |S| is the number of characters that the user

inputted.

Once we have the three scores, we could compute k(i, p) as the product of them, That is,

k(i, p) = D(i, p) ⋅ P(i, p) ⋅ W (i, p) .

(5)

The key score for a key i is defined as the maximum value of k(i, p) among all touch points

within the boundary of (i).

K(i) = max
p ∈ P

k(i, p),

(6)

where P contains all touch points that are located inside the boundary of key i.

4.2.3 Word Score.—The word score S(w) (represents how likely w is the intended word

given the input gesture path P. It is the sum of key scores for w along its path in the Trie:

S(w) = ∑
i ∈ w

K(i) .

(7)

4.2.4 Incorporating Langauge Model.—We followed the basic principle of word-

gesture decoding [19] to incorporate a language model into decoding. For a word w in

the candidate set, the principle combines the probability estimated from the input gesture

path, denoted as c(w), with the language model probability, denoted as l(w), to obtain the

probability that w being the intended word given input P, denoted by Score(w):

Score(w) = l(w)c(w)
∑i ∈ W l(i)c(i) ,

(8)

where W is a lexicon that contains i words and c(w) is approximated using S(w). Let C
consist of top t (t = X) words with the highest word score in the lexicon, then

Zhang et al. Page 10

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

c(w) = S(w)
∑k ∈ C S(k) .

(9)

We employed a trigram language model to obtain l(w), which is trained on the Corpus of

Contemporary American English (COCA) [12] (2012 to 2017). Our decoding algorithm

computes Score(w) and outputs the top N words with the highest word score.

5 USER STUDY II: EVALUATING LAYOUT-MAGNIFIED AND KEY-

MAGNIFIED KEYBOARDS

We conducted an IRB-approved study to evaluate the performance of our layout-magnified

and key-magnified keyboards, powered by the kinematics-based decoding algorithm, in

transcription tasks. We compared their performance to conventional keyboards in tap and

gesture typing modes.

5.1 Participants and Apparatus

Twelve participants (8 females, 4 males) with low vision diagnoses were recruited from

a non-profit vision and healthcare organization. Their ages ranged from 35 to 76 years

old (average 55.1 ± 14.9). Among them, eight participants were new and four participants

(P1, P2, P5, P7) were from user study I. The study adhered to ethical guidelines with

IRB approval and informed consent from all participants. Table 3 shows the demographic

information of the participants.

In the user study, 10 users used their index finger to perform the gesture input, while two

users used their thumb. Based on their self-reported typing skills, 2 were experts and 10

were intermediates. In terms of self-reported familiarity with the QWERTY layout, 10 were

experts and two were intermediates. Thus, all participants had prior knowledge of tap typing

the QWERTY layout.

We used a Google Pixel 6 smartphone running Android 14 with a 6.4-inch 2400×1080

pixels display in this study. We developed a web-based text entry system with accessibility

features, and the participants accessed the system using the Chrome browser on the provided

smartphone.

5.2 Experiment Design

We employed a within-subjects design with one independent variable: keyboard type. This

variable had four levels: layout-magnified keyboard, key-magnified keyboard, conventional

gesture typing keyboard, and conventional tap typing keyboard. Similarly to user study

I, we modified the conventional gesture typing keyboard by integrating voice feedback.

It is implemented with a SHARK2 decoder and the same trigram language model as

our kinematics-based algorithm described in Section 4.2.4. The conventional tap typing

keyboard uses the TalkBack default method and has two-step executions for text input. The

Zhang et al. Page 11

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

first tap or swipe explores the keyboard to locate the intended letter, and the second step

requires the participant to double-tap anywhere on the screen to confirm the letter.

Similarly to user study I, this study also used a text transcription task. We only sampled two

phrases for the warm-up session and five phrases for the formal session. The typing interface

is shown in Figure 4a. To control for order effects, participants were evenly divided into two

conditions: starting with the tap typing keyboard or the gesture typing keyboards. The order

of the gesture typing keyboards was further counterbalanced within each group using a Latin

Square design [4].

The default magnification levels of the layout-magnification keyboard and key-magnified

keyboard are 2X and 70px respectively. Users may adjust that based on their preferences.

All participants used the default values, except that one user (P10) adjusted the value for the

key-magnified keyboard to 90px. Our system logged the following information: timestamp,

gesture trace, and current texts while typing.

5.3 Procedure

The user study procedure is similar to the user study I and contains a warm-up session,

where we introduced the keyboard and participants practiced typing with two phrases, and a

formal session, where users typed five phrases using each keyboard.

Participants could have a 5-minute or longer break if needed between keyboards. After each

keyboard task, a post-study interview using the System Usability Scale (SUS) questionnaire

[7] evaluated usability perceptions. The user study lasts around 2 hours.

5.4 Results

All 12 participants successfully completed typing five phrases on each of the four keyboards

during the formal study session. We observed that 10 participants used the color inversion

option, while all participants enabled voice feedback throughout the study.

5.4.1 Input Speed.—We first investigated input speed measured in WPM [23]. As

shown in Figure 6, the key-magnified keyboard yielded the fastest typing speed, while the

tap typing keyboard resulted in the slowest WPM.

A repeated-measures ANOVA revealed a significant main effect of keyboard layout on

typing speed (F3, 33 = 16.24, p < 0.001). Pairwise mean comparisons with Holm’s

adjustment showed significant differences in WPM between key-magnified keyboard vs.

conventional gesture typing keyboard (p < 0.001), layout-magnified keyboard vs. tap typing

keyboard (p < 0.001), key-magnified keyboard vs. tap typing keyboard (p < 0.001), and

conventional gesture typing keyboard vs. tap typing keyboard (p = 0.03). However, no

significant differences were found between layout-magnified keyboard vs. key-magnified

keyboard (p = 0.13), layout-magnified keyboard vs. conventional gesture typing keyboard

(p = 0.24). These results suggest that the keyboard layout significantly impacted typing

speed, with the key-magnified keyboard leading to faster performance than others. This

highlights the importance of considering visual acuity limitations when designing gesture

typing interfaces for low vision users. Interestingly, the WPM between the layout-magnified

Zhang et al. Page 12

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and the conventional gesture typing keyboard was not statistically significant. This could

indicate that for some users with low vision, the familiarity and established motor skills

associated with the static layout of the conventional gesture typing keyboard might be

comparable to the benefits of a magnified layout.

5.4.2 Error Rate.—We investigated the WER [2] using Minimum Word Distance

(MWD) for each keyboard condition. As shown in Figure 7, the layout-magnified keyboard

and the key-magnified keyboard resulted in lower WER compared to the conventional

gesture typing keyboard and the tap typing keyboard. This suggests that the magnified

keyboard layouts might have contributed to fewer errors for participants with low vision.

A repeated measures ANOVA showed a significant main effect for the keyboard layout (F3,

33 = 11.7, p < 0.001 on WER. Pairwise mean comparisons with Holm adjustment showed)

the differences were significant for layout-magnified keyboard vs. tap typing keyboard (p =

0.007), key-magnified keyboard vs. tap typing keyboard (p = 0.003). However, results are

not significant for key-magnified keyboard vs. conventional gesture typing keyboard (p =

0.11), key-magnified keyboard vs. layout-magnified keyboard (p = 0.17), layout-magnified

keyboard vs. conventional gesture typing keyboard (p = 0.22), and conventional gesture

typing keyboard vs. tap typing keyboard (p = 0.11). It suggests that the magnified gesture

typing keyboards(layout-magnified and key-magnified) with our kinematics-based decoding

algorithm can improve typing accuracy by reducing errors over the tap typing keyboard. We

can observe that the error rates between the magnified layouts (key-magnified and layout-

magnified) and the conventional gesture typing keyboard were not statistically significant.

This indicates that for some users, gesture-based interaction with a standard keyboard layout

might be just as accurate as using magnified versions.

5.4.3 Deletes Per Word.—We then analyzed the backspace usage using the metric of

Deletes Per Word (DPW). As shown in Figure 8, the key-magnified keyboard has the lowest

DPW. Conversely, the conventional gesture typing keyboard showed the highest DPW.

A repeated measures ANOVA showed significant main effects for the keyboard layout (F2,

22 = 6.1, p < 0.001) on the DPM. Pairwise mean comparisons with Holm adjustment showed

a significant reduction in DPW for the key-magnified keyboard vs. the conventional gesture

typing keyboard (p < 0.05). However, no statistically significant differences in DPW were

found between others: layout-magnified keyboard vs. conventional gesture typing keyboard

(p = 0.11), key-magnified keyboard (p = 0.15) vs. layout-magnified keyboard (p = 0.20),

conventional gesture typing keyboard vs. tap typing keyboard (p = 0.05), layout-magnified

keyboard vs. tap typing keyboard (p = 0.87), and key-magnified keyboard vs. tap typing

keyboard (p = 0.87).

5.4.4 Usability.—As shown in Figure 9, the key-magnified keyboard received the highest

SUS score and the tap typing keyboard received the lowest. While the results suggest a trend

where participants favored the key-magnified and layout-magnified keyboards, a Friedman

test revealed no statistically significant main effect of keyboard layout on SUS scores (χ2 (2)

= 7.25, p = 0.06).

Zhang et al. Page 13

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5.4.5 Evaluation by Expertise and Prior Participation.—We analyzed the typing

performance based on users’ expertise of typing (Expert vs. Non-expert) and prior

participation in the formative study (New Users vs. Old Users) respectively. As shown

in Table 4, the two magnification-based keyboards benefited both types of user, especially

for non-expert users. New users tend to have slower typing speeds and higher error rates

compared to old users who participated in our first study. This suggests that experience over

time leads to improved typing performance.

6 DISCUSSION

The comparison between the key-magnified keyboard and the conventional gesture typing

keyboard showed that the key-magnified keyboard outperforms the conventional gesture

typing keyboard for low vision people. The key-magnified keyboard achieved a higher

input speed in terms of WPM. Specifically, the key-magnified keyboard improved the

input speed of the conventional gesture typing keyboard by 1.14 WPM (27.5%). While

the layout-magnified keyboard did not demonstrate a statistically significant improvement

in WPM compared to the conventional option, it may still offer benefits for a specific

subset of low vision users. Users who prefer a deliberate typing style may find the layout-

magnified keyboard advantageous, while those accustomed to swift gliding gestures may

require additional adaptation time.

Our study also showed that low vision people also performed better on the gesture typing

keyboards than in tap typing keyboard. The input speed of the tap typing keyboard is 2.97

WPM (SD=1.12) and the WER is 0.24 (SD=0.13). Our layout-magnified and key-magnified

keyboards demonstrated notable enhancements in input speed when compared to the tap

typing keyboard, with improvements of 1.61 WPM (54.2%) and 2.31 WPM (77.6%)

respectively. Additionally, our layout-magnified and key-magnified keyboards exhibited

enhancements in WER for the tap typing keyboard by 0.17 (70.3%) and 0.19 (78.6%)

respectively.

Furthermore, SUS scores showed a trend in which layout-magnified and key-magnified

keyboards received higher ratings compared to conventional gesture typing and tap typing

keyboards. In line with this observation, some participants from user study II commented

“It is helpful that I can actually see what I’m typing” (P1), “It is faster to type with gesture

typing and the keyboards are easy to use”(P11). It is important to note that user experiences

varied. There are some participants who had difficulty adapting to the proposed keyboards.

Participant P10 in Table 3 expressed his preference for the tap typing keyboard, “I’m used

to using tap typing and I feel more confident to type the letters one by one”. These findings

highlight the need to consider user experience and existing typing habits when designing

keyboards for low vision users. Although magnified keyboards showed promise, some users

might prefer established methods such as tapping typing.

User study II revealed some potential issues with the current keyboard designs. Participant

P6’s comment suggests that the layout-magnified keyboard might lead to occasional

difficulties in maintaining spatial context on the magnified layout. This could be because

users might lose track of their finger’s position relative to the broader keyboard layout while

Zhang et al. Page 14

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

focusing on the magnified area. On the other hand, especially for long words, low vision

users sometimes lift their finger before completing the word gesture because of fatigue or

context loss. Then they need to delete the inputted words and re-input the expected word,

which is time consuming. We believe that a decoder that supports inputting text using

multi-segment of gestures would solve this problem and would be an interesting direction

for future work.

7 LIMITATION AND FUTURE WORK

Inclusion Criteria

Low vision encompasses a wide range of conditions and there can be considerable

variations in the severity and characteristics of the visual condition. Our study focuses

on low vision people who can utilize the screen magnifier on smart-phones. This criterion

ensures that participants can see the keys and content after triggering the screen magnifiers.

Consequently, this excludes users with more severe vision impairments who may rely on

alternative text entry methods such as voice input or Braille input. The proposed techniques

may benefit other people with visual impairments because it can handle gestures deviating

from pre-defined templates. However, further research is required to fully understand how to

accommodate other low-vision users.

Heterogeneity of Low Vision

Low vision people have different challenges when writing on smartphone keyboards based

on their specific condition. For example, wet macular degeneration can cause significant

field loss and the vision may appear distorted, while dry macular degeneration might lead to

a blurry or dark spot in the center of the vision field. To address this diversity, our research

definition of “low vision” prioritizes functional limitations over specific diagnoses. It is

important to investigate how to account for the unique challenges of individuals in keyboard

interface and decoding algorithm design. For example, if a user can only see the center

of the view field, the interface may use a permanently centered magnifier to keep crucial

information in view. This exemplifies the potential of personalization, a promising direction

for future research to improve user experience.

Learning Effects

In the user study, participants practiced with each keyboard using only two phrases. Since all

participants practiced the same number of phrases, the impact on the conclusion of the input

speed during the formal study was minimal. Further longitudinal studies are needed to fully

understand and account for the effects of learning.

8 CONCLUSION

We have designed and implemented layout-magnified and key-magnified keyboard

prototypes to enable gesture typing for people with low vision. The layout-magnified

keyboard will automatically pan the keyboard layout to reveal hidden keys once the input

finger reaches the edge of the viewport, and the key-magnified keyboard magnifies the key

underneath the input finger only. Both keyboards make all the keys accessible during the

Zhang et al. Page 15

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

input, thus making the magnifier compatible with gesture typing. Furthermore, a kinematics-

based decoding algorithm was developed to accommodate the unique typing patterns of

users with low vision, even when gestures deviate from predefined templates or starting

positions. User study results demonstrate that both keyboards led to improvements in typing

speed and error reduction compared to the conventional tap typing keyboard. moreover,

The key-magnified keyboard increased typing speed by 27.5% compared to a conventional

gesture typing keyboard.

ACKNOWLEDGMENTS

We sincerely thank our anonymous reviewers for their insightful comments and suggestions. This work
was supported by Google Inclusion Research Award, NSF Awards 2153056 and 2113485, and NIH Awards
R01EY030085 and R01EY035688.

REFERENCES

[1]. Azenkot Shiri and Nicole B Lee. 2013. Exploring the use of speech input by blind people
on mobile devices. In Proceedings of the 15th international ACM SIGACCESS conference on
computers and accessibility. 1–8.

[2]. Bi Xiaojun, Azenkot Shiri, Partridge Kurt, and Zhai Shumin. 2013. Octopus: evaluating
touchscreen keyboard correction and recognition algorithms via “Remulation”. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. 543–552.

[3]. Bi Xiaojun, Chelba Ciprian, Ouyang Tom, Partridge Kurt, and Zhai Shumin. 2012. Bimanual
gesture keyboard. In Proceedings of the 25th annual ACM symposium on User interface software
and technology. 137–146.

[4]. Bi Xiaojun, Smith Barton A, and Zhai Shumin. 2012. Multilingual touchscreen keyboard design
and optimization. Human–Computer Interaction 27, 4 (2012), 352–382.

[5]. Syed Masum Billah Yu-Jung Ko, Ashok Vikas, Bi Xiaojun, and Ramakrishnan IV. 2019.
Accessible gesture typing for non-visual text entry on smartphones. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. 1–12.

[6]. Bonner Matthew N, Brudvik Jeremy T, Abowd Gregory D, and Edwards W Keith. 2010. No-look
notes: accessible eyes-free multi-touch text entry. In International Conference on Pervasive
Computing. Springer, 409–426.

[7]. Brooke John. 1996. Sus: a “quick and dirty’usability. Usability evaluation in industry 189, 3
(1996).

[8]. Chen Xiang’Anthony’, Grossman Tovi, and Fitzmaurice George. 2014. Swipeboard: a text entry
technique for ultra-small interfaces that supports novice to expert transitions. In Proceedings of
the 27th annual ACM symposium on User interface software and technology. 615–620.

[9]. Cui Wenzhe, Liu Rui, Li Zhi, Wang Yifan, Wang Andrew, Zhao Xia, Rachidian Sina, Baig
Furqan, Ramakrishnan IV, Wang Fusheng, and Bi Xiaojun. 2023. GlanceWriter: Writing Text
by Glancing Over Letters. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems. 1–13.

[10]. Cui Wenzhe, Zheng Jingjie, Lewis Blaine, Vogel Daniel, and Bi Xiaojun. 2019. HotStrokes:
Word-gesture shortcuts on a trackpad. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. 1–13.

[11]. Cui Wenzhe, Zhu Suwen, Li Zhi, Xu Zheer, Yang Xing-Dong, Ramakrishnan IV, and Bi Xiaojun.
2021. BackSwipe: Back-of-device Word-Gesture Interaction on Smartphones. In In Proceedings
of CHI 2021 - the SIGCHI Conference on Human Factors in Computing Systems.

[12]. Davies Mark. 2008. The corpus of contemporary American English: 1990-present.

[13]. Franz Rachel L, Wobbrock Jacob O, Cheng Yi, and Findlater Leah. 2019. Perception and
adoption of mobile accessibility features by older adults experiencing ability changes. In
Proceedings of the 21st International ACM SIGACCESS Conference on Computers and
Accessibility. 267–278.

Zhang et al. Page 16

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[14]. Frey Brian, Southern Caleb, and Romero Mario. 2011. Brailletouch: mobile texting for
the visually impaired. In International Conference on Universal Access in Human-Computer
Interaction. Springer, 19–25.

[15]. Grussenmeyer William and Folmer Eelke. 2017. Accessible touchscreen technology for people
with visual impairments: a survey. ACM Transactions on Accessible Computing (TACCESS) 9, 2
(2017), 1–31.

[16]. Guerreiro João, Rodrigues André, Montague Kyle, Guerreiro Tiago, Nicolau Hugo, and Daniel
Gonçalves. 2015. TabLETS get physical: non-visual text entry on tablet devices. In Proceedings
of the 33rd annual acm conference on human factors in computing systems. 39–42.

[17]. Kane Shaun K, Wobbrock Jacob O, and Ladner Richard E. 2011. Usable gestures for blind
people: understanding preference and performance. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. 413–422.

[18]. Komninos Andreas, Stefanis Vassilios, and Garofalakis John. 2023. A Review of Design and
Evaluation Practices in Mobile Text Entry for Visually Impaired and Blind Persons. Multimodal
Technologies and Interaction 7, 2 (2023), 22.

[19]. Kristensson Per-Ola and Zhai Shumin. 2004. SHARK2: a large vocabulary short-hand writing
system for pen-based computers. In Proceedings of the 17th annual ACM symposium on User
interface software and technology. 43–52.

[20]. Kumar Anuj, Paek Tim, and Lee Bongshin. 2012. Voice typing: a new speech interaction model
for dictation on touchscreen devices. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 2277–2286.

[21]. Lin Yu-Hao, Zhu Suwen, Ko Yu-Jung, Cui Wenzhe, and Bi Xiaojun. 2018. Why is gesture typing
promising for older adults? comparing gesture and tap typing behavior of older with young
adults. In Proceedings of the 20th International ACM SIGACCESS Conference on Computers
and Accessibility. 271–281.

[22]. Lu Yiqin, Yu Chun, Fan Shuyi, Bi Xiaojun, and Shi Yuanchun. 2019. Typing on Split Keyboards
with Peripheral Vision. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. 1–12.

[23]. Scott MacKenzie I. 2002. A Note on Calculating Text Entry Speed. http://www.yorku.ca/mack/
RN-TextEntrySpeed.html.

[24]. Markussen Anders, Jakobsen Mikkel Rønne, and Hornbæk Kasper. 2014. Vulture: a mid-air
word-gesture keyboard. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 1073–1082.

[25]. Mascetti Sergio, Bernareggi Cristian, and Belotti Matteo. 2011. TypeInBraille: a braille-based
typing application for touchscreen devices. In The proceedings of the 13th international ACM
SIGACCESS conference on Computers and accessibility. 295–296.

[26]. Nuance. 2023. Dragon Naturally Speaking Software. https://www.nuance.com/dragon.html.
[Online; accessed April 05, 2023].

[27]. Oliveira João, Guerreiro Tiago, Nicolau Hugo, Jorge Joaquim, and Gonçalves Daniel. 2011.
Blind people and mobile touch-based text-entry: acknowledging the need for different favors.
In The proceedings of the 13th international ACM SIGACCESS conference on Computers and
accessibility. 179–186.

[28]. Oliveira João, Guerreiro Tiago, Nicolau Hugo, Jorge Joaquim, and Daniel Gonçalves. 2011.
BrailleType: unleashing braille over touch screen mobile phones. In IFIP Conference on Human-
Computer Interaction. Springer, 100–107.

[29]. Oney Stephen, Harrison Chris, Ogan Amy, and Wiese Jason. 2013. ZoomBoard: a diminutive
qwerty soft keyboard using iterative zooming for ultra-small devices. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. 2799–2802.

[30]. Rakhmetulla Gulnar and Arif Ahmed Sabbir. 2020. Senorita: A Chorded Keyboard for Sighted,
Low Vision, and Blind Mobile Users. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. 1–13.

[31]. Samanta Debasis and Chakraborty Tuhin. 2020. VectorEntry: Text Entry Mechanism
Using Handheld Touch-Enabled Mobile Devices for People with Visual Impairments. ACM
Transactions on Accessible Computing (TACCESS) 13, 3 (2020), 1–29.

Zhang et al. Page 17

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.yorku.ca/mack/RN-TextEntrySpeed.html
http://www.yorku.ca/mack/RN-TextEntrySpeed.html
https://www.nuance.com/dragon.html

[32]. Sánchez Jaimeand Aguayo Fernando. 2007. Mobile messenger for the blind. In Universal access
in ambient intelligence environments. Springer, 369–385.

[33]. Shi Weinan, Yu Chun, Fan Shuyi, Wang Feng, Wang Tong, Yi Xin, Bi Xiaojun, and Shi
Yuanchun. 2019. VIPBoard: Improving Screen-Reader Keyboard for Visually Impaired People
with Character-Level Auto Correction. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. 1–12.

[34]. Stefanis Vassilios, Komninos Andreas, and Garofalakis John. 2020. Challenges in Mobile Text
Entry using Virtual Keyboards for Low-Vision Users. In 19th International Conference on Mobile
and Ubiquitous Multimedia. 42–46.

[35]. Szpiro Sarit Felicia Anais, Hashash Shafeka, Zhao Yuhang, and Azenkot Shiri. 2016. How
people with low vision access computing devices: Understanding challenges and opportunities.
In Proceedings of the 18th International ACM SIGACCESS Conference on Computers and
Accessibility. 171–180.

[36]. TalkBack. 2009 [n.d.]. TalkBack: An Open Source Screenreader For Android.
https://opensource.googleblog.com/2009/10/talkback-open-source-screenreader-for.html [Online;
accessed April 05, 2023].

[37]. Tinwala Hussain and MacKenzie I Scott. 2009. Eyes-free text entry on a touchscreen phone. In
2009 IEEE Toronto International Conference Science and Technology for Humanity (TIC-STH).
IEEE, 83–88.

[38]. Vertanen Keith and Kristensson Per Ola. 2011. A versatile dataset for text entry evaluations
based on genuine mobile emails. In Proceedings of the 13th International Conference on Human
Computer Interaction with Mobile Devices and Services. 295–298.

[39]. VoiceOver. 2009 [n.d.]. Screen reader from Apple. https://www.apple.com/accessibility/vision
[Online; accessed April 05, 2023].

[40]. Wikipedia contributors. 2023. Trie — Wikipedia, The Free Encyclopedia. https://
en.wikipedia.org/w/index.php?title=Trie [Online; accessed 05-April-2023].

[41]. Wobbrock Jacob O 2007. Measures of text entry performance. Text entry systems: Mobility,
accessibility, universality (2007), 47–74.

[42]. Yeo Hui-Shyong, Phang Xiao-Shen, Steven J Castellucci Per Ola Kristensson, and Quigley
Aaron. 2017. Investigating tilt-based gesture keyboard entry for single-handed text entry on large
devices. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems.
4194–4202.

[43]. Yfantidis Georgios and Evreinov Grigori. 2006. Adaptive blind interaction technique for
touchscreens. Universal Access in the Information Society 4, 4 (2006), 328–337.

[44]. Yi Xin, Yu Chun, Shi Weinan, Bi Xiaojun, and Shi Yuanchun. 2017. Word clarity as a metric in
sampling keyboard test sets. In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems. 4216–4228.

[45]. Yu Chun, Gu Yizheng, Yang Zhican, Yi Xin, Luo Hengliang, and Shi Yuanchun. 2017. Tap, dwell
or gesture? exploring head-based text entry techniques for hmds. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems. 4479–4488.

[46]. Zhai Shumin and Kristensson Per-Ola. 2003. Shorthand writing on stylus keyboard. In
Proceedings of the SIGCHI conference on Human factors in computing systems. 97–104.

[47]. Zhai Shumin and Kristensson Per Ola. 2012. The word-gesture keyboard: reimagining keyboard
interaction. Commun. ACM 55, 9 (2012), 91–101.

[48]. Zhai Shumin, Per Ola Kristensson Pengjun Gong, Greiner Michael, Shilei Allen Peng Liang
Mico Liu, and Dunnigan Anthony. 2009. Shapewriter on the iPhone: from the laboratory to the
real world. In CHI’09 Extended Abstracts on Human Factors in Computing Systems. 2667–2670.

[49]. Zhao Yuhang, Szpiro Sarit, and Azenkot Shiri. 2015. Foresee: A customizable head-mounted
vision enhancement system for people with low vision. In Proceedings of the 17th International
ACM SIGACCESS Conference on Computers & Accessibility. 239–249.

[50]. Zhu Suwen, Luo Tianyao, Bi Xiaojun, and Zhai Shumin. 2018. Typing on an invisible keyboard.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. 1–13.

Zhang et al. Page 18

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://opensource.googleblog.com/2009/10/talkback-open-source-screenreader-for.html
https://www.apple.com/accessibility/vision
https://en.wikipedia.org/w/index.php?title=Trie
https://en.wikipedia.org/w/index.php?title=Trie

[51]. Zhu Suwen, Zheng Jingjie, Zhai Shumin, and Bi Xiaojun. 2019. i’sFree: Eyes-Free Gesture
Typing via a Touch-Enabled Remote Control. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems. 1–12.

Zhang et al. Page 19

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

CCS CONCEPTS

• Human-centered computing → Accessibility technologies; Text input;

Gestural input.

Zhang et al. Page 20

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1:
Typing “nice” with gesture on our layout-magnified and key-magnified keyboards. On the

layout-magnified keyboard, the user (a) presses a finger near ‘N’ to initiate a zoom-in effect

and swipes towards the subsequent letters, (b) finishes at the letter ‘E’ and lifts the finger.

With the key magnifier keyboard, the user (c) starts near ‘N’, and then (d) swipes towards

‘I’, ‘C’, and ‘E’, with a magnifier following the finger. The top choice from the real-time

decoder appears at the top of the keyboard in an enlarged font, followed by three suggestions

in the suggestion bar. The light blue dots and traces denote touchpoints and gestures. Note

that both keyboards do not require the user to start the gesture at the first letter of a word.

Zhang et al. Page 21

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2:
The interface of the keyboard in User Study I.

Zhang et al. Page 22

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3:
Sample gestures of low vision participants. The red dot indicates the starting point. (a) The

intended word “expensive” was recognized as “expose”. The input finger wiggled around

z when the user was searching for x. (b) The intended word “company” was successfully

recognized. (c) The intended word “weekend” was recognized as “walgreens”. The input

finger wiggled around k as the user was searching for this key.

Zhang et al. Page 23

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4:
Screenshots of our keyboards. (a) The interface of our text entry system. (b) The layout-

magnified keyboard. When the user lands the finger on the key ‘C’, the keyboard initiates

a zoom-in effect. (c) The key-magnified keyboard with the magnified key underneath the

finger. (d) The top suggestion / just typed word is displayed with an enlarged font size.

Zhang et al. Page 24

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5:
A user is inputting text using the layout-magnified keyboard with color inversion on.

Zhang et al. Page 25

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6:
Average input speed (95% Confidence Interval) of the four keyboards.

Zhang et al. Page 26

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7:
Average WER (95% CI) of the four keyboards.

Zhang et al. Page 27

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8:
Average Deletes Per Word (95% CI) of the four keyboards.

Zhang et al. Page 28

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9:
The median SUS score of the four keyboards.

Zhang et al. Page 29

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 30

Ta
b

le
 1

:

D
em

og
ra

ph
ic

 in
fo

rm
at

io
n

of
 th

e
10

 lo
w

 v
is

io
n

pa
rt

ic
ip

an
ts

 a
nd

 th
ei

r
ac

ce
ss

ib
ili

ty
 s

et
tin

gs
 (

co
lo

r
in

ve
rs

io
n,

 v
oi

ce
 f

ee
db

ac
k)

 u
se

d
in

 u
se

r
st

ud
y

I.

ID
A

ge
G

en
de

r
D

ia
gn

os
is

C
ol

or
 I

nv
er

si
on

V
oi

ce
 F

ee
db

ac
k

P1
49

F
L

eb
er

 C
on

ge
ni

ta
l A

m
au

ro
si

s
N

o
Y

es

P2
36

M
O

pt
ic

 A
tr

op
hy

N
o

Y
es

P3
43

M
R

et
in

iti
s

Pi
gm

en
to

sa
N

o
Y

es

P4
75

F
D

ia
be

tic
 R

et
in

op
at

hy
Y

es
Y

es

P5
39

M
O

pt
ic

 A
tr

op
hy

N
o

Y
es

P6
66

F
R

et
in

iti
s

Pi
gm

en
to

sa
N

o
Y

es

P7
71

F
R

et
in

iti
s

Pi
gm

en
to

sa
N

o
Y

es

P8
69

F
G

la
uc

om
a

N
o

N
o

P9
75

F
R

et
in

al
 D

et
ac

hm
en

t
N

o
Y

es

P1
0

56
M

M
ac

ul
ar

 D
eg

en
er

at
io

n
N

o
Y

es

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 31

Table 2:

Completed phrases of each participant in the user study I. Five participants were able to input all phrases,

while four were unable to input a single phrase.

ID P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Completion Count 10 10 0 0 6 10 0 10 10 0

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 32

Ta
b

le
 3

:

D
em

og
ra

ph
ic

 in
fo

rm
at

io
n

of
 th

e
12

 lo
w

 v
is

io
n

pa
rt

ic
ip

an
ts

.

ID
A

ge
G

en
de

r
D

ia
gn

os
is

T
yp

in
g

P
os

tu
re

T
yp

in
g

E
xp

er
ti

se
L

ay
ou

t
F

am
ili

ar
it

y

P1
51

F
L

eb
er

’s
 C

on
ge

ni
ta

l A
m

au
ro

si
s

In
de

x
In

te
rm

ed
ia

te
E

xp
er

t

P2
73

F
G

la
uc

om
a

In
de

x
In

te
rm

ed
ia

te
In

te
rm

ed
ia

te

P3
66

F
G

la
uc

om
a

In
de

x
In

te
rm

ed
ia

te
E

xp
er

t

P4
68

F
C

on
ge

ni
ta

l C
at

ar
ac

ts
In

de
x

In
te

rm
ed

ia
te

E
xp

er
t

P5
68

F
R

et
in

iti
s

Pi
gm

en
to

s
In

de
x

In
te

rm
ed

ia
te

E
xp

er
t

P6
52

M
C

on
ge

ni
ta

l C
at

ar
ac

ts
In

de
x

In
te

rm
ed

ia
te

In
te

rm
ed

ia
te

P7
77

F
G

la
uc

om
a

In
de

x
In

te
rm

ed
ia

te
E

xp
er

t

P8
42

M
C

on
ge

ni
ta

l C
at

ar
ac

ts
In

de
x

In
te

rm
ed

ia
te

E
xp

er
t

P9
36

F
O

pt
ic

 N
eu

ri
tis

T
hu

m
b

E
xp

er
t

E
xp

er
t

P1
0

52
M

O
pt

ic
 N

eu
ri

tis
In

de
x

In
te

rm
ed

ia
te

E
xp

er
t

P1
1

41
M

O
pt

ic
 A

tr
op

hy
In

de
x

In
te

rm
ed

ia
te

E
xp

er
t

P1
2

35
F

G
la

uc
om

a
T

hu
m

b
E

xp
er

t
E

xp
er

t

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 33

Table 4:

Performance comparison of typing keyboards across different user groups: Expert vs. Non-expert, and New

Users vs. Old Users.

Expert vs. Non-expert

Conventional Tap Conventional Gesture Layout-magnified Key-magnified

Mean WPM
Expert 4.06 6.31 5.45 7.72

Non-Expert 2.75 3.70 4.41 4.78

Mean WER (%)
Expert 13.5 7.0 5.0 2.5

Non-Expert 26.3 11.8 7.5 5.6

New Users vs. Old Users

Conventional Tap Conventional Gesture Layout-magnified Key-magnified

Mean WPM
Old 3.35 4.59 5.12 5.93

New 2.21 3.21 3.50 3.96

Mean WER (%)
Old 20.0 10.2 7.1 4.3

New 32.5 12.8 7.0 6.8

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2025 January 08.

	Abstract
	INTRODUCTION
	RELATED WORK
	Text Entry Accessibility Tools on Smartphones
	Gesture Typing
	Text Entry Techniques for Low Vision People

	USER STUDY I: UNDERSTANDING GESTURE TYPING FOR LOW VISION PEOPLE
	Participants and Apparatus
	Experiment Design
	Procedure
	Results
	Completion Rate.
	Input Speed.
	Error Rate.
	Gesture Visualization.
	User Feedback.

	Implications for Designing Keyboard for Low Vision People

	ACCESSIBLE GESTURE TYPING KEYBOARDS FOR PEOPLE WITH LOW VISION
	Keyboard Interface Design
	Layout-magnified Keyboard.
	Key-magnified Keyboard.
	Suggestions.
	Voice Feedback.

	Kinematics-based Decoding Algorithm for Low Vision People
	Data Structure.
	Key Score.
	Distance score D(i, p).
	Pause score P(i, p).
	Wiggle score W(i, p).

	Word Score.
	Incorporating Langauge Model.

	USER STUDY II: EVALUATING LAYOUT-MAGNIFIED AND KEY-MAGNIFIED KEYBOARDS
	Participants and Apparatus
	Experiment Design
	Procedure
	Results
	Input Speed.
	Error Rate.
	Deletes Per Word.
	Usability.
	Evaluation by Expertise and Prior Participation.

	DISCUSSION
	LIMITATION AND FUTURE WORK
	Inclusion Criteria
	Heterogeneity of Low Vision
	Learning Effects

	CONCLUSION
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Figure 9:
	Table 1:
	Table 2:
	Table 3:
	Table 4:

