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Abstract

While gesture typing is widely adopted on touchscreen keyboards, its support for low vision users 

is limited. We have designed and implemented two keyboard prototypes, layout-magnified and 

key-magnified keyboards, to enable gesture typing for people with low vision. Both keyboards 

facilitate uninterrupted access to all keys while the screen magnifier is active, allowing people with 

low vision to input text with one continuous stroke. Furthermore, we have created a kinematics-

based decoding algorithm to accommodate the typing behavior of people with low vision. This 

algorithm can decode the gesture input even if the gesture trace deviates from a pre-defined word 

template, and the starting position of the gesture is far from the starting letter of the target word. 

Our user study showed that the key-magnified keyboard achieved 5.28 words per minute, 27.5% 

faster than a conventional gesture typing keyboard with voice feedback.
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1 INTRODUCTION

The text entry technology in smartphones has advanced rapidly. Gesture typing [19, 46–48] 

allows users to enter text by gliding a finger over the letters of a word. This method 

suits touch-based interaction and supports word-level input. It is available on all major 

touchscreen keyboards, including Google’s Gboard, Microsoft’s SwiftKey, and iOS’s built-

in keyboard. Despite its popularity, many who could benefit from gesture typing, notably 

people with low vision, are excluded. Low vision is vision loss uncorrectable by refractive 

optics or surgery [35], encompassing conditions like limited vision field, light sensitivity, 

blurry vision, or contrast issues. This paper focuses on low vision individuals who can 

see keys after magnifying the keyboard. They often use screen magnifiers to interact with 

smartphones. To type a word, they magnify the keyboard, pan to find each letter, and tap to 

select it, repeating this for every letter. This process is slow and laborious. Gesture typing 

could help by eliminating repetitive actions for each letter.

Existing gesture typing keyboards poorly support low vision users. Two challenges stand 

out: (1) With the screen magnifier on, some keys on the soft keyboard become invisible 

if they are outside the viewport. Consequently, words containing these letters cannot be 

entered in one stroke. (2) Low vision users exhibit distinct input behaviors. The landing 

position of the input finger may be far from the starting letter, and users often wiggle the 

input finger due to delayed audio feedback and limited visual feedback. Current gesture 

keyboards, like the SHARK2 decoding algorithm [19], match the input gesture’s shape with 

pre-defined templates, assuming it will approximate the intended word’s shape—this does 

not account for low vision users’ behaviors. Our user study I with 10 low vision users 

showed that half could not use an existing gesture keyboard.

In this paper, we designed and implemented the prototypes of two gesture typing keyboards 

for low vision users: layout-magnified and key-magnified keyboards (Figure 1). We have 

made innovations in both the interface and decoding algorithm design. On the interface 

front, the layout-magnified keyboard magnifies the entire keyboard layout and supports a 

user to enter any letters in one continuous stroke; the key-magnified keyboard magnifies the 

key underneath the finger only thus all the keys are visible and accessible during the gesture 

input. On the algorithm front, we designed and implemented a kinematics-based decoding 

algorithm which decodes a gesture input based on its kinematic features such as the distance 

between the turning points and key centers, and the speed of the gesture as it crosses a letter. 

This algorithm accommodates the unique input behavior of low vision people whose gesture 

often deviates a great deal from the ideal template of entering a word (i.e., the polyline 

prototype connecting the centers of keys).

We conducted a user study II to investigate the effectiveness of the two novel gesture 

typing keyboards designed for users with low vision: layout-magnified and key-magnified 

keyboards. The results showed the key-magnified keyboard improved typing speed for low 

vision users compared to a conventional gesture typing keyboard with integrated voice 

feedback. Participants achieved typing speeds of 5.28 words per minute (WPM) with 

key-magnified keyboard, representing increases of 27.5%. Furthermore, these keyboards 

outperformed a typical commercial implementation of tap typing keyboard with a TalkBack 
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default method. Typing speeds increased by 54.2% and 77.6% for layout-magnified and 

key-magnified keyboards, respectively, with error rate reductions of 70.3% and 78.6%. 

These findings demonstrate that the key-magnified keyboard has the potential to expand the 

accessibility of gesture typing technology for users with low vision.

2 RELATED WORK

2.1 Text Entry Accessibility Tools on Smartphones

People with low vision rely on accessibility tools to interact with smartphones. The 

commonly used accessibility features on a smartphone are magnification, text size, audio 

feedback, contrast enhancement, black/white reverse [13, 49]. Among these, magnification 

and audio feedback are the most widely adopted methods. Magnification allows people 

to temporarily zoom into the screen and adjust the zoom level freely according to their 

preference. Numerous studies have leveraged the magnifier effect to enhance text entry 

such as ZoomBoard [29] and Swipeboard [8]. Audio feedback is an eyes-free technique 

that guides users through on-screen content using simple gestures by audibly describing 

interface elements, such as VoiceOver [39] on iPhone and TalkBack [36] on Android. 

Additionally, color inversion and text size settings offer customization options to improve 

visual clarity and reduce glare for users with low vision. Integrating these accessibility 

features into smartphones is crucial to empower people with low vision to fully engage in 

mobile technology.

Voice input is a popular method to input text on the phone. Early methods such as Dragon 

Naturally Speaking [26] were for desktops. VoiceTyping [20] supports dictation using 

speech recognition and works on mobile devices. Despite its popularity, researchers found 

that incorrectly recognized voice input can be a major reason to impede the speech input 

speed [1, 17].

2.2 Gesture Typing

Gesture typing is a word-level text entry method where users swipe on a keyboard to 

connect the letters of a word, which is first proposed by Zhai and Kristensson [19, 46–48] 

and has been adopted in various commercial keyboards. Compared to traditional tap typing, 

gesture typing requires less precise motor control and allows for continuous text input, 

potentially offering enhanced accessibility for low vision people.

Researchers have investigated the application of gesture typing across a spectrum of input 

modalities and diverse usage scenarios. Bi et.al [3] broadened the gesture keyboard from 

single-finger to multiple-finger input. Zhu et al. [51] proposed an eyes-free gesture typing 

method using a touch-enabled remote control. Yeo et. al [42] implemented a tilt-based 

gesture keyboard for single-handed text entry. Vulture [24] proposed mid-air gesture typing 

by projecting hand movement onto a display. Yu et.al [45] explored head-based gesture 

typing with head-mounted displays. Lin et al. showed that older adults typed 15% faster and 

with 27% fewer errors using gesture typing on QWERTY keyboards on the smartphone [21]. 

While gesture typing is becoming more and more popular [9–11, 21, 46–48], low vision 

people still face considerable barriers in using gesture typing on smartphones.
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2.3 Text Entry Techniques for Low Vision People

Existing text entry techniques for users with low vision primarily focus on letter-level 

input. Rakhmetulla et al. designed Senorita [30], a two-thumb virtual chorded keyboard 

prioritizing comfort over speed for mobile devices. Lu et al. proposed a split keyboard 

where users focus on the output text displayed in their remaining vision while keeping the 

keyboard in their peripheral view [22]. VIP-Board [33] supports letter-level auto-correction 

by improving the keyboard decoder. Zhu et. al. [50] explored the potential of invisible 

keyboards on smartphones. Samanta et al. [31] proposed a text entry mechanism using 

directional movement gestures. Various eyes-free techniques have been developed to support 

text entry on a touch screen for low vision and blind people [6, 14, 25, 27, 28, 32, 37, 

43]. These techniques include No-Look Notes by Bonner et al., allowing users to select 

letters through two virtual keys [6], NavTouch by Oliveira et al., utilizing gestures for letter 

navigation before selection [27], and Sánchez et al.’s method based on virtual key selection 

[32]. Guerreiro et al. explored bimanual interaction and stereo speech to enhance QWERTY 

keyboard speed, but this approach yielded limited benefits [16]. In addition, several recent 

studies [15, 18, 34] identified promising avenues for future research in text entry design for 

people with low vision.

AGTex [5] is the only well-established work that explored word-level text entry for people 

with visual impairments. It utilizes audio feedback to compensate for the absence of visual 

feedback. However, it does not fully utilize the user’s potential and accessibility features 

such as the screen magnifier. To address this gap, this paper proposes a novel gesture 

input method that uses both auditory feedback and the magnifier functionality. Additionally, 

we introduce a customized decoder specifically designed to account for the unique input 

behaviors of low vision users.

3 USER STUDY I: UNDERSTANDING GESTURE TYPING FOR LOW VISION 

PEOPLE

Unlike previous researcher-centric approaches [15, 18], this paper adopts a user-informed 

design methodology. We first conducted a formative user study to evaluate how low vision 

participants use existing gesture typing keyboards. The insights from this user study guided 

the development of gesture typing keyboards aimed at improving accessibility.

3.1 Participants and Apparatus

We recruited 10 low vision participants (6 females, 4 males) aged 36 to 75 years (average 

57.9 ± 15.2). Participants were from a non-profit vision and healthcare organization. The 

study was approved by the Institutional Review Board (IRB) and all participants provided 

their informed consent. Table 1 presents participant demographics. All participants used 

the index finger for text input. On a five-level Likert scale (1:never heard of - 5:expert), 

participants had a median familiarity of 1 with gesture typing and 3 with the QWERTY 

layout.

We used a Google Pixel 2 smartphone with a 5-inch 1920 × 1080 display running Android 

11 for the study. We developed a web-based gesture typing keyboard resembling a modern 
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keyboard interface (see Figure 2) because commercial keyboards like Gboard or iPhone’s 

built-in keyboard are incompatible with TalkBack and VoiceOver in gesture typing mode. 

Our keyboard supports accessibility features such as screen magnifier, color inversion, and 

voice feedback. It uses a SHARK2 decoder [19, 47] and a bigram language model (10k 

unique words) to decode the user gesture.

3.2 Experiment Design

We adopted a text transcription task, where participants transcribe a set of phrases using 

our web-based keyboard. The task consists of a warm-up session with five phrases and a 

formal test session with 10 phrases. The warm-up phrases were randomly picked from a 

versatile phrase set for evaluating typing task [38]. The test phrases were randomly picked 

from the T-40 dataset [44]. All phrases were the same for each participant but presented 

in a random order. Figure 2 shows a screenshot of the transcription task. We recorded the 

following information for further analysis: timestamp, gesture trace, and current texts while 

typing.

3.3 Procedure

After greeting the participants, we introduced the purpose and obtained informed consent. 

We conducted a pre-study interview to collect demographic information, visual condition, 

typing posture, expertise, and QWERTY familiarity. Before the formal study, we configured 

the smartphone based on accessibility preferences (including the screen reader and color 

inversion), provided a 5-minute tutorial on gesture typing, and held a warm-up session 

with five phrases. During the formal study, participants were instructed to complete the 

transcription task as accurately and fast as possible in a comfortable posture. They may skip 

a word after five input attempts. They need to tap the submit button to complete a phrase. 

The formal study was limited to 40 minutes to account for typing variations, even if they 

unable to complete all phrases within this time. After the transcription task, participants 

were invited to participate in a post-study survey. This survey aimed to collect valuable 

feedback on potential areas for improvement in the gesture typing method. The user study 

lasted about an hour.

3.4 Results

3.4.1 Completion Rate.—Table 2 presents the number of phrases completed by the 

10 participants in the text transcription task. We can see that half of the participants were 

unable to complete the entire task. Among them, four participants encountered significant 

challenges during the warm-up session and were unable to transcribe any phrase. We 

identified several potential factors: (1) Screen size: The user study used a 5-inch phone, 

smaller than their usual phones (no less than 6 inches). This smaller screen size might have 

made accurate gesture typing difficult. (2) False spelling: Gesture typing involves swiping 

across multiple keys in sequence which requires users to coordinate finger movements. 

Learning, memorizing and consistently executing these gestures can be challenging. (3) 

Limited practice: Some participants (P4 and P7) mainly used voice input instead of on-

screen typing. Learning a new typing method like gesture typing requires dedicated practice 

time.
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3.4.2 Input Speed.—We measured the input speed of the participants based on their 

completed phrases by Words Per Minute (WPM) [41]. The mean speed (SD) across the 10 

participants is 3.1 WPM (SD=2.22). We observed that the participants spent a large amount 

of time searching for letters.

3.4.3 Error Rate.—We looked into the Word Error Rate (WER) based on the completed 

phrases. The WER was calculated based on the Minimum Word Distance (MWD) [2]. The 

mean WER (SD) for all participants is 5.7% (SD = 11.16%).

3.4.4 Gesture Visualization.—To better understand how the typing error occurred, we 

visualized some representative gesture traces in Figure 3. In Figure. 3a the trace wiggled 

around the letter ‘Z’ which indicates that the participant was exploring the keyboard to find 

the ‘X’ key. Near the ‘M’ key in Figure 3b and the ‘K’ key in Figure 3c, we can observe 

a pattern of changing gliding directions. This pattern can be utilized to improve gesture 

decoding performance.

3.4.5 User Feedback.—Some participants (ID: P2, P3, P8, P9) expressed a positive 

reception for gesture typing and agreed that they could type faster after more practice. We 

identified three main reasons based on their comments: First, gliding fingers on the screen 

is natural and saves effort lifting the finger (P3: “I like the way sliding the finger to type”). 

Second, there is less pressure for the eyes to recognize the keys and locate the finger on the 

keyboard for they have the information about the relative positions of keys (P9: “Gliding the 

fingers is easier for me and my eyes feel relieved”). Lastly, the practice of gesture typing 

instills knowledge of word shapes in the participants’ minds, thus it becomes easier for them 

to correct the errors (P8: “I can build Confidence in the gesture typing process”). There is 

one interesting comment from P10 that gesture typing can improve the ability of spelling. 

These comments highlight the potential importance of gesture typing as an option for text 

entry for individuals with low vision.

3.5 Implications for Designing Keyboard for Low Vision People

The existing decoding algorithm (e.g. SHARK2) assumes that the gesture input of a user 

approximates the predefined template of the intended word (i.e., the shape formed by 

connecting centers of keys of the intended word with straight lines), while low vision 

people’s gesture often deviates from such a template. We identified the following major 

characteristics of gesture input for low vision people, and explained how we could improve 

the gesture typing technique to accommodate low vision people:

• Inaccurate starting position. We observed that it is hard for low vision users to 

accurately land the finger on the first character of a word to start the gesture. 

The decoding algorithm should relax the constraint that the gesture needs to start 

from a position near the first letter.

• Wiggling in the gesture. With a lack of visual feedback of where the finger lands 

on the screen, low vision people tend to wiggle the input finger near the intended 

key: they explore the region to confirm that the intended key was reached. 

Because of these wiggling behaviors, the gesture input from low vision people 
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deviates from the pre-defined template of the intended word, which causes poor 

gesture recognition results. We suggest leveraging such wiggling behavior to 

improve the gesture recognition accuracy when designing the decoding algorithm 

for low vision people.

• Pauses on intended keys. Low vision users usually dwell longer at an intended 

key. Some possible reasons for such pause behavior are: (1) They need to wait 

for the auditory feedback which indicates the gesture reached the desired key. (2) 

They need to figure out in which direction to move based on their memory of the 

keyboard layout.

• Cannot use the magnifier in gesture typing. As previously explained, gesture 

typing requires a user to enter one word with one continuous gesture, and it 

does not work with a screen magnifier because some keys will be displayed 

outside the current viewport once the keyboard is magnified. The keyboard 

should provide a mechanism that allows users to reach these inaccessible keys in 

the middle of gesture typing.

• Suggestion bar is under-utilized. Participants rarely used the suggestion bar of 

the keyboard in the study. They commented that the current keyboard interface 

required them to switch the input focus to the suggestion bar to use it, which 

broke their interaction flow so they rarely used it.

4 ACCESSIBLE GESTURE TYPING KEYBOARDS FOR PEOPLE WITH LOW 

VISION

Based on the results obtained from user study I, we created two accessible gesture typing 

keyboards for people with low vision. Our keyboards contribute to both interface design and 

decoding algorithm design. Our keyboards allow users to access all keys when the magnifier 

is turned on. we designed and implemented a new decoder (kinematics-based decoder) that 

decodes the gesture based on kinematic features of gesture input of low vision people.

4.1 Keyboard Interface Design

We developed two keyboards, a layout-magnified keyboard and a key-magnified keyboard, 

to address a key issue identified in our formative user study: the current on-screen magnifier 

sometimes pushes keys out of the magnified viewport, making them inaccessible. The 

layout-magnified keyboard automatically shifts the keyboard position to display keys 

that are outside the viewport. In the key-magnified keyboard, all keys remain accessible 

because the layout is not magnified. Both designs aim to enhance accessibility, with the 

key-magnified keyboard providing a consistent layout that prevents any key from becoming 

unreachable.

4.1.1 Layout-magnified Keyboard.—We first designed a keyboard with a magnified 

layout that follows the movement of the typing finger. As shown in Figure 4b, a touchdown 

event anywhere on the screen initiates a zoom-in effect of the keyboard centered at the touch 

point. The keyboard continuously translates its location and moves towards the movement 

direction of the user’s finger. The zoom-in effect disappears when the user lifts the finger up.
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4.1.2 Key-magnified Keyboard.—This keyboard magnified the key underneath the 

input finger. As shown in Figure 4c, this keyboard has a static layout and provides an 

overlay magnifier following the movement of the gliding finger. The magnifier is located at 

the upper-left of the intended letter, intentionally avoiding any overlap. If the input finger 

reaches the left edge of the keyboard, the magnifier’s placement shifts to the upper-right 

region.

4.1.3 Suggestions.—Picking the intended word from the suggestions can save effort 

from retyping it. The participants in user study I hardly used the suggestion bar due to the 

lack of accessibility. To address this problem, we show the top suggestion with an enlarged 

font (Figure 4d) and three suggestion words below it. The magnifier also works for the 

suggestion bar.

We also show the just typed word at the same position with the top suggestion so that users 

could check what has been inputted.

4.1.4 Voice Feedback.—Our keyboards also support voice feedback. Specifically, the 

keyboard reads out every key underneath the finger. When the user lifts the finger from the 

screen to complete a gesture typing, it also provides voice feedback for what is just typed. 

When the user explores the suggestion bar, the keyboard reads out the word underneath the 

finger as well.

4.2 Kinematics-based Decoding Algorithm for Low Vision People

We propose a kinematics-based decoding algorithm that determines the probability of 

entering a letter by examining kinematic features of gesture such as whether the gesture 

wiggles near a letter, whether the gesture pauses near a letter, and how long the pause is, etc. 

Even though there are some widely used decoders such as SHARK2 [19], they are unsuitable 

for our particular scenario. They overlook certain distinctive input patterns exhibited by 

low vision users, as enumerated in Section 3.5: (1) ambiguous gesture starting position, (2) 

wiggling in the gesture, (3) pause in the gesture. Our design also drew inspiration from 

the GlanceWriter [9] which used probabilistic methods to infer the typed letter from the 

trajectory of the gaze. Our algorithm stands apart by specifically addressing the finger-based 

gesture input behavior (as mentioned above) exhibited by low vision users, in contrast to the 

approaches in GlanceWriter that were tailored for gaze-based input.

4.2.1 Data Structure.—We used a Trie [40] (prefix tree) as the data structure to store all 

the words in the lexicon with a size of 10k. The root of Trie is an empty node, and each of 

the other nodes in the Trie represents a character. Each node has no more than 26 children 

as there are 26 English letters. Each leaf node within the structure retains both the word and 

its concluding character. In instances where a word includes successive identical characters, 

these characters are symbolized using a solitary node. The children of a given node share a 

common prefix, encompassing the path from the root node to their immediate parent node.

In the Trie structure, nodes possess two states: RELEASE and HOLD. RELEASE means 

that the finger did not engage the corresponding key of the node, while HOLD signifies 

engagement. The initial state of the root node is HOLD. When a touch point hypothetically 
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occurs within the key i, the decoder checks all the HOLD nodes’ children nodes: If the 

character stored in a HOLD node’s child node is identical to key i, the HOLD node’s child 

node is also transitioned to HOLD. The decoder computes the key score for all nodes in the 

HOLD state and incorporates the words stored within such nodes, if present, into the output 

candidate set.

4.2.2 Key Score.—Each node in Trie is associated with a key score, which considers 

the pausing and wiggling behavior. Let K(i) denote the key score of key i, representing how 

likely i is the desired key. To obtain K(i), we define k(i, p) as the key score for a given 

touch point p at key i, where the touch point is sampled from the gesture trajectory at a 

certain frequency by the smartphone operating system. In our algorithm, k(i, p) contains 

three components: (1) distance score D(i, p), (2) pause score P(i, p), (3) wiggle score W(i, 
p). Specifically, they are computed as follows:

Distance score D(i, p).: The distance score captures the space likelihood of a key i being the 

target given a touch point p. We assume that the distance d from p to i’s key center follows 

a Gaussian distribution. Then, we define the distance score using the Gaussian probability 

density function as follows:

D(i, p) = 1
σ 2πe−(d − μ)2/2σ2,

(1)

where we assume μ to be 0 and we empirically set σ to 0.4.

Pause score P(i, p).: It measures how long a user spends on the key i till the touch point p.

P(i, p) = tp − t0
N ,

(2)

where tp denotes the timestamp for touch point p and t0 represents the timestamp the finger 

left the most recent key distinct from i, measured in milliseconds. We empirically set N as 

100 to adjust the metric. A prolonged pause suggests a higher likelihood that i is the target 

key.

Wiggle score W(i, p).: It quantifies the extent to which a user’s gesture path wiggles around 

key i at touch point p. We define W(i, p) as the number of occurrences that a user’s finger 

enters i in a L-size window (measured in the number of touch points) right before touch 

point p. In order to count the occurrences W(i, p), we need to determine the time range, i.e. 

the L. We set L to

L = f ⋅ Δt,

(3)
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where f denotes the frequency at which touchpoints are sampled, Δt is the expected time that 

the finger stays on each key given the input phrases. Let S be the phrases (without space), 

and j be a character, we compute the Δt as follow:

Δt = ∑j ∈ S tj
l − tj

e

S

(4)

where tj
e represents the first time point that the user’s finger enters the key j, and tj

l indicates 

the time that the user’s finger leaves the key. |S| is the number of characters that the user 

inputted.

Once we have the three scores, we could compute k(i, p) as the product of them, That is,

k(i, p) = D(i, p) ⋅ P(i, p) ⋅ W (i, p) .

(5)

The key score for a key i is defined as the maximum value of k(i, p) among all touch points 

within the boundary of (i).

K(i) = max
p ∈ P

k(i, p),

(6)

where P contains all touch points that are located inside the boundary of key i.

4.2.3 Word Score.—The word score S(w) (represents how likely w is the intended word 

given the input gesture path P. It is the sum of key scores for w along its path in the Trie:

S(w) = ∑
i ∈ w

K(i) .

(7)

4.2.4 Incorporating Langauge Model.—We followed the basic principle of word-

gesture decoding [19] to incorporate a language model into decoding. For a word w in 

the candidate set, the principle combines the probability estimated from the input gesture 

path, denoted as c(w), with the language model probability, denoted as l(w), to obtain the 

probability that w being the intended word given input P, denoted by Score(w):

Score(w) = l(w)c(w)
∑i ∈ W l(i)c(i) ,

(8)

where W is a lexicon that contains i words and c(w) is approximated using S(w). Let C 
consist of top t (t = X) words with the highest word score in the lexicon, then
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c(w) = S(w)
∑k ∈ C S(k) .

(9)

We employed a trigram language model to obtain l(w), which is trained on the Corpus of 

Contemporary American English (COCA) [12] (2012 to 2017). Our decoding algorithm 

computes Score(w) and outputs the top N words with the highest word score.

5 USER STUDY II: EVALUATING LAYOUT-MAGNIFIED AND KEY-

MAGNIFIED KEYBOARDS

We conducted an IRB-approved study to evaluate the performance of our layout-magnified 

and key-magnified keyboards, powered by the kinematics-based decoding algorithm, in 

transcription tasks. We compared their performance to conventional keyboards in tap and 

gesture typing modes.

5.1 Participants and Apparatus

Twelve participants (8 females, 4 males) with low vision diagnoses were recruited from 

a non-profit vision and healthcare organization. Their ages ranged from 35 to 76 years 

old (average 55.1 ± 14.9). Among them, eight participants were new and four participants 

(P1, P2, P5, P7) were from user study I. The study adhered to ethical guidelines with 

IRB approval and informed consent from all participants. Table 3 shows the demographic 

information of the participants.

In the user study, 10 users used their index finger to perform the gesture input, while two 

users used their thumb. Based on their self-reported typing skills, 2 were experts and 10 

were intermediates. In terms of self-reported familiarity with the QWERTY layout, 10 were 

experts and two were intermediates. Thus, all participants had prior knowledge of tap typing 

the QWERTY layout.

We used a Google Pixel 6 smartphone running Android 14 with a 6.4-inch 2400×1080 

pixels display in this study. We developed a web-based text entry system with accessibility 

features, and the participants accessed the system using the Chrome browser on the provided 

smartphone.

5.2 Experiment Design

We employed a within-subjects design with one independent variable: keyboard type. This 

variable had four levels: layout-magnified keyboard, key-magnified keyboard, conventional 

gesture typing keyboard, and conventional tap typing keyboard. Similarly to user study 

I, we modified the conventional gesture typing keyboard by integrating voice feedback. 

It is implemented with a SHARK2 decoder and the same trigram language model as 

our kinematics-based algorithm described in Section 4.2.4. The conventional tap typing 

keyboard uses the TalkBack default method and has two-step executions for text input. The 
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first tap or swipe explores the keyboard to locate the intended letter, and the second step 

requires the participant to double-tap anywhere on the screen to confirm the letter.

Similarly to user study I, this study also used a text transcription task. We only sampled two 

phrases for the warm-up session and five phrases for the formal session. The typing interface 

is shown in Figure 4a. To control for order effects, participants were evenly divided into two 

conditions: starting with the tap typing keyboard or the gesture typing keyboards. The order 

of the gesture typing keyboards was further counterbalanced within each group using a Latin 

Square design [4].

The default magnification levels of the layout-magnification keyboard and key-magnified 

keyboard are 2X and 70px respectively. Users may adjust that based on their preferences. 

All participants used the default values, except that one user (P10) adjusted the value for the 

key-magnified keyboard to 90px. Our system logged the following information: timestamp, 

gesture trace, and current texts while typing.

5.3 Procedure

The user study procedure is similar to the user study I and contains a warm-up session, 

where we introduced the keyboard and participants practiced typing with two phrases, and a 

formal session, where users typed five phrases using each keyboard.

Participants could have a 5-minute or longer break if needed between keyboards. After each 

keyboard task, a post-study interview using the System Usability Scale (SUS) questionnaire 

[7] evaluated usability perceptions. The user study lasts around 2 hours.

5.4 Results

All 12 participants successfully completed typing five phrases on each of the four keyboards 

during the formal study session. We observed that 10 participants used the color inversion 

option, while all participants enabled voice feedback throughout the study.

5.4.1 Input Speed.—We first investigated input speed measured in WPM [23]. As 

shown in Figure 6, the key-magnified keyboard yielded the fastest typing speed, while the 

tap typing keyboard resulted in the slowest WPM.

A repeated-measures ANOVA revealed a significant main effect of keyboard layout on 

typing speed (F3, 33 = 16.24, p < 0.001). Pairwise mean comparisons with Holm’s 

adjustment showed significant differences in WPM between key-magnified keyboard vs. 

conventional gesture typing keyboard (p < 0.001), layout-magnified keyboard vs. tap typing 

keyboard (p < 0.001), key-magnified keyboard vs. tap typing keyboard (p < 0.001), and 

conventional gesture typing keyboard vs. tap typing keyboard (p = 0.03). However, no 

significant differences were found between layout-magnified keyboard vs. key-magnified 

keyboard (p = 0.13), layout-magnified keyboard vs. conventional gesture typing keyboard 

(p = 0.24). These results suggest that the keyboard layout significantly impacted typing 

speed, with the key-magnified keyboard leading to faster performance than others. This 

highlights the importance of considering visual acuity limitations when designing gesture 

typing interfaces for low vision users. Interestingly, the WPM between the layout-magnified 
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and the conventional gesture typing keyboard was not statistically significant. This could 

indicate that for some users with low vision, the familiarity and established motor skills 

associated with the static layout of the conventional gesture typing keyboard might be 

comparable to the benefits of a magnified layout.

5.4.2 Error Rate.—We investigated the WER [2] using Minimum Word Distance 

(MWD) for each keyboard condition. As shown in Figure 7, the layout-magnified keyboard 

and the key-magnified keyboard resulted in lower WER compared to the conventional 

gesture typing keyboard and the tap typing keyboard. This suggests that the magnified 

keyboard layouts might have contributed to fewer errors for participants with low vision.

A repeated measures ANOVA showed a significant main effect for the keyboard layout (F3, 

33 = 11.7, p < 0.001 on WER. Pairwise mean comparisons with Holm adjustment showed) 

the differences were significant for layout-magnified keyboard vs. tap typing keyboard (p = 

0.007), key-magnified keyboard vs. tap typing keyboard (p = 0.003). However, results are 

not significant for key-magnified keyboard vs. conventional gesture typing keyboard (p = 

0.11), key-magnified keyboard vs. layout-magnified keyboard (p = 0.17), layout-magnified 

keyboard vs. conventional gesture typing keyboard (p = 0.22), and conventional gesture 

typing keyboard vs. tap typing keyboard (p = 0.11). It suggests that the magnified gesture 

typing keyboards(layout-magnified and key-magnified) with our kinematics-based decoding 

algorithm can improve typing accuracy by reducing errors over the tap typing keyboard. We 

can observe that the error rates between the magnified layouts (key-magnified and layout-

magnified) and the conventional gesture typing keyboard were not statistically significant. 

This indicates that for some users, gesture-based interaction with a standard keyboard layout 

might be just as accurate as using magnified versions.

5.4.3 Deletes Per Word.—We then analyzed the backspace usage using the metric of 

Deletes Per Word (DPW). As shown in Figure 8, the key-magnified keyboard has the lowest 

DPW. Conversely, the conventional gesture typing keyboard showed the highest DPW.

A repeated measures ANOVA showed significant main effects for the keyboard layout (F2, 

22 = 6.1, p < 0.001) on the DPM. Pairwise mean comparisons with Holm adjustment showed 

a significant reduction in DPW for the key-magnified keyboard vs. the conventional gesture 

typing keyboard (p < 0.05). However, no statistically significant differences in DPW were 

found between others: layout-magnified keyboard vs. conventional gesture typing keyboard 

(p = 0.11), key-magnified keyboard (p = 0.15) vs. layout-magnified keyboard (p = 0.20), 

conventional gesture typing keyboard vs. tap typing keyboard (p = 0.05), layout-magnified 

keyboard vs. tap typing keyboard (p = 0.87), and key-magnified keyboard vs. tap typing 

keyboard (p = 0.87).

5.4.4 Usability.—As shown in Figure 9, the key-magnified keyboard received the highest 

SUS score and the tap typing keyboard received the lowest. While the results suggest a trend 

where participants favored the key-magnified and layout-magnified keyboards, a Friedman 

test revealed no statistically significant main effect of keyboard layout on SUS scores (χ2 (2) 

= 7.25, p = 0.06).
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5.4.5 Evaluation by Expertise and Prior Participation.—We analyzed the typing 

performance based on users’ expertise of typing (Expert vs. Non-expert) and prior 

participation in the formative study (New Users vs. Old Users) respectively. As shown 

in Table 4, the two magnification-based keyboards benefited both types of user, especially 

for non-expert users. New users tend to have slower typing speeds and higher error rates 

compared to old users who participated in our first study. This suggests that experience over 

time leads to improved typing performance.

6 DISCUSSION

The comparison between the key-magnified keyboard and the conventional gesture typing 

keyboard showed that the key-magnified keyboard outperforms the conventional gesture 

typing keyboard for low vision people. The key-magnified keyboard achieved a higher 

input speed in terms of WPM. Specifically, the key-magnified keyboard improved the 

input speed of the conventional gesture typing keyboard by 1.14 WPM (27.5%). While 

the layout-magnified keyboard did not demonstrate a statistically significant improvement 

in WPM compared to the conventional option, it may still offer benefits for a specific 

subset of low vision users. Users who prefer a deliberate typing style may find the layout-

magnified keyboard advantageous, while those accustomed to swift gliding gestures may 

require additional adaptation time.

Our study also showed that low vision people also performed better on the gesture typing 

keyboards than in tap typing keyboard. The input speed of the tap typing keyboard is 2.97 

WPM (SD=1.12) and the WER is 0.24 (SD=0.13). Our layout-magnified and key-magnified 

keyboards demonstrated notable enhancements in input speed when compared to the tap 

typing keyboard, with improvements of 1.61 WPM (54.2%) and 2.31 WPM (77.6%) 

respectively. Additionally, our layout-magnified and key-magnified keyboards exhibited 

enhancements in WER for the tap typing keyboard by 0.17 (70.3%) and 0.19 (78.6%) 

respectively.

Furthermore, SUS scores showed a trend in which layout-magnified and key-magnified 

keyboards received higher ratings compared to conventional gesture typing and tap typing 

keyboards. In line with this observation, some participants from user study II commented 

“It is helpful that I can actually see what I’m typing” (P1), “It is faster to type with gesture 

typing and the keyboards are easy to use”(P11). It is important to note that user experiences 

varied. There are some participants who had difficulty adapting to the proposed keyboards. 

Participant P10 in Table 3 expressed his preference for the tap typing keyboard, “I’m used 

to using tap typing and I feel more confident to type the letters one by one”. These findings 

highlight the need to consider user experience and existing typing habits when designing 

keyboards for low vision users. Although magnified keyboards showed promise, some users 

might prefer established methods such as tapping typing.

User study II revealed some potential issues with the current keyboard designs. Participant 

P6’s comment suggests that the layout-magnified keyboard might lead to occasional 

difficulties in maintaining spatial context on the magnified layout. This could be because 

users might lose track of their finger’s position relative to the broader keyboard layout while 
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focusing on the magnified area. On the other hand, especially for long words, low vision 

users sometimes lift their finger before completing the word gesture because of fatigue or 

context loss. Then they need to delete the inputted words and re-input the expected word, 

which is time consuming. We believe that a decoder that supports inputting text using 

multi-segment of gestures would solve this problem and would be an interesting direction 

for future work.

7 LIMITATION AND FUTURE WORK

Inclusion Criteria

Low vision encompasses a wide range of conditions and there can be considerable 

variations in the severity and characteristics of the visual condition. Our study focuses 

on low vision people who can utilize the screen magnifier on smart-phones. This criterion 

ensures that participants can see the keys and content after triggering the screen magnifiers. 

Consequently, this excludes users with more severe vision impairments who may rely on 

alternative text entry methods such as voice input or Braille input. The proposed techniques 

may benefit other people with visual impairments because it can handle gestures deviating 

from pre-defined templates. However, further research is required to fully understand how to 

accommodate other low-vision users.

Heterogeneity of Low Vision

Low vision people have different challenges when writing on smartphone keyboards based 

on their specific condition. For example, wet macular degeneration can cause significant 

field loss and the vision may appear distorted, while dry macular degeneration might lead to 

a blurry or dark spot in the center of the vision field. To address this diversity, our research 

definition of “low vision” prioritizes functional limitations over specific diagnoses. It is 

important to investigate how to account for the unique challenges of individuals in keyboard 

interface and decoding algorithm design. For example, if a user can only see the center 

of the view field, the interface may use a permanently centered magnifier to keep crucial 

information in view. This exemplifies the potential of personalization, a promising direction 

for future research to improve user experience.

Learning Effects

In the user study, participants practiced with each keyboard using only two phrases. Since all 

participants practiced the same number of phrases, the impact on the conclusion of the input 

speed during the formal study was minimal. Further longitudinal studies are needed to fully 

understand and account for the effects of learning.

8 CONCLUSION

We have designed and implemented layout-magnified and key-magnified keyboard 

prototypes to enable gesture typing for people with low vision. The layout-magnified 

keyboard will automatically pan the keyboard layout to reveal hidden keys once the input 

finger reaches the edge of the viewport, and the key-magnified keyboard magnifies the key 

underneath the input finger only. Both keyboards make all the keys accessible during the 
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input, thus making the magnifier compatible with gesture typing. Furthermore, a kinematics-

based decoding algorithm was developed to accommodate the unique typing patterns of 

users with low vision, even when gestures deviate from predefined templates or starting 

positions. User study results demonstrate that both keyboards led to improvements in typing 

speed and error reduction compared to the conventional tap typing keyboard. moreover, 

The key-magnified keyboard increased typing speed by 27.5% compared to a conventional 

gesture typing keyboard.
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CCS CONCEPTS

• Human-centered computing → Accessibility technologies; Text input; 

Gestural input.
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Figure 1: 
Typing “nice” with gesture on our layout-magnified and key-magnified keyboards. On the 

layout-magnified keyboard, the user (a) presses a finger near ‘N’ to initiate a zoom-in effect 

and swipes towards the subsequent letters, (b) finishes at the letter ‘E’ and lifts the finger. 

With the key magnifier keyboard, the user (c) starts near ‘N’, and then (d) swipes towards 

‘I’, ‘C’, and ‘E’, with a magnifier following the finger. The top choice from the real-time 

decoder appears at the top of the keyboard in an enlarged font, followed by three suggestions 

in the suggestion bar. The light blue dots and traces denote touchpoints and gestures. Note 

that both keyboards do not require the user to start the gesture at the first letter of a word.
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Figure 2: 
The interface of the keyboard in User Study I.
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Figure 3: 
Sample gestures of low vision participants. The red dot indicates the starting point. (a) The 

intended word “expensive” was recognized as “expose”. The input finger wiggled around 

z when the user was searching for x. (b) The intended word “company” was successfully 

recognized. (c) The intended word “weekend” was recognized as “walgreens”. The input 

finger wiggled around k as the user was searching for this key.
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Figure 4: 
Screenshots of our keyboards. (a) The interface of our text entry system. (b) The layout-

magnified keyboard. When the user lands the finger on the key ‘C’, the keyboard initiates 

a zoom-in effect. (c) The key-magnified keyboard with the magnified key underneath the 

finger. (d) The top suggestion / just typed word is displayed with an enlarged font size.
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Figure 5: 
A user is inputting text using the layout-magnified keyboard with color inversion on.
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Figure 6: 
Average input speed (95% Confidence Interval) of the four keyboards.
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Figure 7: 
Average WER (95% CI) of the four keyboards.
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Figure 8: 
Average Deletes Per Word (95% CI) of the four keyboards.
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Figure 9: 
The median SUS score of the four keyboards.
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Table 2:

Completed phrases of each participant in the user study I. Five participants were able to input all phrases, 

while four were unable to input a single phrase.

ID P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Completion Count 10 10 0 0 6 10 0 10 10 0
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Table 4:

Performance comparison of typing keyboards across different user groups: Expert vs. Non-expert, and New 

Users vs. Old Users.

Expert vs. Non-expert

Conventional Tap Conventional Gesture Layout-magnified Key-magnified

Mean WPM
Expert 4.06 6.31 5.45 7.72

Non-Expert 2.75 3.70 4.41 4.78

Mean WER (%)
Expert 13.5 7.0 5.0 2.5

Non-Expert 26.3 11.8 7.5 5.6

New Users vs. Old Users

Conventional Tap Conventional Gesture Layout-magnified Key-magnified

Mean WPM
Old 3.35 4.59 5.12 5.93

New 2.21 3.21 3.50 3.96

Mean WER (%)
Old 20.0 10.2 7.1 4.3

New 32.5 12.8 7.0 6.8
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