Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Aug 17;17(16):4695–4703. doi: 10.1093/emboj/17.16.4695

Receptor-oriented intercellular calcium waves evoked by vasopressin in rat hepatocytes.

T Tordjmann 1, B Berthon 1, E Jacquemin 1, C Clair 1, N Stelly 1, G Guillon 1, M Claret 1, L Combettes 1
PMCID: PMC1170798  PMID: 9707428

Abstract

Agonist-induced intracellular calcium signals may propagate as intercellular Ca2+ waves in multicellular systems as well as in intact organs. The mechanisms initiating intercellular Ca2+ waves in one cell and determining their direction are unknown. We investigated these mechanisms directly on fura2-loaded multicellular systems of rat hepatocytes and on cell populations issued from peripheral (periportal) and central (perivenous) parts of the hepatic lobule. There was a gradient in vasopressin sensitivity along connected cells as demonstrated by low vasopressin concentration challenge. Interestingly, the intercellular sensitivity gradient was abolished either when D-myo-inositol 1,4, 5-trisphosphate (InsP3) receptor was directly stimulated after flash photolysis of caged InsP3 or when G proteins were directly stimulated with AlF4-. The gradient in vasopressin sensitivity in multiplets was correlated with a heterogeneity of vasopressin sensitivity in the hepatic lobule. There were more vasopressin-binding sites, vasopressin-induced InsP3 production and V1a vasopressin receptor mRNAs in perivenous than in periportal cells. Therefore, we propose that hormone receptor density determines the cellular sensitivity gradient from the peripheral to the central zones of the liver cell plate, thus the starting cell and the direction of intercellular Ca2+ waves, leading to directional activation of Ca2+-dependent processes.

Full Text

The Full Text of this article is available as a PDF (361.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbeis C., Balestre M. N., Jard S., Tribollet E., Arsenijevic Y., Dreifuss J. J., Bankowski K., Manning M., Chan W. Y., Schlosser S. S. Characterization of a novel, linear radioiodinated vasopressin antagonist: an excellent radioligand for vasopressin V1a receptors. Neuroendocrinology. 1995 Aug;62(2):135–146. doi: 10.1159/000126998. [DOI] [PubMed] [Google Scholar]
  2. Carter T. D., Chen X. Y., Carlile G., Kalapothakis E., Ogden D., Evans W. H. Porcine aortic endothelial gap junctions: identification and permeation by caged InsP3. J Cell Sci. 1996 Jul;109(Pt 7):1765–1773. doi: 10.1242/jcs.109.7.1765. [DOI] [PubMed] [Google Scholar]
  3. Champeil P., Combettes L., Berthon B., Doucet E., Orlowski S., Claret M. Fast kinetics of calcium release induced by myo-inositol trisphosphate in permeabilized rat hepatocytes. J Biol Chem. 1989 Oct 25;264(30):17665–17673. [PubMed] [Google Scholar]
  4. Chiavaroli C., Bird G., Putney J. W., Jr Delayed "all-or-none" activation of inositol 1,4,5-trisphosphate-dependent calcium signaling in single rat hepatocytes. J Biol Chem. 1994 Oct 14;269(41):25570–25575. [PubMed] [Google Scholar]
  5. Combettes L., Tran D., Tordjmann T., Laurent M., Berthon B., Claret M. Ca(2+)-mobilizing hormones induce sequentially ordered Ca2+ signals in multicellular systems of rat hepatocytes. Biochem J. 1994 Dec 1;304(Pt 2):585–594. doi: 10.1042/bj3040585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Smedt F., Missiaen L., Parys J. B., Vanweyenberg V., De Smedt H., Erneux C. Isoprenylated human brain type I inositol 1,4,5-trisphosphate 5-phosphatase controls Ca2+ oscillations induced by ATP in Chinese hamster ovary cells. J Biol Chem. 1997 Jul 11;272(28):17367–17375. doi: 10.1074/jbc.272.28.17367. [DOI] [PubMed] [Google Scholar]
  7. Dupont G., Erneux C. Simulations of the effects of inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase activities on Ca2+ oscillations. Cell Calcium. 1997 Nov;22(5):321–331. doi: 10.1016/s0143-4160(97)90017-8. [DOI] [PubMed] [Google Scholar]
  8. Fort P., Marty L., Piechaczyk M., el Sabrouty S., Dani C., Jeanteur P., Blanchard J. M. Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res. 1985 Mar 11;13(5):1431–1442. doi: 10.1093/nar/13.5.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frame M. K., de Feijter A. W. Propagation of mechanically induced intercellular calcium waves via gap junctions and ATP receptors in rat liver epithelial cells. Exp Cell Res. 1997 Feb 1;230(2):197–207. doi: 10.1006/excr.1996.3409. [DOI] [PubMed] [Google Scholar]
  10. Grazzini E., Lodboerer A. M., Perez-Martin A., Joubert D., Guillon G. Molecular and functional characterization of V1b vasopressin receptor in rat adrenal medulla. Endocrinology. 1996 Sep;137(9):3906–3914. doi: 10.1210/endo.137.9.8756565. [DOI] [PubMed] [Google Scholar]
  11. Guillon G., Balestre M. N., Mouillac B., Devilliers G. Activation of membrane phospholipase C by vasopressin. A requirement for guanyl nucleotides. FEBS Lett. 1986 Feb 3;196(1):155–159. doi: 10.1016/0014-5793(86)80232-0. [DOI] [PubMed] [Google Scholar]
  12. Ibarrondo J., Joubert D., Dufour M. N., Cohen-Solal A., Homburger V., Jard S., Guillon G. Close association of the alpha subunits of Gq and G11 G proteins with actin filaments in WRK1 cells: relation to G protein-mediated phospholipase C activation. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8413–8417. doi: 10.1073/pnas.92.18.8413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jessell T. M., Kandel E. R. Synaptic transmission: a bidirectional and self-modifiable form of cell-cell communication. Cell. 1993 Jan;72 (Suppl):1–30. doi: 10.1016/s0092-8674(05)80025-x. [DOI] [PubMed] [Google Scholar]
  14. Jungermann K., Kietzmann T. Zonation of parenchymal and nonparenchymal metabolism in liver. Annu Rev Nutr. 1996;16:179–203. doi: 10.1146/annurev.nu.16.070196.001143. [DOI] [PubMed] [Google Scholar]
  15. Kaabache T., Barraud B., Feldmann G., Bernuau D., Lardeux B. Direct solution hybridization of guanidine thiocyanate-solubilized cells for quantitation of mRNAs in hepatocytes. Anal Biochem. 1995 Dec 10;232(2):225–230. doi: 10.1006/abio.1995.0011. [DOI] [PubMed] [Google Scholar]
  16. Kasai H., Li Y. X., Miyashita Y. Subcellular distribution of Ca2+ release channels underlying Ca2+ waves and oscillations in exocrine pancreas. Cell. 1993 Aug 27;74(4):669–677. doi: 10.1016/0092-8674(93)90514-q. [DOI] [PubMed] [Google Scholar]
  17. Kasai H., Petersen O. H. Spatial dynamics of second messengers: IP3 and cAMP as long-range and associative messengers. Trends Neurosci. 1994 Mar;17(3):95–101. doi: 10.1016/0166-2236(94)90112-0. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
  20. Morel A., O'Carroll A. M., Brownstein M. J., Lolait S. J. Molecular cloning and expression of a rat V1a arginine vasopressin receptor. Nature. 1992 Apr 9;356(6369):523–526. doi: 10.1038/356523a0. [DOI] [PubMed] [Google Scholar]
  21. Nathanson M. H., Burgstahler A. D. Coordination of hormone-induced calcium signals in isolated rat hepatocyte couplets: demonstration with confocal microscopy. Mol Biol Cell. 1992 Jan;3(1):113–121. doi: 10.1091/mbc.3.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nathanson M. H., Burgstahler A. D., Mennone A., Fallon M. B., Gonzalez C. B., Saez J. C. Ca2+ waves are organized among hepatocytes in the intact organ. Am J Physiol. 1995 Jul;269(1 Pt 1):G167–G171. doi: 10.1152/ajpgi.1995.269.1.G167. [DOI] [PubMed] [Google Scholar]
  23. Ogden D. C., Capiod T., Walker J. W., Trentham D. R. Kinetics of the conductance evoked by noradrenaline, inositol trisphosphate or Ca2+ in guinea-pig isolated hepatocytes. J Physiol. 1990 Mar;422:585–602. doi: 10.1113/jphysiol.1990.sp018002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ostrowski N. L., Young W. S., 3rd, Knepper M. A., Lolait S. J. Expression of vasopressin V1a and V2 receptor messenger ribonucleic acid in the liver and kidney of embryonic, developing, and adult rats. Endocrinology. 1993 Oct;133(4):1849–1859. doi: 10.1210/endo.133.4.8404628. [DOI] [PubMed] [Google Scholar]
  25. Palmer S., Hughes K. T., Lee D. Y., Wakelam M. J. Development of a novel, Ins(1,4,5)P3-specific binding assay. Its use to determine the intracellular concentration of Ins(1,4,5)P3 in unstimulated and vasopressin-stimulated rat hepatocytes. Cell Signal. 1989;1(2):147–156. doi: 10.1016/0898-6568(89)90004-1. [DOI] [PubMed] [Google Scholar]
  26. Quistorff B. Gluconeogenesis in periportal and perivenous hepatocytes of rat liver, isolated by a new high-yield digitonin/collagenase perfusion technique. Biochem J. 1985 Jul 1;229(1):221–226. doi: 10.1042/bj2290221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Robb-Gaspers L. D., Thomas A. P. Coordination of Ca2+ signaling by intercellular propagation of Ca2+ waves in the intact liver. J Biol Chem. 1995 Apr 7;270(14):8102–8107. doi: 10.1074/jbc.270.14.8102. [DOI] [PubMed] [Google Scholar]
  28. Rooney T. A., Sass E. J., Thomas A. P. Agonist-induced cytosolic calcium oscillations originate from a specific locus in single hepatocytes. J Biol Chem. 1990 Jun 25;265(18):10792–10796. [PubMed] [Google Scholar]
  29. Sanderson M. J., Charles A. C., Boitano S., Dirksen E. R. Mechanisms and function of intercellular calcium signaling. Mol Cell Endocrinol. 1994 Jan;98(2):173–187. doi: 10.1016/0303-7207(94)90136-8. [DOI] [PubMed] [Google Scholar]
  30. Schlosser S. F., Burgstahler A. D., Nathanson M. H. Isolated rat hepatocytes can signal to other hepatocytes and bile duct cells by release of nucleotides. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9948–9953. doi: 10.1073/pnas.93.18.9948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
  32. Shears S. B. Metabolism of the inositol phosphates produced upon receptor activation. Biochem J. 1989 Jun 1;260(2):313–324. doi: 10.1042/bj2600313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sneyd J., Wetton B. T., Charles A. C., Sanderson M. J. Intercellular calcium waves mediated by diffusion of inositol trisphosphate: a two-dimensional model. Am J Physiol. 1995 Jun;268(6 Pt 1):C1537–C1545. doi: 10.1152/ajpcell.1995.268.6.C1537. [DOI] [PubMed] [Google Scholar]
  34. Sáez J. C., Connor J. A., Spray D. C., Bennett M. V. Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2708–2712. doi: 10.1073/pnas.86.8.2708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Taylor S. J., Chae H. Z., Rhee S. G., Exton J. H. Activation of the beta 1 isozyme of phospholipase C by alpha subunits of the Gq class of G proteins. Nature. 1991 Apr 11;350(6318):516–518. doi: 10.1038/350516a0. [DOI] [PubMed] [Google Scholar]
  36. Thomas A. P., Bird G. S., Hajnóczky G., Robb-Gaspers L. D., Putney J. W., Jr Spatial and temporal aspects of cellular calcium signaling. FASEB J. 1996 Nov;10(13):1505–1517. [PubMed] [Google Scholar]
  37. Thorn P., Lawrie A. M., Smith P. M., Gallacher D. V., Petersen O. H. Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell. 1993 Aug 27;74(4):661–668. doi: 10.1016/0092-8674(93)90513-p. [DOI] [PubMed] [Google Scholar]
  38. Tordjmann T., Berthon B., Claret M., Combettes L. Coordinated intercellular calcium waves induced by noradrenaline in rat hepatocytes: dual control by gap junction permeability and agonist. EMBO J. 1997 Sep 1;16(17):5398–5407. doi: 10.1093/emboj/16.17.5398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tordjmann T., Berthon B., Combettes L., Claret M. The location of hepatocytes in the rat liver acinus determines their sensitivity to calcium-mobilizing hormones. Gastroenterology. 1996 Nov;111(5):1343–1352. doi: 10.1053/gast.1996.v111.pm8898649. [DOI] [PubMed] [Google Scholar]
  40. Tordjmann T., Berthon B., Lardeux B., Moreau A., Jacquemin E., Combettes L., Feldmann G., Claret M. An improved digitonin-collagenase perfusion technique for the isolation of periportal and perivenous hepatocytes from a single rat liver: physiological implications for lobular heterogeneity. Hepatology. 1997 Dec;26(6):1592–1599. doi: 10.1053/jhep.1997.v26.pm0009398003. [DOI] [PubMed] [Google Scholar]
  41. Walker J. W., Feeney J., Trentham D. R. Photolabile precursors of inositol phosphates. Preparation and properties of 1-(2-nitrophenyl)ethyl esters of myo-inositol 1,4,5-trisphosphate. Biochemistry. 1989 Apr 18;28(8):3272–3280. doi: 10.1021/bi00434a023. [DOI] [PubMed] [Google Scholar]
  42. Woods N. M., Cuthbertson K. S., Cobbold P. H. Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature. 1986 Feb 13;319(6054):600–602. doi: 10.1038/319600a0. [DOI] [PubMed] [Google Scholar]
  43. Woods N. M., Dixon C. J., Cuthbertson K. S., Cobbold P. H. Fluoroaluminate mimics agonist application in single rat hepatocytes. Biochem J. 1990 Jan 15;265(2):613–615. doi: 10.1042/bj2650613. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES