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membrane protein (Yip1p) functionally links the
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The regulation of vesicular transport in eukaryotic
cells involves Ras-like GTPases of the Ypt/Rab family.
Studies in yeast and mammalian cells indicate that
individual family members act in vesicle docking/fusion
to specific target membranes. Using the two-hybrid
system, we have now identified a 248 amino acid,
integral membrane protein, termed Yip1, that
specifically binds to the transport GTPases Ypt1p and
Ypt31p. Evidence for physical interaction of these
GTPases with Yip1p was also demonstrated by
affinity chromatography and/or co-immunoprecipita-
tion. Like the two GTPases, Yip1p is essential for yeast
cell viability and, according to subcellular fractionation
and indirect immunofluorescence, is located to Golgi
membranes at steady state. Mutant cells depleted of
Yip1p and conditionally lethal yip1mutants at the non-
permissive temperature massively accumulate endo-
plasmic reticulum membranes and display aberrations
in protein secretion and glycosylation of secreted
invertase. The results suggests for a role for Yip1p in
recruiting the two GTPases to Golgi target membranes
in preparation for fusion.
Keywords: Golgi/secretion/two-hybrid system/vesicular
protein transport/Ypt/Rab GTPase

Introduction

Both protein and membrane traffic between the organelles
of the secretory and endocytic pathways involve complex
regulatory mechanisms. They ensure specificity and direc-
tionality of vesicular protein flow as well as a dynamic
balance of membrane material between the organelles
involved. Genetic and biochemical studies with unicellular
yeast and with many specialized mammalian cells revealed
that a multitude of proteins, either specific for a particular
transport step or with similar function in different stages
of transport, participate in vesicular trafficking (Rothman
and Wieland, 1996). Several of these proteins are evolu-
tionarily highly conserved (Bennett and Scheller, 1994).
Among them are the monomeric GTPases of the Ypt/Rab
family that play a decisive role in transport vesicle docking
and/or membrane fusion (Lazaret al., 1997; Novick and
Zerial, 1997). Their critical function is clearly demon-
strated in yeast, as cells depleted of GTPases that act at
different stages of the biosynthetic pathway lose viability
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(Schmittet al., 1986; Salminen and Novick, 1987; Benli
et al., 1996). Although there is evidence for a role of Ypt/
Rab GTPases in the priming and pairing of vesicular and
target membrane receptors, SNAREs (Lianet al., 1994;
Søgaardet al., 1994; Lupashin and Waters, 1997; Mayer
and Wickner, 1997), GTPases have not been found in
docking/fusion complexes isolated from detergent-lysed
cells (Søgaardet al., 1994). This suggests that interactions
of transport GTPases with components of the vesicle
docking/fusion machinery are short-lived and difficult to
detect by biochemical means.

Another technique for detecting specific protein–protein
interactions, the two-hybrid system, has also been
applied to discover proteins that bind to Ypt/Rab GTPases.
Activated, i.e. primarily GTP-bound, forms of several Rab
proteins have thus been found to bind to putative effectors,
Rab5p to Rabaptin-5 (Stenmarket al., 1995), Rab8p to a
Golgi-localized protein kinase (Renet al., 1996), Rab9p
to an endosome-associated 40 kDa protein (Diazet al.,
1997) or Rab6p to a kinesin-related, Golgi-associated
protein (Echardet al., 1998). The activated GTPases
appear to recruit all of these proteins to the correct
membrane, be it a vesicular, donor or acceptor membrane.
As transport GTPases, apparently complexed with GDI
(GDP dissociation inhibitor) (Soldatiet al., 1994; Ullrich
et al., 1994), bind to specific membranes on exocytic or
endocytic organelles, it seems most likely, but has not been
proven, that organelle-specific GTPase-binding proteins
exist. The two-hybrid system could also be of value in
identifying such putative receptors.

With this in mind, we initiated a two-hybrid screen
with the yeast GTPases Ypt1p and Ypt31p which are
essential for endoplasmic reticulum (ER) to Golgi and
intra-Golgi transport (Lazaret al., 1997). An integral
membrane protein of 27 kDa, Yip1p, was discovered that
specifically binds the two wild-type GTPases, but not
Ypt6p or Ypt7p. The functional properties of this essential
protein suggest its involvement in specific membrane
binding of two Ypt GTPases that act in consecutive stages
of the biosynthetic pathway.

Results

Identification of a novel protein that specifically
interacts with Ypt1 and Ypt31 GTPases
Previous attempts in our laboratory to identify, by affinity
chromatography, proteins that physically interact with
yeast transport GTPases of the Ypt family failed. Likewise,
Ypt1p could not be detected in docking complexes of
ER-derived vesicles at their target Golgi compartment
(Søgaardet al., 1994).

We therefore searched for Ypt1- and Ypt31-interacting
proteins using the two-hybrid system (Fields and Song,
1989). In separate experiments, fusions of the Gal4 DNA-
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Fig. 1. Identification and interaction specificity of Yip1p in the two-
hybrid system. (A) Wild-type GTPases Ypt1, Ypt31, Ypt6 and Ypt7
fused to the Gal4 DNA-binding domain were used as bait, and Yip1p
lacking the N-terminal 11 amino acids and fused to the Gal4
transcription activating domain was used as prey in the yeast two-
hybrid analysis to detectβ-galactosidase activity. Fusions of the Gal4
domains to the protein kinase Snf1 and its activating subunit Snf4
were used as positive control. The lack of transcription activation by
Ypt GTPases alone is shown for Ypt1p. (B) Primary sequence of
Yip1p. The putative membrane-spanning sequences are underlined.
Amino acid substitutions of the temperature-sensitive mutantsyip1-1
(P114L, G129E) andyip1-2 (G175E) are shown.

binding domain to either Ypt1 or Ypt31 wild-type protein
were screened for binding partners expressed from yeast
cDNAs fused to the transcription activation domain-
encodingGAL4gene fragment (gift of S.J.Elledge). In the
case of Ypt1p, eight individual recombinant plasmids
recovered from ~2.53106 original transformants survived
several verification tests for apparently true positives.
Of these, one plasmid was recovered twice and, as
shown by DNA sequence analysis, expressed a fusion
with a 237 amino acid protein fragment. This protein was
termed Yip1 (Ypt-interacting protein). Surprisingly, Yip1p
was also found 20 times among 38 positive clones in a
parallel screen with the Ypt31 GTPase as a bait. TheYIP1
gene was isolated from a genomic library, sequenced and
shown to encode a 248 amino acid protein (DDBJ/EMBL/
GenBank accession No. X97342). Yip1p has a molecular
mass of 27.07 kDa and contains three putative membrane-
spanning domains (Figure 1B). It is not significantly
related to any otherSaccharomyces cerevisiaeprotein. In
an assessment of the specificity of the protein interactions
observed, two other Ypt GTPases, Ypt6p (Li and Warner,
1996; Tsukada and Gallwitz, 1996) and Ypt7p (Wichmann
et al., 1992), were found not to interact with Yip1p in the
two-hybrid system (Figure 1A).

Yip1p is an essential protein and involved in
vesicular transport
Two strategies were followed to assess the function of
YIP1: gene disruption and the analysis of conditional
mutants. First, the gene on one chromosome VII was
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knocked out in a diploid strain by deleting a 575 bp
fragment including codons 1–190 and replacing it by the
URA3marker gene (Figure 9A). Cells of ayip1 deletion
strain were sporulated and subjected to tetrad analysis. It
was found that all four spores were able to germinate, but
only two formed colonies and these were Ura–, showing
that YIP1 is essential for cell growth and proliferation.
We then created conditional lethal mutants (i) by PCR
mutagenesis and (ii) by placingYIP1under transcriptional
control of the regulatableGAL10 promoter (Figure 9B
and C), allowing us to deplete cells of Yip1p in glucose-
containing medium.

Cells containing theGAL10 promoter-regulatedYIP1
grew normally in galactose-containing medium but
ceased proliferation 10–12 h after shift to glucose (data
not shown). As shown in Figure 2A, cells depleted of
Yip1p accumulated the unprocessed proforms of several
vacuolar hydrolases that pass through the ER and the
Golgi compartments on the way to their final destination.
The transport inhibition resembled that of asec18mutant
which, at the non-permissive temperature, completely
abolishes ER-to-Golgi vesicular traffic (Novicket al.,
1981; Graham and Emr, 1991). A severe inhibition of
vacuolar enzyme maturation was also seen in pulse–chase
experiments performed with two temperature-sensitive
yip1 mutants having different Yip1 amino acid substitu-
tions (Figure 1B). As shown in Figure 2B and C, after a
15 min pulse of wild-type cells with35S-labelled amino
acids, two proforms of vacuolar carboxypeptidase Y
(CPY), the core-glycosylated ER form (p1) and the Golgi-
modified form (p2), could be distinguished easily from
the mature form (m) which is generated by proteolytic
cleavage upon arrival of the p2 form in the vacuole. After
a 30 min chase, the proforms were completely matured at
25 and 36°C. Inyip1-1 mutant cells (Figure 2B), the
maturation of CPY and of the vacuolar alkaline
phosphatase (ALP) was severely impaired already at the
permissive and, to a comparable extent, at non-permissive
temperature. In contrast, inyip1-2 mutant cells (Figure
2C), the maturation of CPY at the permissive temperature
(25°C) was only slightly disturbed, but was completely
inhibited at 36°C. As shown by electrophoretic mobility
and the lack of Golgi-acquiredα1-6- and α1-3-linked
mannosyl residues, it was the ER form of CPY that was
accumulated at 36°C. These results suggested that the loss
of Yip1p function results in a protein transport defect at
an early stage(s) in the biosynthetic pathway.

In following the processing and secretion of invertase
by activity staining in non-denaturing gels, we observed
that in both conditional lethalyip1 mutants, especially in
yip1-2, part of the enzyme accumulated inside the cell in
its ER core-glycosylated form. However, the bulk of
invertase was severely underglycosylated and transported
efficiently to the periplasmic space (Figure 3). This some-
what surprising feature is shared byyip1 and a previously
isolatedypt1 mutant (Beckeret al., 1991).

In line with the processing and transport defects of
proteins passing along the biosynthetic route, cells depleted
of Yip1p (Figure 4) andyip1 mutant cells at the non-
permissive temperature (not shown) massively accumu-
lated ER membranes. That the augmented membranes
were part of the ER can be seen by their characteristic
connections with the nuclear membrane (Figure 4E and F).
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Fig. 2. Inhibition of protein transport in conditionalyip1 mutants.
(A) Western blot analysis with total cellular proteins of vacuolar
soluble proteins (carboxypeptidase Y, CPY, proteinases A and B,
ProA/B) and integral membrane hydrolases (alkaline phosphatase,
ALP) in the yeast strain GFY1 at different times (h) after shift from
galactose- to glucose-containing growth medium which resulted in
transcriptional silencing of theGAL10promoter-controlledYIP1 gene.
p1, ER core-glycosylated CPY; p, ER- and Golgi-modified proforms;
m, mature form of enzymes generated after arrival in the vacuole.
Proteins of wild-type (WT) andsec18heat-sensitive cells (1 h after
shift to non-permissive conditions) were used as controls for normal
and inhibited protein transport through the secretory pathway.
(B andC) Pulse–chase experiments with wild-type (WT) andyip1-1
andyip1-2 temperature-sensitive mutants at the designated
temperatures. Cells were labelled with [35S]amino acids for 15 min
and chased for 30 min with cold methionine and cysteine. CPY and
ALP were immunoprecipitated, resolved by SDS–PAGE and identified
by fluorography. In (C), anti-CPY immunoprecipitates were divided
into three equal portions and immunoprecipitation was performed
again with antibodies against CPY,α1-3- andα1-6-linked mannosyl
residues, respectively. ER core-glycosylated (p1), Golgi-glycosylated
(p2) and mature (m) CPY as well as unprocessed (p) and mature (m)
ALP could be resolved electrophoretically due to their different
molecular masses.

Increased ER membrane proliferation in temperature-
sensitiveyip1 mutants was observed as early as 30 min
after shift to restrictive conditions. In Yip1p-depleted
cells, ER membranes frequently formed multi-layered
aggregates (Figure 4D).

Yip1 is an integral membrane protein
A polyclonal antibody was generated against the His6-
tagged N-terminal 106 amino acid-comprising Yip1p
fragment to investigate the intracellular localization of the
protein. As suggested by its primary structure (Figure 1B),
Yip1p has all the properties of an integral membrane
protein, with the predicted membrane-spanning domains
residing in the C-terminal half of the molecule. To prove
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Fig. 3. Fate of secreted invertase in conditionally lethalyip1 mutants.
Activity staining of invertase after separation of periplasmic (E) and
intracellular (I) protein fractions in non-denaturing gels. Highly
glycosylated invertase (S) is secreted from wild-type cells (WT) and
hypoglycosylated invertase fromyip1-1 andyip1-2 mutant cells
(shifted to non-permissive temperature for 1 h in 0.1% glucose
medium). Accumulation of intracellular, ER core-glycosylated
invertase (ER) insec18mutant cells (1 h at 37°C) served as a control
for transport inhibition.

this, cell lysates were incubated on ice in the presence of
5 M urea or 1% Triton X-100, and in high salt or at
alkaline pH. After centrifugation at 100 000g, a significant
part of Yip1p was detected in the soluble fraction after
detergent treatment only (Figure 5A), indicating that this
protein is indeed inserted into membranes. It can also be
seen from Figure 5A that solubilization with detergent
resulted in partial degradation of Yip1p.

The availability of an anti-Yip1p antibody directed
against the hydrophilic N-terminal half of Yip1p allowed
us to determine the membrane topology of the protein.
After careful cell lysis, and the removal of unbroken
cells and cell debris, the cellular membranes and
organelles precipitating at 100 000g were treated with
proteinase K in the presence and absence of detergent.
Proteins were then precipitated with trichloroacetic acid
(TCA) and subjected to Western blot analysis using
anti-Yip1p antibodies or antibodies directed against the
Golgi protein Emp47p (Schro¨der et al., 1995).
Emp47p is a type-I integral membrane protein with a
C-terminally located membrane-spanning domain. The
lumenally oriented N-terminal portion of the protein should
therefore be protected against protease digestion. As
predicted, Emp47p was digested by proteinase K only
after detergent treatment. In contrast, the N-terminal region
of Yip1p was digested regardless of whether the P100
fraction was treated with detergent or not (Figure 5B). This
shows that the N-terminus of Yip1p faces the cytoplasm.

Yip1p is localized to the Golgi apparatus
To investigate the intracellular localization of Yip1p,
subcellular fractionations and indirect immunofluores-
cence were performed. On differential fractionation of cell
lysates, Yip1p was found exclusively in fractions pelleted
at either 10 000 or 100 000g, but most of Yip1p was
precipitable at 100 000g, like the late Golgi protease
Kex2p (Graham and Emr, 1991). Interestingly, high levels
of expression of Yip1p from a multicopy plasmid led to
the appearance of a sizeable proportion of this protein in
the subcellular fraction sedimenting at 10 000g, which is
enriched for ER harbouring the Kar2 protein and for
vacuolar membranes containing ALP (Figure 6A). Sucrose
gradient centrifugation of cell lysates revealed that most
of the Yip1 protein in wild-type cells co-sedimented with
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Fig. 4. Accumulation of ER in cells depleted of Yip1 protein. A yeast strain carrying theYIP1 gene under transcriptional control of theGAL10
promoter was shifted from galactose- (A) to glucose-containing medium for 10 h (B andE) or 16 h (C, D andF), and cells were fixed with
potassium permanganate and subjected to electron microscopic analysis. Arrows point to connections between the ER and nuclear membranes,
arrowheads to nuclear pores. N, nucleus; V, vacuole; M, mitochondrion; E, endoplasmic reticulum. The bars in (A–D) and in (E and F) represent
1 and 0.5µm, respectively.

the Kex2 protease and, in part, with thecis-Golgi transport
vesicle receptor Sed5p (Hardwick and Pelham, 1992), but
not with ER and vacuole membrane markers (Figure 6B).

As shown by indirect immunofluorescence (Figure 7),
Yip1p in wild-type cells exhibited a punctate staining
pattern typical for Golgi-localized proteins. However, on
high expression, Yip1p staining was seen primarily as a
perinuclear ring, suggesting ER localization. The pheno-
menon whereby high levels of expression of Golgi proteins
can lead to their accumulation in the ER has been observed
previously (Munro, 1991; Machameret al., 1993). Most
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importantly, by double immunofluorescence using poly-
clonal anti-Yip1p antibodies and monoclonal anti-Myc
epitope antibodies to identify C-terminally Myc-tagged
Emp47p, an almost perfect co-localization of Yip1p and
Emp47p was observed (Figure 7E and F). Emp47p was
shown previously to be associated primarily with medial-
Golgi membranes in logarithmically growing cells
(Schröder et al., 1995).

Taken together, these results show that Yip1p, at steady
state, is an integral Golgi membrane protein and on high
expression can be enriched in the ER.
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Fig. 5. Membrane localization and topology of Yip1p.
(A) Logarithmically grown cells were disrupted with glass beads, and
the cell lysate (500g supernantant) was treated for 30 min on ice as
indicated. After centrifugation at 100 000g for 1 h, soluble and
pelleted proteins were separated by SDS–PAGE and subjected to
immunoblot analysis using anti-Yip1p antibody. (B) Cells were lysed
carefully in a Dounce homogenizer, and cellular membranes were
precipitated at 100 000g, resuspended in buffer A in the absence or
presence of 1% Triton X-100, and incubated without (lanes 1 and 4)
or with proteinase K for 30 min (lanes 2 and 5) or 60 min (lanes 3
and 6). Proteins were TCA precipitated, resolved by SDS–PAGE and
probed with anti-Emp47p or anti-Yip1p antibodies.

Physical interactions of Yip1p with Ypt1 and Ypt31
GTPases
Having shown that protein transport is defective inyip1
mutants and that these defects were clearly associated
with an early step(s) of the secretory pathway, attempts
were made to help elucidate the functional relationship of
the essential Yip1 protein and the transport GTPases Ypt1
and Ypt31. As the combination of conditional mutations
in two separate but functionally related genes is often
lethal, we searched for synthetic lethality after crossing
the yip1-1 and theyip1-2 mutant with either of the heat-
sensitive ypt1A136D (Jedd et al., 1995) andypt31K127N

mutant strains (Benliet al., 1996). No haploidyip1mutant
cell was viable at the otherwise permissive temperature
of 25°C when it also carried theypt1or ypt31mutant allele,
providing further evidence for the functional interplay in
protein transport of Yip1p and the two GTPases.

To corroborate the results of the two-hybrid analyses
which suggested specific physical interaction of Yip1p
with Ypt1p and Ypt31p, we prepared a soluble GST fusion
protein that contained the hydrophilic part of Yip1p,
termed Yip1Np (amino acid residues 1–99; Figure 1B).
The GST–Yip1N fusion protein bound to glutathione–
Sepharose-4B (Figure 8B) was used as the affinity matrix
in binding experiments with total protein of detergent-
lysed yeast cells. As can be seen in Figure 8C, Ypt31p
was bound efficiently to the N-terminal hydrophilic domain
of Yip1p. Ypt1p could also be detected, but only as a
faint band. In this experiment, Ypt7p was not found among
the proteins bound to the affinity matrix, and neither of
the GTPases was retained by GST alone. These results
perfectly mirrored those obtained by a two-hybrid analysis
which showed that Ypt31p but not Ypt1p bound efficiently
to the N-terminal domain of Yip1p. Both GTPases, how-
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Fig. 6. Intracellular location of Yip1p. Wild-type cells were disrupted
with glass beads and subjected to centrifugation at 500g to remove
unbroken cells and cell debris. The supernatant was fractionated by
differential centrifugation at 10 000 and 100 000g (A) or by sucrose
gradient centrifugation (B). Aliquots of fractions were subjected to
SDS–PAGE and Western blot analysis with antibodies against the
marker proteins shown to the left. The gradient fractions in (B) are
numbered from the lowest (fraction 1) to highest (fraction 14) sucrose
density.

ever, interacted similarly well with the complete Yip1p
(Figure 8A).

To ascertain the interaction of Ypt1p and Yip1p, an
affinity-purified anti-Ypt1p antibody was covalently
bound to protein A–Sepharose beads and used to co-
immunoprecipitate Yip1p from a cleared detergent
lysate. Yip1p was in fact found in the immunoprecipitate
(Figure 8D). Importantly, Ypt31p was also found in the
immunoprecipitate obtained with anti-Ypt1p antibodies
(Figure 8D), indicating that Yip1p might be able to bind
the two GTPases at the same time.

These results suggest that although Ypt31p and Ypt1p
bind to the integral membrane protein Yip1p, both GTPases
appear to have other sequence requirements for efficient
Yip1p binding.

Discussion

According to present knowledge, Ypt/Rab GTPases are
essential regulators of membrane transport at defined
stages of secretory and endocytic transport routes (Pfeffer,
1996; Lazaret al., 1997; Novick and Zerial, 1997). It
therefore came as a surprise when we discovered Yip1p
to be an integral membrane protein that specifically binds
two different transport GTPases, Ypt1p and Ypt31p. As
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Fig. 7. Localization of Yip1p by indirect immunofluorescence
microscopy. Paraformaldehyde-fixed spheroplasts from wild-type cells
(A andB) and from cells of the same strain expressingYIP1 from
a 2 µ-based multicopy vector (C andD) were treated with affinity-
purified anti-Yip1p antibody (A and C). DAPI staining was performed
to identify the nuclear region (B and D). Spheroplasts of yeast cells
expressing the C-terminally Myc-tagged Golgi protein Emp47p
(strain RH3047) were challenged with polyclonal anti-Yip1p antibody
and a monoclonal anti-Myc epitope antibody, and then treated with
Cy3™- and Cy2™-conjugated second antibodies. Almost perfect
co-localization of Yip1p (E) and Emp47p (F) is observed.

Ypt1p (Segevet al., 1988) and Ypt31p (Benliet al., 1996;
Jeddet al., 1997) are bound primarily to Golgi organelles
at steady state, we considered the possibility that Yip1p
would also be a Golgi-bound protein. According to sub-
cellular fractionations and indirect immunofluorescence,
this appears to be the case. It is therefore tempting to
speculate that Yip1p acts to recruit specifically Ypt1p and
Ypt31p to Golgi membranes, a function expected for the
often discussed GTPase receptors (Lazaret al., 1997).
Studies in mammalian cells have shown that the GDP-
bound forms of Rab5p and Rab9p, complexed with GDI,
are directed to their target membranes before the GTPases
are activated by GDP to GTP exchange (Soldatiet al.,
1994; Ullrich et al., 1994). As there are a multitude of
Ypt/Rab proteins but only a limited number of GDIs (in
fact there is only one GDI in yeast; Garrettet al., 1994),
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Fig. 8. Specific binding of Yip1p with Ypt31p and Ypt1p. (A) Two-
hybrid analysis with wild-type Ypt1p and Ypt31p as bait, and with
either Yip1p (lacking the N-terminal 11 amino acids) or Yip1Np
(amino acids 1–99) as prey. The controls were as in Figure 1. (B) GST
or a GST–Yip1N fusion protein was expressed in yeast and purified on
glutathione–Sepharose-4B beads. Proteins bound to the beads were
stained with Coomassie Blue. Molecular mass markers are shown to
the right. (C) After incubating the beads with proteins of detergent-
lysed cells and extensive washing, proteins bound to the beads were
separated by SDS–PAGE and subjected to Western blot analysis with
antibodies specific for either Ypt31p, Ypt1p or Ypt7p. (D) Beads
without or with covalently attached anti-Ypt1p antibodies were
incubated with a cleared detergent lysate and washed extensively.
Proteins bound were separated by SDS–PAGE and searched for Ypt1p,
Ypt31p and Yip1p using specific antibodies. Total proteins of alkali-
lysed cells (extract) were separated electrophoretically in the same gel
to identify the positions of Ypt1p, Ypt31p and Yip1p.

specific membrane binding of the transport GTPases
cannot be mediated by GDI. Instead, one of the binding
determinants appears to be the highly variable region
of the C-terminal 40 amino acids of Ypt/Rab proteins
(Chavrieret al., 1991). In addition to recognizing certain
structural features of the transport GTPase to be bound, a
receptor would also be expected to associate preferentially
with the GDP-bound form of the GTPase and to have GDI-
displacing activity. Although we have not yet analysed in
detail whether Yip1p has such properties, we have noted
that mutant versions of Ypt1p and Ypt31p deficient in GTP
hydrolytic activity (Q to L substitution in the nucleotide-
binding domain G3, WDTAGQE) do not interact with
Yip1p in the two-hybrid system. This preliminary result
suggests a preference of Yip1p for binding Ypt1p and
Ypt31p in their GDP-bound conformation. If this were the
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case, the Yip1p–GTPase complex could furnish the binding
site for a specific guanine nucleotide exchange factor
(GEF) like Sec2p, the GEF for the Ypt GTPase Sec4p.
Sec2p is a cytosolic protein that stimulates GDP/
GTP exchange on membrane-associated Sec4p (Walch-
Solimenaet al., 1997). Using a cell-free fusion assay, it
has been shown that Ypt7p, a GTPase required for
vacuole–vacuole fusion (Haaset al., 1995), is involved
directly in docking and after-priming of v- and t-SNAREs
for interaction on the membrane-enclosed compartments
to be fused (Ungermannet al., 1998). It is possible that
the activated forms of Ypt1p and Ypt31p recruit additional
components and promote the local assembly of protein
complexes needed for successful docking and membrane
fusion.

Regardless of whether Yip1p acts as a receptor in the
sense discussed above, this protein is essential for cell
viability, as are the GTPases it binds. Although studies
in vivo and in vitro have shown that Ypt1p is required for
docking of ER-derived transport vesicles to an early Golgi
compartment (Schmittet al., 1988; Segevet al., 1988;
Becker et al., 1991; Rexach and Schekman, 1991;
Søgaard et al., 1994), the analysis of certainypt1
mutants has provided evidence for an additional role of
Ypt1p in transport between early Golgi compartments
(Baconet al., 1989; Jeddet al., 1995). The function of
Ypt31p (and its homologue Ypt32p) is less clear, but
investigations with cells depleted of these essential
GTPases and with conditionally lethalypt31 (or ypt32)
mutants point to a role in transport between Golgi
organelles or even in the generation of transport vesicles
at the most distal Golgi compartment (Benliet al., 1996;
Jedd et al., 1997). As we previously pointed out, the
biochemical and morphological alterations seen inypt31
mutants would also be compatible with a function of the
Ypt31/32 GTPases in retrograde Golgi transport (Benli
et al., 1996; Lazaret al., 1997). Importantly, however,
there appears to be spatial overlap of transport steps in
which Ypt1p and Ypt31p are involved. This, in fact, is
supported by our finding reported here that the combination
of ypt1 and ypt31 mutant alleles results in synthetic
lethality. The striking co-localization of Yip1p and
Emp47 that we observed in a double immunofluorescence
analysis appears to indicate that Yip1p is concentrated on
medial-Golgi membranes under steady-state conditions.
This would follow from previous localization studies
of the type I transmembrane protein Emp47p which,
although cycling between the Golgi apparatus and the ER,
was found to reside primarily on a Golgi compartment
harbouring α1,3-mannose-modified oligosaccharides
(Schröder et al., 1995). Although vesicular andcis-Golgi
localization of Yip1p cannot be excluded, medial-Golgi
attachment would be compatible with the proposed func-
tioning of Ypt31/32p and Ypt1p. Therefore, the Yip1
protein, by being able to recruit Ypt1p and Ypt31p to
Golgi membranes, possibly even at the same time, links
the two GTPases in regulating transport to and between
Golgi organelles. In line with the proposed role of Yip1p
in recruiting Ypt1p and Ypt31p to specific membrane
compartments, our preliminary data show that in cells
depleted of Yip1p the soluble pool of the two GTPases
increases in proportion to the membrane-associated pool.

As expected, cells depleted of Yip1p andyip1 mutants
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at the non-permissive temperature are defective in protein
transport. ER to Golgi transport was significantly delayed
in both heat-sensitive mutants, although to a different
extent. ER core-glycosylated forms of CPY and invertase
accumulated in theyip1-2 mutant in particular. It might
be that the mutant Yip1 proteins, each carrying amino acid
substitutions in a separate putative membrane-spanning
domain (Figure 1B), are still partially active but that the
additive lesions of Ypt1p- and Ypt31p-requiring functions
lead to growth arrest at elevated temperature. A striking
feature is the hypoglycosylation of the invertase secreted
from the two yip1 mutants. This could result from a
general disturbance of Golgi function, perhaps caused by
a failure to deliver or distribute properly enzymes such as
the glycosyltransferases to or between different Golgi
compartments. Interestingly, we previously observed that
a conditionally lethalypt1 mutant with an amino acid
substitution in the effector loop region (Beckeret al.,
1991) also secreted underglycosylated invertase efficiently.
As our studies indicate that Ypt1p and Ypt31p might bind
to different regions of Yip1p, it would be of interest to
generate and characterize additionalyip1 mutants. For
example, mutants in the N-terminal, hydrophilic half of
Yip1p which, as expected, faces the cytoplasm and appears
to constitute the principle binding region of Ypt31p,
could help to elucidate the function of the Ypt31/32
GTPases further.

Materials and methods

Yeast and bacterial strains, growth media
Saccharomyces cerevisiaestrains used in this study are listed in Table
I. All the mutants used were derived from the wild-type strains
MSUC-1A and MSUC-3D which have been described previously
(Benli et al., 1996). These strains were used for crossing, transformation,
isolating the haploids carrying desired markers or mutations, sporulation
of diploids and tetrad analysis experiments. Cells were grown either
in YPD medium (1% yeast extract, 2% peptone and 2% dextrose)
or in SD medium containing nutritional supplements (Shermanet al.,
1986). Escherichia coli strains used were DH5α and XL1 blue
(Stratagene).

Two-hybrid analysis
An NdeI site was created at the ATG initiation codon ofYPT1(Wagner
et al., 1987) by Kunkel mutagenesis (Kunkelet al., 1987) in pLN-YPT1
to facilitate cloning of theNdeI–BamHI fragment of YPT1 into the
DNA-binding domain vector pAS1-CYH2 (a gift from S.J.Elledge). An
NdeI–SalI fragment ofYPT31(Benli et al., 1996) was also cloned into
the pAS1-CYH2 vector after an internalNdeI site had been deleted by
silent mutagenesis. The pAS-YPT1 and pAS-YPT31 vectors were
transformed separately into the yeast reporter strain Y190 (Harperet al.,
1993). The strains containing either pAS-YPT1 or pAS-YPT31 were
subsequently transformed with anS.cerevisiaecDNA library made in
the lambda activation domain vector pACT (a gift from S.J.Elledge) and
selected as described (Durfeeet al., 1993). The candidates turning blue
in the X-Gal filter assay were examined for the loss of pAS-YPT1 and
pAS-YPT31 by streaking them on SD (lacking leucine, 2.5µg/ml
cycloheximide) plates, and plasmid loss was verified by replica plating
onto SD plates lacking tryptophan and leucine. To verify positive clones
further, they were mated with Y187 (Harperet al., 1993) containing
pAS derivatives expressing a Gal4(1–147) fusion p53 protein which is
considered unrelated to Ypt1p and Ypt31p. Thenβ-galactosidase activity
was tested by the X-Gal filter assay. Clones specific forYPT1andYPT31
were taken up for recovering the plasmids, which were then amplified
in E.coli strain DH5α.

Construction of recombinant plasmids and mutants
All constructs were made in pBS (KS1) (Stratagene) and amplified in
E.coli. For gene disruption, theXhoI–NcoI fragment of YIP1 was
replaced by theURA3 marker gene (Figure 9A). The recombinant
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Table I. Strains used in this study

Strain Genotype Source

MSUC-1A MATa ura3 leu2 trp1 his3 ade2 this laboratory
MSUC-3D MATα ura3 leu2 trp1 his3 lys2 this laboratory
MB18 MATα sec18-1 ura3 leu2 his3 M.Bielefeld
GFY1 MATa ura3 leu2 trp1 his3 ade2 LEU2–GAL10→YIP1 this study
YXY10 MATa/MATα ura3/ura3 trp1/trp1 his3/his3 leu2/leu2 ade2/ADE2lys2/LYS2 yip1::URA3/YIP1 this study
YXY11a MATa ura3 leu2 trp1 his3 ade2 yip1-1-TRP1 this study
YXY11α MATα ura3 leu2 trp1 his3 lys2 yip1-1-TRP1 this study
YXY12a MATa ura3 leu2 trp1 his3 ade2 yip1-2-TRP1 this study
YXY12α MATα ura3 leu2 trp1 his3 lys2 yip1-2-TRP1 this study
YXY20 MATa/MATα ura3/ura3 trp1/trp1 his3/his3 leu2/leu2 ade2/ADE2lys2/LYS2 this study
YXY136 MATα ura3 leu2 trp1 his3 lys2 ypt1A136D-LEU2 this study
YLX7 MATa ura3 leu2 trp1 his3 ade2 ypt31K127N-LEU2 ypt32::HIS3 this laboratory
Y190 MATa gal4 gal80 his3 trp1 ade2 ura3 leu2 URA3::GAL→lacZ LYS2::GAL→HIS cyhr S.J.Elledge
Y187 MATα gal4 gal80 his3 trp1 ade2 ura3 leu2 URA3::GAL→ lacZ S.J.Elledge
BJ5457 MATa ura3 trp1 lys2 leu2 his3 can1 prb1 pep4::HIS3 GAL Yeast Genetic Stock Center
RH3047 MATa his4 leu2 ura3 lys2 bar1-1 emp47::LYS2 myc-EMP47::LEU2 Schröder et al. (1995)

Fig. 9. Schematic representation ofYIP1 gene constructs used.
(A) Disruption ofYIP1 was achieved by replacing anXhoI–NcoI
fragment with theURA3marker gene on a 1.1 kbHindIII fragment.
(B) A LEU2–GAL10fusion fragment was inserted into theXhoI
restriction site 6 bp 59 of the ATG initiation codon to bringYIP1
under transcriptional control of theGAL10promoter. (C) The heat-
sensitiveyip1-1 mutant was created by PCR mutagenesis using
primers p1 and p2. Theyip1-2 mutant (G175E substitution) was
created by site-directed mutagenesis. For chromosomal integration of
the mutant alleles, theTRP1gene was inserted into theBst1107I
restriction site 39 of the stop codon.

plasmid harbouring the disruptedYIP1 gene was linearized withClaI
and transformed into the wild-type diploid strain MSUC-1A/3D to
disrupt one chromosomal copy ofYIP1 by homologous recombination.
GFY1 (GAL10promoter fused toYIP1) was constructed by inserting a
2.8 kb LEU2–GAL10fragment from the YEp51 vector into theXhoI
site of YIP1 (Figure 9B). This construct was digested withPvuII–
BamHI and transformed into one of the wild-type MSUC strains. A
conditionally lethal mutant,yip1-1 (YXY11), was created by random
PCR mutagenesis as described by Fromantet al. (1995). The PCR was
carried out in 4µM dTTP, 0.2 µM dATP, dGTP and dCTP, 10 mM
MgCl2 and 0.5 mM MnCl2 at 94°C for 1 min, 55°C for 1.5 min and
72°C for 2 min for 30 cycles using the primers p1, 59-GACGGGG-
AGTACTGCAAGACAC-39; and p2, 59-CCAGACGAGGTCCAA-
GTACTC-39. PCR products were digested overnight withXhoI–NcoI,
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purified from agarose gels and used to replace the wild-typeYIP1 gene
in pBS-YIP1. The plasmids were pooled and linearized withClaI for
integration into the genome. The transformants carryingyip1 mutations
were selected by theTRP1marker gene which had been inserted into
the Bst1107I site located 67 bp downstream of the stop codon (Figure
9C). Temperature-sensitive colonies were selected by replica plating and
growth at different temperatures. Another conditionally lethal mutant,
yip1-2(YXY12), was created by site-directed mutagenesis (R.Sternglanz
and E.Andrulis, personal communication) in pBS-YIP1. Theypt1A136D

(YXY136) temperature-sensitive mutant was created as described (Jedd
et al., 1995).

Cloning of YIP1 and generation of antibodies
The cDNA clones ofYIP1 identified in the two-hybrid screens with
YPT1and YPT31 lacked the codons for the first 11 amino acids. The
YIP1 gene was cloned from a yeast genome library made in YEp13
(Dascheret al., 1991) by colony hybridization. Polyclonal antibodies
against a His6-tagged Yip1p (amino acids 1–106) were raised in rabbits
as described (Wagneret al., 1992). Antibodies were purified with the
antigen produced inE.coli using the AminoLink plus affinity purification
system (Pierce).

Subcellular and sucrose gradient fractionation and
immunoblot analyses
Yeast cells were harvested at mid-logarithmic phase, the cell pellet
was washed with 10 mM cold NaN3 and resuspended in 3 vols of
buffer A [50 mM Tris pH 7.5, 100 mM KCl, 1 mM EDTA, 1 mM
dithiothreitol (DTT), 1 mM Pefabloc and proteinase inhibitor mix].
Cells were disrupted with 1 vol. of glass beads and by vortexing six
times for 1 min at 4°C. The cell lysate was centrifuged twice at
500 g for 5 min to remove cell debris, and the cleared lysate was
centrifuged at 10 000g for 15 min to obtain the P10 pellet. The
S10 fraction was then subjected to centrifugation at 100 000g at
4°C for 1 h to obtain P100 and S100. The 500g lysate was also
subjected to sucrose density gradient centrifugation as previously
described (Benliet al., 1996). To investigate membrane localization
of Yip1p, the supernatant of the cell lysate after a 500g centrifugation
was divided into different portions that were treated for 30 min on ice
with either 1% Triton X-100, 5 M urea, 0.1 M sodium carbonate pH 11,
1 M NaCl or 1 M KOAc and then centrifuged at 100 000g to obtain
soluble and precipitated proteins. Proteins in different fractions were
separated by sodium dodecyl sulfate–gel electrophoresis (SDS–PAGE),
and immunoblot analyses were performed using the ECL system
(Amersham) and specific antibodies as described (Benliet al., 1996).

Protein labelling, immunoprecipitation and invertase assay
Cells were pulse-labelled for 15 min withTrans35S-label (ICN) and
chased for 30 min. The labelled proteins were immunoprecipitated using
specific antibodies and separated by SDS–PAGE (Benliet al., 1996).
After incubating the gel with Amplify (Amersham) for 30–45 min, the
proteins were detected by exposing the gels to X-Omat AR (Kodak)
at –80°C. Invertase activity staining was carried out as described (Benli
et al., 1996).
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Indirect immunofluorescence and electron microscopy
Indirect immunofluorescence using rabbit polyclonal anti-Yip1p and
monoclonal mouse c-Myc epitope antibodies was performed as described
by Schröderet al.(1995). Cy3™-conjugated goat anti-rabbit and Cy2™ -
conjugated goat anti-mouse F(ab9) 2 fragment (Jackson Immuno Research
Laboratory Inc.) served as secondary antibody. To study co-localization,
a yeast strain expressing C-terminally Myc-tagged Emp47p from the
chromosomally integrated mutant gene was used (a gift of S.Schro¨der).
Anti-Myc epitope antibodies were from Santa Cruz Biotechnology.
Double immunofluorescence was observed using a Zeiss Axiophot
equipped with the appropriate filters. The electron microscopy of
potassium permanganate-fixed cells was done as described previously
(Benli et al., 1996).

In vitro interaction of GTPases Ypt1p and Ypt31p with Yip1p
Co-affinity purification and immunoprecipitation were carried out to
verify the interaction between GTPases Ypt1p and Ypt31p with Yip1p.
A DNA fragment encoding the N-terminal 99 amino acids of Yip1p
(Yip1N) was cloned in vector NEG-KT, a derivative of pEG-KT (Mitchell
et al., 1993), to fuse Yip1N to the N-terminus of GST. Protein expression
and purification were performed as previously described (Grabowski
and Gallwitz, 1997). The buffer conditions were (i) disruption buffer:
50 mM Tris–HCl pH 7.5, 100 mM KCl, 5 mM MgCl2, 1 mM DTT, 2%
Triton X-100, proteinase inhibitor mix; and (ii) washing buffer: 50 mM
Tris-HCl pH 7.5, 1 M KCl, 5 mM MgCl2 and 1 mM DTT. Affinity-
purified, polyclonal anti-Ypt1p antibody was coupled to protein A–
Sepharose CL-4B (Pharmacia) and cross-linked via the bifunctional
coupling reagent, dimethylepimelimidate (DMP), as described by Harlow
and Lane (1988). The yeast detergent extract was prepared as described
(Søgaard, 1994) and the extract was adjusted to a detergent concentration
of 0.5%. It was incubated with GST–Yip1N or anti-Ypt1p beads at 4°C
with end-over-end rotation for 1 h, followed by three washes with
phosphate-buffered saline (PBS) buffer with proteinase inhibitor mix.
About 50–100µg of GST–Yip1N, 25–50µg of antibody and 100 OD600
of yeast extract were used in each reaction. A 50µl aliquot of 23 SDS
loading buffer was added to the beads after washing, and the samples were
heated for 5 min at 95°C before SDS–PAGE and immunoblot analysis.

Proteinase protection
Spheroplasts from logarithmically grown cells were prepared by
digestion with Zymolase 100 T (Seikagaku Corporation). They were
suspended in buffer A without proteinase inhibitor mix and lysed with
20 strokes in a Dounce homogenizer. After centrifuging twice at 500g,
the supernatant fraction was centrifuged at 100 000g for 1 h, and the
pelleted membranes were resuspended in the buffer described above
and treated on ice with proteinase K (50µg/ml) as previously described
(Haucke and Schatz, 1997).
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Benli,M., Döring,F., Robinson,D.G., Yang,X. and Gallwitz,D. (1996)
Two GTPase isoforms, Ypt31p and Ypt32p, are essential for Golgi
function in yeast.EMBO J.,15, 6460–6475.

Bennett,M.K. and Scheller,R.H. (1994) A molecular description of
synaptic vesicle membrane trafficking.Annu. Rev. Biochem., 63,
63–100.

Chavrier,P., Gorvel,J.P., Stelzer,E., Simons,K., Gruenberg,J. and

4962

Zerial,M. (1991) Hypervariable C-terminal domain of rab proteins
acts as a targeting signal.Nature, 353, 769–772.

Dascher,C., Ossig,R., Gallwitz,D. and Schmitt,H.D. (1991) Identification
and structure of four yeast genes (SLY) that are able to suppress the
functional loss ofYPT1, a member of the ras-superfamily.Mol. Cell.
Biol., 11, 872–885.

Diaz,E., Schimmoller,F. and Pfeffer,S.R. (1997) A novel Rab9 effector
required for endosome-to-TGN transport.J. Cell Biol., 138, 283–290.

Durfee,T., Becherer,K., Chen,P.L., Yeh,H., Yang,Y., Kilburn,A.E.,
Lee,W.H. and Elledge,S.J. (1993) The retinoblastoma protein
associates with the protein phosphatase type 1 catalytic subunit.Genes
Dev., 7, 555–569.

Echard,A., Jollivet,F., Martinez,O., Lacapere,J.J. and Goud,B. (1998)
Interaction of a Golgi-associated kinesin-like protein with Rab6.
Science, 279, 580–585.

Fields,S. and Song,O. (1989) A novel genetic system to detect protein–
protein interactions.Nature, 340, 245–246.

Fromant,M., Blanquet,S. and Plateau,P. (1995) Direct random
mutagenesis of gene-sized DNA fragments using polymerase chain
reaction.Anal. Biochem., 224, 347–53.

Garrett,M.D., Zahner,J.E., Cheney,C.M. and Novick,P.J. (1994)GDI1
encodes a GDP dissociation inhibitor that plays an essential role in
the yeast secretory pathway.EMBO J., 13, 1718–1728.

Grabowski,R. and Gallwitz,D. (1997) High-affinity binding of the yeast
cis-Golgi t-SNARE, Sed5p, to wild-type and mutant Sly1p, a modulator
of transport vesicle docking.FEBS Lett., 411, 169–72.

Graham,T.R. and Emr,S.D. (1991) Compartmental organization of Golgi-
specific protein modification and vacuolar protein sorting events
defined in a yeast sec18 (NSF) mutant.J. Cell Biol., 114, 207–218.

Haas,A., Scheglmann,D., Lazar,T., Gallwitz,D. and Wickner,W. (1995)
The GTPase Ypt7p ofSaccharomyces cerevisiaeis required on both
partner vacuoles for the homotypic fusion step of vacuole inheritance.
EMBO J., 14, 5258–5270.

Hardwick,K.G. and Pelham,H.R.B. (1992)SED5 encodes a 39-kD
integral membrane protein required for vesicular transport between
the ER and the Golgi complex.J. Cell Biol., 119, 513–521.

Harlow,E. and Lane,O. (1988)Antibodies: A Laboratory Manual. Cold
Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Harper,J.W., Adami,G.R., Wei,N., Keyomarsi,K. and Elledge,S.J. (1993)
The p21 Cdk-interacting protein Cip1 is a potential inhibitor of G1
cyclin-dependent kinases.Cell, 75, 805–816.

Haucke,V. and Schatz,G. (1997) Reconstitution of the protein insertion
machinery of the mitochondrial inner membrane.EMBO J., 16,
4560–4567.

Jedd,G., Richardson,C., Litt,R. and Segev,N. (1995) The Ypt1 GTPase
is essential for the first two steps of the yeast secretory pathway.
J. Cell Biol., 131, 583–590.

Jedd,G., Mulholland,J. and Segev,N. (1997) Two new Ypt GTPases are
required for exit from the yeasttrans-Golgi compartment.J. Cell
Biol., 137, 563–580.

Kunkel,T.A., Roberts,J.D. and Zakour,R.A. (1987) Rapid and efficient
site-specific mutagenesis without phenotypic selection.Methods
Enzymol., 154, 367–382.

Lazar,T., Goette,M. and Gallwitz,D. (1997) Vesicular transport: how
many Ypt/Rab-GTPases make an eukaryotic cell?Trends Biochem.
Sci., 22, 468–472.

Lian,J.P., Stone,S., Jiang,Y., Lyons,P. and Ferro-Novick,S. (1994) Ypt1p
implicated in v-SNARE activation.Nature, 372, 698–701.

Li,B. and Warner,J.R. (1996) Mutation of the Rab6 homologue of
Sacharomyces cerevisiae, YPT6, inhibits both early Golgi function
and ribosome biosynthesis.J. Biol. Chem., 271, 16813–16819.

Lupashin,V.V. and Waters,M.G. (1997) t-SNARE activation through
transient interaction with a Rab-like guanosine triphosphate.Science,
276, 1255–1258.

Machamer,C.E., Grim,M.G., Esquela,A., Chung,S.W., Rolls,M., Ryan,K.
and Swift,A.M. (1993) Retention of acis Golgi protein requires polar
residues on one face of a predictedα-helix in the transmembrane
domain.Mol. Biol. Cell, 4, 695–704.

Mayer,A. and Wickner,W. (1997) Docking of yeast vacuoles is catalyzed
by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p
(NSF). J. Cell Biol., 136, 307–318.

Mitchell,D., Marshall,T.A. and Deschenes,R.J. (1993) Vectors for the
inducible overexpression of gluthathioneS-transferase fusion proteins
in yeast.Yeast, 9, 715–723.

Munro, S. (1991) Sequences within and adjacent to the transmembrane
segment of theα-2,6-sialyltransferase specify Folgi retention.EMBO
J., 10, 3577–3588.



A Golgi membrane protein binds Ypt1 and Ypt31 GTPases

Novick,P. and Zerial,M. (1997) The diversity of Rab proteins in vesicle
transport.Curr. Opin. Cell Biol., 9, 496–504.

Novick,P., Ferro,S. and Schekman,R. (1981) Order of events in the yeast
secretory pathway.Cell, 25, 461–469.

Pfeffer,S.R. (1996) Transport vesicle docking: SNAREs and associates.
Annu. Rev. Cell Dev. Biol., 12, 441–461.

Ren,M., Zeng,J., De Lemos-Chiarandini,C., Rosenfeld,M., Adesnik,M.
and Sabatini,D.D. (1996) In its active form, the GTP-binding protein
Rab8 interacts with a stress-activated protein kinase.Proc. Natl Acad.
Sci. USA, 93, 5151–5155.

Rexach,M.F. and Schekman,R.W. (1991) Distinct biochemical
requirements for the budding, targeting, and fusion of ER-derived
transport vesicles.J. Cell Biol., 114, 219–229.

Rothman,J.E. and Wieland,F.T. (1996) Protein sorting by transport
vesicles.Science, 272, 227–234.

Salminen,A. and Novick,P. (1987) DNA sequencing with chain
terminating inhibitors.Proc. Natl Acad. Sci. USA, 74, 5463–5467.

Schmitt,H.D., Wagner,P., Pfaff,E. and Gallwitz,D. (1986) The ras-related
YPT1 gene product in yeast: a GTP-binding protein that might be
involved in microtubule organization.Cell, 47, 401–412.

Schmitt,H.D., Puzicha,M. and Gallwitz,D. (1988) Study of a temperature-
sensitive mutant of the ras-relatedYPT1gene product in yeast suggests
a role in the regulation of intracellular calcium.Cell, 53, 635–647.
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