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Homologous recombination is a meiotic process that generates diversity along the genome and interacts with all evolutionary forces. 
Despite its importance, studies of recombination landscapes are lacking due to methodological limitations and limited data. 
Frequently used approaches include linkage mapping based on familial data that provides sex-specific broad-scale estimates of realized 
recombination and inferences based on population linkage disequilibrium that reveal a more fine-scale resolution of the recombination 
landscape, albeit dependent on the effective population size and the selective forces acting on the population. In this study, we use a 
combination of these 2 methods to elucidate the recombination landscape for the Afro-European barn owl (Tyto alba). We find subtle 
differences in crossover placement between sexes that lead to differential effective shuffling of alleles. Linkage disequilibrium-based 
estimates of recombination are concordant with family-based estimates and identify large variation in recombination rates within and 
among linkage groups. Larger chromosomes show variation in recombination rates, while smaller chromosomes have a universally 
high rate that shapes the diversity landscape. We find that recombination rates are correlated with gene content, genetic diversity, 
and GC content. We find no conclusive differences in the recombination landscapes between populations. Overall, this comprehensive 
analysis enhances our understanding of recombination dynamics, genomic architecture, and sex-specific variation in the barn owl, con-
tributing valuable insights to the broader field of avian genomics.
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Introduction
Homologous meiotic recombination (hereafter recombination) is 

the reciprocal exchange of genetic material between homologous 

chromosomes during the first meiotic division. The physical ex-

change, called a crossover (CO), generates the necessary tension 

between homologous chromosomes to ensure their proper segre-

gation in the daughter cells. In most species, in the absence of a 

CO, the daughter cells have an aberrant number of chromosome 

pairs (aneuploidy) leading to deleterious effects (Koehler et al. 
1996; Hassold and Hunt 2001; Hassold et al. 2007; Zickler and 

Kleckner 2015; Zelkowski et al. 2019). Hence, at least 1 CO is ex-

pected per chromosome (or chromosome arm), termed an “obli-

gate CO.”
Beyond contributing to the integrity of functional meiotic div-

ision, recombination has evolutionary consequences. It shuffles 
alleles between haplotypes, affecting the genomic composition 
of a population, which, in turn, can incur evolutionary benefits, in-
cluding faster adaptation to a changing environment and more ef-
ficient selection (Hill and Robertson 1966; Otto and Lenormand 
2002). However, recombination can increase the rate of mutations 
and chromosomal rearrangements or impede adaptation by 
breaking up beneficial combinations of alleles (Barton and 

Charlesworth 1998; Arbeithuber et al. 2015; Halldorsson et al. 
2019). In fact, it can often be beneficial to link haplotypes together 
by suppressing recombination between loci, for example during 
the formation of a sex chromosome (Wright et al. 2016; 
Charlesworth 2017) or through the maintenance of inversions 
capturing ecologically relevant phenotypes (Küpper et al. 2016; 
Rowan et al. 2019; Todesco et al. 2020). As a result, the evolutionary 
net outcome of recombination is context dependent and may dif-
fer between populations, sexes, and genomic coordinates (Stapley 
et al. 2017).

The variation in recombination rates along the genomic se-
quence affects almost all genome-wide processes. For instance, 
in some, but not all species, genetic diversity along the genome 
correlates with recombination rate. Multiple forces can explain 
this pattern such as linked selection, a mutagenic effect of recom-
bination, and GC-biased gene conversion (gBGC) (Begun and 
Aquadro 1992; Duret and Galtier 2009; Flowers et al. 2012; Cutter 
and Payseur 2013; Campos et al. 2014; Halldorsson et al. 2019). 
Importantly, the strength of these forces can vary among species, 
and their relative contribution in shaping genetic diversity is still 
unclear. In addition, regions with high recombination rates are of-
ten enriched in foreign DNA from past introgressions both in 
plants and animals (Schumer et al. 2018; Martin et al. 2019; 
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Dreissig et al. 2020; Edelman and Mallet 2021). Beyond influencing 
these processes, variable recombination rates can confound infer-
ences, like scans for selection based on genetic differentiation 
(Booker et al. 2020). Thus, in order to advance our understanding 
of the evolutionary consequences of recombination and distin-
guish it from other forces that vary along the genome, we need 
to quantify recombination and understand the sources of its vari-
ation in different species and under different evolutionary 
backgrounds.

However, quantifying recombination is a challenging task. One 
approach is linkage mapping, the positioning of markers along the 
sequence with a distance proportional to the recombination rate 
between them. This approach requires family data (or controlled 
crosses, when available) and uses the cosegregation of alleles 
from one generation to the next, to identify the contemporary 
COs in the sample. Linkage mapping has been applied in several 
species thus far, providing a reliable measure of CO frequency 
(Kong et al. 2002; Stapley et al. 2017; Brazier and Glémin 2022). 
Linkage mapping enables quantification of the differences in re-
combination rates between sexes (i.e. heterochiasmy; Kong et al. 
2010; Johnston et al. 2017; Brekke et al. 2022). However, historically, 
linkage mapping studies used a small set of genomic markers 
(Stapley et al. 2017) and the resolution of the method is limited 
by the number of observed meioses, making it impossible to quan-
tify recombination accurately at a fine scale with the sample sizes 
available in many nonmodel species (Halldorsson et al. 2019).

Another approach used to estimate recombination rates uses 
whole genome sequences or reduced representation genotyping 
from tens of unrelated individuals and models the observed link-
age disequilibrium (LD) between markers (Auton and McVean 
2007; Chan et al. 2012; Spence and Song 2019). This method (here-
after referred to as LD-based inference) assesses ancestral recom-
bination events that occurred in the coalescent history of the 
samples (Li and Stephens 2003; Stumpf and McVean 2003) and 
has enabled the quantification of fine-scale recombination vari-
ation (at the kilobase scale). These fine-scale inferences have 
identified that in many species COs occur in “hotspots,” defined 
as regions with elevated recombination rate scattered along the 
genome (Myers et al. 2005; Mézard 2006; Paape et al. 2012; Choi 
and Henderson 2015). This observation is true for most species 
studied to date but not all (e.g. Caenorhabditis elegans and 
Drosophila; Kaur and Rockman 2014; Smukowski Heil et al. 2015). 
While initial discoveries in humans and mice implicated the 
fast-evolving PRDM9 gene for the localization of hotspots along 
the sequence through motif matching, most species, notably 
birds, amphibians, most arthropods, and plants, do not have a 
functioning copy of the gene (Baudat et al. 2010; Myers et al. 
2010; Parvanov et al. 2010; Baker et al. 2017). In these organisms, 
hotspots are found in accessible chromatin, near transcription 
start sites (TSSs) and CpG islands (CGIs), and are usually con-
served even after millions of years of species’ divergence (Auton 
et al. 2013; Lam and Keeney 2015; Singhal et al. 2015).

Despite the ability of LD-based inference to quantify fine-scale 
variation using a small number of genomes, the method has cer-
tain limitations. It infers the population recombination rate (rho), 
the product of the effective population size (Ne), and the recom-
bination rate, rather than estimating the recombination rate dir-
ectly. This has 2 major implications for the use of LD-based 
inference: (1) it does not distinguish between crossing over in 
male and female meioses and (2) it is affected by forces that 
change Ne and not the recombination rate itself. The conse-
quences of the latter are that forces that modify Ne, such as selec-
tion and fluctuating population sizes, can confound estimates of 

recombination (O’Reilly et al. 2008). Even if recent methods 
account for demography (Spence and Song 2019), estimates of 
recombination based on LD often need to be validated with a 
different method, such as linkage mapping (McVean et al. 2004; 
Axelsson et al. 2012; Shanfelter et al. 2019; Wall et al. 2022). 
While a combination of approaches is the preferred route to ac-
curately infer the recombination rates, this has rarely been used 
in practice beyond in model species.

Birds have been the target of multiple evolutionary studies on 
speciation, hybridization, phenotypic microevolution, and bio-
geography (e.g. Poelstra et al. 2014; Vijay et al. 2016; Bosse et al. 
2017; Enbody et al. 2023) but we still know very little about recom-
bination variation in this class. Most of the current information on 
recombination in birds is from linkage mapping and cytological 
studies, which show that recombination exhibits broad-scale 
among-species variation and inconclusive patterns of sex differ-
ences (Groenen et al. 2009; Backström et al. 2010; Kawakami et al. 
2014; van Oers et al. 2014; Malinovskaya et al. 2018, 2020; Hagen 
et al. 2020; Peñalba et al. 2020; Robledo-Ruiz et al. 2022; McAuley 
et al. 2024; Tan et al. 2024). Rates of recombination inferred from 
linkage mapping tend to differ between species, despite a rather 
conserved avian karyotype (Ellegren 2010; Bravo et al. 2021; 
Waters et al. 2021). For example, 2 members of the passerine order 
[collared flycatcher (Ficedula albicollis) and the superb fairy-wren 
(Malurus cyaneus)] show a 2-fold difference in genetic length for 
their largest syntenic chromosome despite a similar physical 
length (Kawakami et al. 2014; Peñalba et al. 2020). Further, birds 
show no consistent patterns of sex differences in recombination 
with the direction and strength of heterochiasmy varying between 
species (Malinovskaya et al. 2020; Sardell and Kirkpatrick 2020; 
McAuley et al. 2024; Tan et al. 2024). However, until recently, 
conclusions on heterochiasmy were only based on the total 
recombination frequency (genetic length) summed over all chro-
mosomes in each sex. Recent studies have found evidence for 
differences in the placement of COs between sexes suggesting 
that heterochiasmy could be more subtle (McAuley et al. 2024; 
Tan et al. 2024; Zhang et al. 2024). Considering that the reasons 
behind heterochiasmy are not well understood, and that multiple 
adaptive hypotheses have been proposed (Lenormand and 
Dutheil 2005; Mank 2009; Brandvain and Coop 2012; Sardell and 
Kirkpatrick 2020), the avian class provides fertile ground for re-
search on the forces driving heterochiasmy. Finally, since all 
avian species studied so far—with the exception of chickens 
(Gallus gallus)—belong to the passerine order, the sampled diver-
sity may not be truly representative of the complete avian class.

Here, using both linkage mapping and LD information, we pre-
sent the first recombination landscape for a species of the 
Strigiformes order, the barn owl (Tyto alba). This species has a 
high-quality genome assembly (Ducrest et al. 2020; Machado, 
Cumer, et al. 2022), a set of whole genome sequences available 
from previous studies (Cumer, Machado, Dumont, et al. 2022; 
Cumer, Machado, Siverio, et al. 2022; Machado, Cumer, et al. 
2022; Machado, Topaloudis, et al. 2022; Cumer et al. 2024), and a 
long-term pedigreed population (Roulin 1999) with an untapped 
genomic potential (Charmantier et al. 2014; Sheldon et al. 2022). 
We capitalize on 176 genomes previously published, along with 
326 newly sequenced individuals to build a high-confidence vari-
ant set of polymorphisms spanning the diversity of the species 
across the Western Palearctic. For recombination inference, we 
use linkage mapping on a subset of our data set, 250 owls belong-
ing to 28 families, to (1) identify linkage groups (LGs) in the barn 
owl sequence assembly, (2) estimate the sex-averaged linkage 
map length, and (3) quantify sex differences in recombination. 
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Additionally, we employ an LD-based approach on 102 unrelated 
individuals from 3 populations to infer fine-scale recombination 
rate variation and scale our results using the estimates from the 
linkage map. With these complementary resources, we quantify 
variation in recombination between sexes as well as identify sub-
stantial differences in fine-scale patterns among chromosomes 
and populations.

Methods
Samples and sequencing
A total of 333 barn owl samples from Switzerland were sequenced 
for this study. In Western Switzerland, a subset of breeding barn 
owls has been monitored for over 30 years. During the breeding 
season, installed nest boxes are controlled for occupancy every 
4 weeks. Individuals are ringed and measured, and a blood sample 
is taken to sex and genotype each individual (Py et al. 2006; Roulin 
et al. 2007; Antoniazza et al. 2010). Adult parents are also captured 
and sampled when possible. Given that barn owls rarely show ex-
trapair paternity (Roulin et al. 2004), the unique ring identifiers of 
parents and offspring can be used to construct an observational 
pedigree.

Based on pedigree information, 285 individuals belonging to 
families between 1994 and 2020 were sequenced in 2020 and 
2021. Families with more than 4 offspring and grandparent infor-
mation were prioritized whenever possible. Sample DNA was ex-
tracted from blood using DNeasy Blood & Tissue Kit (QIAGEN) 
following manufacturer’s instructions, quantified with dsDNA 
HS Qubit Kit (Thermo Fisher), and diluted to 6.3 ng/μL with 
10 mM Tris-HCl, pH 8.0, in 40 μL. Libraries were prepared with 
Nextera DNA Flex (Illumina) and sequenced in Illumina HiSeq 
4000 at the Lausanne Genomic Technologies Facility (GTF) giving 
an average depth of 12X (8–37X). This initial data set was in-
creased using 6 samples from Georgia and 48 from Switzerland. 
The additional samples from Switzerland are from the same long- 
term study population, chosen so that they had the maximum 
number of descendants based on the field pedigree. These sam-
ples were sequenced in 2021. Sample preparation was as above, 
and sequencing was performed using Illumina NovaSeq 6000 
with a produced depth of 30X (22–40X). All sequencing took place 
at the Lausanne GTF (University of Lausanne, Switzerland).

Variant discovery and filtering
All available barn owl sequences were used for variant discovery. 
This included individuals mentioned above and samples from 
previous sequencing efforts (Cumer, Machado, Dumont, et al. 
2022; Cumer, Machado, Siverio, et al. 2022; Machado, Cumer, 
et al. 2022; Machado, Topaloudis, et al. 2022; Cumer et al. 2024) 
along with 6 samples from Georgia and 3 from the island of 
Corsica (Supplementary File 2). In total, 502 samples were pro-
cessed through the variant discovery pipeline described below. 
Raw reads were processed with Trimmomatic v0.39 (Bolger et al. 
2014). Sequence adapters were removed, and reads with a length 
less than 70 bp were excluded. Mapping was performed with 
BWA-MEM v0.7.17 (Li 2013) on the barn owl genome assembly 
v.4.0 (https://www.ncbi.nlm.nih.gov/nuccore/JAEUGV000000000) 
(Machado, Cumer, et al. 2022), and read groups were added with 
samtools v1.15.1 (Li et al. 2009). Since the GATK v4.2.6 (Auwera 
et al. 2013) pipeline was used for variant discovery, base quality 
score recalibration was performed using a previously published 
variant “truth set” (Cumer, Machado, Dumont, et al. 2022). 
GATK’s Haplotype caller was run with default parameters for each 
individual separately to generate individual gvcf files. These files 

were merged, and joint calling was performed with all individuals 
together using GenotypeGVCFs. We initially identified 30,620,917 
variants in the data set. Filtering focused on biallelic SNPs and 
consisted of the core technical filters suggested in the GATK 
pipeline, a “mappability” mask and a manual individual depth 
filtering. Specifically, technical filters included the following 
criteria: QD < 2.0, QUAL < 30, SOR > 3.0, FS > 60.0, MQ < 40.0, 
MQRankSum < −12.5, and ReadPosRankSum < −8.0. A further fil-
tering was the exclusion of regions of the genome where our abil-
ity to confidently map reads is limited (i.e. a “mappability” mask) 
(Corval et al. 2023). Briefly, the reference genome was split into 
reads of 150 base pairs (bp) with a sliding of 1 bp. These artificial 
reads were mapped back to the reference using BWA-MEM 
v0.7.17. Regions of the reference sequence where less than 90% 
of the reads mapped perfectly and uniquely were discarded. 
This step masked 118 Mb of sequence that corresponds to 10% 
of the assembly, half of which belongs to scaffolds that did not 
make it into the linkage map, probably representing misas-
sembled repeats. Variants were also filtered based on individual 
depth. A minimum and a maximum cutoff were applied. For the 
minimum cutoff, any genotype with less than 5 reads supporting 
it was set to missing (Benjelloun et al. 2019). For the maximum, a 
distribution of autosomal read depth per individual was extracted 
for a sample region (Super-Scaffold_1 and Super-Scaffold_2) with 
a length of 133.5 Mb. The mean and SD of depth was estimated, 
and any genotype with a read depth of more than 3 SD from the 
mean was set to missing to avoid the effect of repeated regions. 
After filtering, 26,933,469 variants were kept in 1,080 Mb of call-
able sequence, corresponding to 1 SNP per 40 bp. This is the raw 
variant data set used in all downstream analyses. Analysis- 
specific filters and number of SNPs used can be found below and 
in Supplementary Table 1 in Supplementary File 1.

Pedigree and relatedness
The pedigree from observational data was confirmed with genom-
ic information from a subset of the genome. SNPs from a sample 
subset of the genome, specifically 3 scaffolds (Super-Scaffold_11, 
12, and 14), were filtered for minor allele count (>5) and missing 
data (<10%) and were pruned for LD using plink v.1.9 (Chang 
et al. 2015) with the command --indep-pairwise 100 10 0.1. This fil-
tering created a data set with 91,874 SNPs. A genomic kinship ma-
trix was calculated using the Weir and Goudet (2017) method as 
implemented in hierfstat v0.5-11 (Goudet 2005) R package. The kin-
ship from genomic data was compared with the pedigree kinship, 
calculated using the kinship2 v1.9.6 (Sinnwell et al. 2014) R pack-
age, and the pedigree was completed by manually fixing the first- 
and second-degree links when those could be resolved, for ex-
ample identifying full siblings and parent–offspring links. Both 
k1 and k2 statistics, the probabilities of sharing 1 or 2 alleles, re-
spectively, were calculated with the SNPRelate v.1.34.1 (Zheng 
et al. 2012) R library and were used to discern between relation-
ships with the same kinship value (e.g. parent–offspring and full 
siblings). A set of unrelated individuals was selected automatical-
ly by pruning the genomic kinship table to only include indivi-
duals with a kinship of less than 0.03125. When selecting for 
unrelated individuals, we removed individuals with multiple 
high-kinship links and then we prioritized individuals with higher 
depth of coverage. This method left a subset of 187 unrelated in-
dividuals of which 76 were from the Swiss population.

Linkage mapping
Lep-MAP3 v0.2 (LM3) (Rastas 2017) was used to create a linkage 
map. A set of 250 individuals in 28 families was used, where a 
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family in LM3 is defined as a set of individuals around a unique 
mating pair. Most families had 4 offspring and 4 grandparents 
but numbers differed, ranging from 2 to 8 offspring and from 0 
to 4 grandparents. To run LM3, a stringently filtered data set of 
biallelic SNPs was used. Specifically, we removed Mendelian in-
compatibilities using bcftools’ mendelian plugin (Danecek et al. 
2021) and retained a minimum of 5% MAF and a maximum of 
5% missing data per site. We also filtered out SNPs that were 
less than 1,000 bp (1 kb) apart using VCFtools v.0.1.16 (Danecek 
et al. 2011). The first step of the LM3 pipeline ParentCall was used 
to transform the data into the appropriate LM3 format, and the 
options halfSibs and removeNonInformative were included. Data 
were filtered in LM3 using the Filtering2 command, to shrink 
the size of the data set. Specifically, dataTolerance was set to 
0.01 as suggested by the author, and missingLimit and 
familyInformativeLimit were set to 28. This meant that only variants 
that were nonmissing and informative in all families were kept. 
After filtering the data set, we retained 163,950 variants. We 
used SeparateChromosomes to identify the putative LGs based on 
a user-defined logarithm of odds (LOD) score cutoff. We selected 
a LOD score of 15 (for a justification see Supplementary Text 1
and Supplementary Fig. 1 in Supplementary File 1). Finally, 
OrderMarkers with the usePhysical option was executed. Ordering 
was repeated 3 times, and the output with the best Likelihood 
was selected for each LG. All 3 runs were compared to test for vari-
ation in estimated genetic maps.

After confirming that certain Super-Scaffolds correspond to the 
LGs, we used a larger set of variants to build the linkage map from. 
Specifically, we filtered on 10% missingness and 10% minor allele 
frequency, instead of the 5% filter used before. For all SNPs in each 
LG, we used ParentCall and Filtering2 as before but ran 
SeparateChromosomes on each LG with a LOD cutoff of 5. Finally, 
we ran OrderMarkers by enforcing the physical map of the genome 
assembly and estimating the genetic map without de novo order-
ing by using the parameters evaluateOrder and improveOrder=0. 
This allowed us to use most variants on the scaffold (a total of 
4,889,667 SNPs) and detect possible missing COs not identified 
by the previously filtered data set used in de novo ordering. A com-
parison of the 2 runs of Lep-MAP3, 1 with de novo marker ordering 
and 1 using the physical order, can be found in Supplementary 
Fig. 2 in Supplementary File 1.

In linkage mapping, certain markers might be erroneously 
mapped especially at the extremities of LGs. Thus, all markers 
with a separation larger than an arbitrary threshold of 2 cM in a 
region of 100 markers concentrated toward the ends of LGs were 
filtered out using a custom script adapted from LepWrap 
(Dimens 2022).

LD recombination
To run SMC++ v1.15.2 (Terhorst et al. 2017), we followed the 
authors’ instructions as presented on the software’s GitHub 
page (https://github.com/popgenmethods/smcpp). In summary, 
SNPs were filtered on 10% missingness, HWE (using a Fisher’s ex-
act test P-value cutoff of 0.05) and 5% minor allele frequency using 
VCFtools v.0.1.16. In addition, missing data were recoded using 
plink v1.9 (Chang et al. 2015), and the 5 samples with the highest 
coverage were selected as individuals to be provided to SMC++. 
The command vcf2smc was run for each of these 5 individuals. 
When executing “vcf2smc,” the mappability mask was excluded 
by using the -m option. The model was estimated using all output 
files from the previous step and with a mutation rate of 1.93e−9 es-
timated from family data of a snowy owl Bubo scandiacus (Bergeron 
et al. 2023). The csv-formatted estimate of piecewise-constant Ne 

in past generation intervals was used in subsequent pyrho 
(Spence and Song 2019) analyses.

We ran pyrho v0.1.7 with an unphased set of markers for 76 un-
related Swiss individuals. We used the data set of SNPs we used in 
SMC++, but we further filtered variants to be at least 10 bp apart 
using VCFTools v.0.1.16. The first step in the pyrho implementation 
was the precalculation of a 2-locus likelihood look-up table. 
This step takes into account the Ne estimates from SMC++ 
(Supplementary Fig. 3 in Supplementary File 1). For the Swiss sam-
ples, the number of diploid individuals was 76 and we used the 
Moran approximation parameter with a size of 200. The “hyper-
parameter” command was run to estimate metrics on the per-
formance of different window sizes and block penalties. The 
authors’ guidelines were followed on how to select the best com-
bination of parameters. Briefly, we summed the Pearson correl-
ation statistics outputted by pyrho and plotted their total sum 
against the L2 values. The authors suggest (https://github.com/ 
popgenmethods/pyrho#hyperparam) that depending on the im-
plementation, one might opt to choose the parameter combin-
ation that maximizes the correlation measures or minimizes L2. 
In our case, both conditions were satisfied with one combination 
of parameters and we run pyrho with that set of parameters. A ta-
ble of the hyperparameter values for all populations can be found 
in Supplementary Table 2 in Supplementary File 1. With the in-
ferred hyperparameters, the recombination rate was estimated 
using the “optimize” command on vcfs containing individual scaf-
folds that were previously filtered for singletons and a minimum 
distance of 10 bp between variants as in Wall et al. (2022).

Downstream analyses
Putative centromeres were identified using a repeat annotation 
through a combination of 2 software, RepeatObserver v1 
(Elphinstone et al. 2023) and TRASH v1.2 (Wlodzimierz et al. 
2023), run with default parameters on the barn owl assembly 
v.4.0 (Machado, Cumer, et al. 2022) (more details in 
Supplementary Text 2 in Supplementary File 1). After identifying 
LGs, synteny with the chicken reference genome was inferred with 
the method presented in Waters et al. (2021). Synteny matches 
can be found in Supplementary Fig. 4 and Table 3 in 
Supplementary File 1. The rate of intrachromosomal shuffling 
was calculated from the genetic map distances following 
Supplementary information S5 in Veller et al. (2019). For every 
chromosome, there is a set of sequenced markers A = (a1, a2,…, 
an) and a cumulative genetic distance up to each marker (in cM) 
of Da = Σi < adi, but these markers are not placed at even distance 
intervals. Thus, we created a set of equidistant (10 kb) pseudo-
markers B, starting from the beginning and including the end of 
the sequence, and calculated their centimorgan position by using 
adjacent true markers. For every b marker, the distance (Db) is:

Db =
sa(b)+1 − sb

sa(b)+1 − sa(b)
Da(b) +

sb − sa(b)

sa(b)+1 − sa(b)
Da(b)+1 

where sa(b) is the genomic position of the nearest marker below 
marker b, sb the genomic position of marker b, and sa(b) + 1 is the 
genomic position of the nearest marker above b. Similarly Da(b) 

and Da(b) + 1 are the cumulative genetic positions of the nearest 
true markers below and above pseudomarker b, respectively. 
Then, we averaged all pairwise distances of the pseudomarkers, 
weighing the result by the proportion of length belonging to 
each LG (L2). The end value corresponds to the total shuffling at-
tributable to each chromosome (rintra).
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Recombination rate estimates from pyrho were averaged 
across nonoverlapping windows of different lengths using a cus-
tom script. Windows of sizes 1 kb, 10 kb, 100 kb, and 1 Mb were 
created from the reference sequence using bedtools makewindows 
from bedtools v2.3 (Quinlan 2014). These windows were overlapped 
with the pyrho windows, and the recombination rate in centimor-
gans was calculated by multiplying the recombination probability 
estimate with the length of each interval and then translating this 
to centimorgans using Haldane’s function (Haldane 1919). For 
each window, nucleotide diversity was calculated using VCFtools 
and the --window-pi command. Estimates were corrected for 
masked nucleotides in each window. Sequence GC content was 
calculated using the reference sequence and the bedtools nuc com-
mand. We annotated CGIs using the UCSC genome browser CGI 
annotation tool cpg_hl (Kent et al. 2002) with default parameters. 
The Gini coefficient was calculated using Desctools v.0.99 
(Signorell 2023). Transcription start and end sites were annotated 
using the genome annotation from NCBI as the first and last posi-
tions of the genomic sequence for each gene. The intersection of 
different bed files was performed using bedtools. Local hotspots 
were annotated by dividing the estimate of recombination rate 
in each focal window with the average recombination in 80 kb 
around (40 kb upstream and 40 kb downstream). In addition, be-
cause power to infer hotspots is lower in very low and high recom-
bination rates (Singhal et al. 2015), we restricted hotspots to 
windows between 1 and 10 cM/Mb. Lastly, we removed any hot-
spots found in windows with more than 500 bp annotated as re-
peats. Global hotspots were annotated as windows with at least 
10 times the genome-average recombination rate.

Owl images are from PhyloPic (https://www.phylopic.org). Map 
was made using tmap v3.3-4 (Tennekes 2018) and the Natural 
Earth high-resolution data set. Corrplot v.0.92 was used for correl-
ation (Wei and Simko 2021). Vioplot v0.4.0 was used to create the 
violin plots (Adler et al. 2022). All analyses were executed in R 
v.4.3.1 (R Core Team 2023) using the Rstudio IDE (Posit team 
2022). Scripts with commands used for data generation and down-
stream analyses can be found in https://github.com/topalw/ 
Recombination_barn_owl.

Results
In order to build the most comprehensive set of polymorphism to 
date in the barn owl, we performed variant identification on a total 
of 502 whole genome sequences of medium to high coverage 
(mean 16X, range = 8X–43X). Samples originated from 19 distinct 
localities spanning the Western Palearctic distribution of the spe-
cies (with 3–13 samples from 19 localities, see Supplementary 
File 2 for details). The Swiss population in particular included 
346 individuals with a family structure originating from an obser-
vational pedigree. After filtering, we retained 26,933,469 single nu-
cleotide variants (SNPs) and used subsets of those individuals and 
variants for each analysis below (Supplementary Table 1 in 
Supplementary File 1).

LGs and recombination rate of the barn owl
After additional filtering on the variant set for technical errors, al-
lele frequency, distance, and missingness (see Methods), we ordered 
154,706 SNPs along the 41 largest scaffolds of the barn owl genome 
assembly v.4.0 (Machado, Cumer, et al. 2022) to create a linkage 
map for the species. Based on segregation of these markers in 350 
meioses of 250 individuals from 28 families, we identified 40 LGs 
spanning 1,196.47 million base pairs (Mb) covering 95.7% of the 
genome assembly. All the LGs we identified correspond to scaffolds 

in the genome assembly, except for Super-Scaffold 2, which was 
split into 2 LGs (see Supplementary Text 1 and Table 3 in 
Supplementary File 1). In addition, we merged Super-Scaffold_3 
and Super-Scaffold_49 into LG 20 and Super-Scaffold_13 and 
Super-Scaffold_42 into LG 40, corresponding to the sex chromo-
some Z. The genome assembly of the barn owl therefore contains 
the sequence of 39 LGs out of 45 expected pairs of autosomal chro-
mosomes and 1 LG corresponding to the Z chromosome. Of the 39 
autosomal LGs identified, 17 correspond to microchromosomes— 
chromosomes with a size less than 24 Mb (Waters et al. 2021). 
After we were confident with the correspondence between scaf-
folds and LGs, we inferred the genetic map positions of a set of 
4,889,667 SNPs, which were filtered with less stringent parameters, 
with an average inter-SNP nucleotide distance of 266 bp. This way 
we inferred the genetic map for each LG independently by captur-
ing COs over most of the assembled sequence. We observed 3,972 
male COs and 4,250 female COs, which correspond to 23 COs per 
meiosis on average. For the 39 autosomal LGs, the final sex- 
averaged linkage map length spanned 2,580 cM resulting in an 
autosomal genome-wide average estimate of recombination rate 
of ∼2.33 cM/Mb for this species.

The genetic length of LGs increased slightly with their physical 
length (Fig. 1a). As a result of the obligate CO, the genetic map of a 
chromosome is expected to be at least 50 cM long. The LGs of 
the barn owl showed an average genetic length of 66 cM (range: 
35–97 cM), and all LGs recombined on average less than twice 
per meiosis (<100 cM). The slope of the regression of the 
genetic length on the physical length was significantly positive 
[β = 0.378, 95% confidence interval (CI): 0.18–0.57], and the inter-
cept was not different from the expected minimum of 50 cM 
(α = 55, 95% CI: 48–62) under 1 obligate CO per chromosome. 
Three LGs around 30 Mb of physical length had an inferred genetic 
length less than 50 cM (LG13: 40 cM, LG18: 49.2 cM, and LG31: 
34.8 cM, Supplementary Table 3 in Supplementary File 1).

We found that the Z chromosome is the largest chromosome, 
with an assembled physical length of 90.3 Mb (Fig. 1a; 
Supplementary Fig. 5, final panel, and Table 3 in Supplementary 
File 1). The identified pseudoautosomal region (PAR) spans 
4.4 Mb at the end of the LG (Supplementary Fig. 5 in 
Supplementary File 1). Males, with 2 copies of the Z chromosome, 
had a genetic length of 69.28 cM (approximately 10 cM in the PAR), 
which corresponds to a rate of approximately 0.77 cM/Mb 
(Supplementary Table 3 in Supplementary File 1). Females, having 
a single copy of the Z chromosome, harbored 53 cM just in the PAR 
(Supplementary Table 3 and Fig. 5 in Supplementary File 1).

Subtle heterochiasmy
To infer heterochiasmy, we compared the sex-specific linkage map 
estimates (Supplementary Fig. 5 and Table 3 in Supplementary File 
1). Females, with a map length of 2,672 cM, had a 4.7% larger gen-
etic map than males (2,560 cM). There appeared to be no consistent 
pattern of heterochiasmy among LGs at the chromosome scale 
(Fig. 1b). To investigate potential differences in localization of re-
combination events in males and females, we looked at the posi-
tioning of COs along the length of all LGs (Fig. 1c; Supplementary 
Figs. 5 and 6 in Supplementary File 1). Overall, COs occurred closer 
to the LG extremities than in their center. However, the distribution 
of COs differed between the sexes (two-sample Kolmogorov– 
Smirnov test D = 0.30; P < 0.001). Notably, males appeared to re-
combine more at the extremities and the middle of the LGs since 
their COs were less evenly distributed.

To test if pericentromeric rates differ between males and fe-
males, we attempted to annotate centromeres in silico in the 
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barn owl assembly. Annotated tandem repeats were often con-
centrated at the ends of chromosomes as expected by the pres-
ence of a centromere in acrocentric chromosomes. We retained 
only annotated centromeres in 18 LGs, where the centromere 
was inferred in the distal 20% of the sequence. However, most an-
notated centromeres overlapped recombination peaks, and we 
were not fully confident in the end result to draw any conclusions 
(Supplementary Text 2 and Figs. 7 and 8 in Supplementary File 1).

Because sexes showed different locations of COs and not all 
COs are as effective at shuffling alleles between haplotypes, we 
quantified the rate of intrachromosomal shuffling (rintra) as de-
fined in Veller et al. (2019). Briefly, this quantity measures the 

relative shuffling of alleles due to a CO along the length of the 
chromosome. For example, a CO in the middle of the chromosome 
shuffles more alleles than a distal one. We estimated rates of in-
trachromosomal shuffling in males and females (Fig. 1d). 
Despite an overall lower recombination frequency (Fig. 1b), males 
showed up to 50% higher intrachromosomal shuffling for larger 
LGs (Fig. 1d). On the other hand, females showed higher rates of 
shuffling in intermediate to smaller LGs.

Fine-scale variation among LGs
To investigate fine-scale variation in recombination rates, we 
turned to recombination rates estimated from patterns of LD 

a

b

d

c

Fig. 1. Linkage map for the barn owl (T. alba). All plots in this figure are products of the linkage map data set consisting of 350 meioses of 250 individuals in 
28 families, illustrated with the pedigree of owl symbols on the top right. a) Estimates of sex-averaged genetic lengths for the LGs plotted against their 
physical length. Regression line is shown with 95% CIs (α = 55, β = 0.378, t = 3.73, P < 0.001). Color intensity scales with LG physical lengths. The Z LG is 
marked with a Z, and LGs with less than 50 cM are marked with a white X. b) Female map length (cM) of LGs against the male map length. Dashed line is 
the identity (y = x) line. c) Density plot of male (aquamarine) and female (blue) CO counts plotted along the distance from the LGs’ end. X-axis is in 
percentages of total LG sequence. Density values are scaled so that they sum to 1. d) Differences between sexes in rates of intrachromosomal shuffling 
(rintra) presented as a ratio (male rintra/female rintra) for different LGs. Bars to the right of the black line colored green signify higher intrachromosomal 
shuffling in males, and bars to the left of the black line colored in blue correspond to LGs with higher shuffling in females. LGs are ordered by decreasing 
physical length as on the right-hand axis.
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(Supplementary Fig. 9 in Supplementary File 1). We estimated re-
combination rates using pyrho v0.1.7 (Spence and Song 2019) in a 
set of 5.8 million variants (number of variants per population is 
presented in Supplementary Table 1 in Supplementary File 1) 
identified along the whole genome of 76 unrelated birds from 
Switzerland (CH). The total genetic length for the autosomal 
part of the assembly was estimated from LD to be ∼3,100 cM, 
25% larger than the linkage map estimate for the same popula-
tion. We scaled the total length inferred from LD to be the same 
as the linkage mapping estimate for each scaffold separately, to 
account for the confounding effect of Ne and compared the 

estimates in non-overlapping 1 Mb windows. The correlation of 
recombination rate estimated from the linkage map and from pyr-
ho at the 1 Mb scale was high (r = 0.83, 95% CI: 0.813–0.85), but pyr-
ho showed larger estimates in regions of low recombination 
compared to linkage mapping (Fig. 2a).

The recombination landscape differed among chromosomes. 
To further quantify this variation in recombination rates, we cal-
culated the proportion of genomic sequence where recombination 
occurs. We ordered all 10 kb windows for each LG by decreasing 
recombination rate and quantified the cumulative recombination 
percentage against the cumulative percentage of sequence 

a

b

c d e

Fig. 2. Variation of recombination among LGs. a) Comparison of recombination rate estimates from linkage mapping and LD inference for the Swiss 
population. The comparison is made in 1 Mb windows. Regression line is shown with prediction intervals as dashed lines (α = −0.08, β = 0.999, t = 53.15, 
P < 0.001). b) The recombination frequency (cM/Mb) in 10 kb windows along the physical map of 3 example LGs: LG 36 (purple square), LG 32 (aquamarine 
diamond), and LG 22 (green triangle), respectively. The dashed horizontal line represents the genome-average recombination rate and the full line the LG 
average recombination rate. These LGs represent LGs with different recombination landscapes. Vertical lines below indicate locations of male (top row) 
and female (bottom row) COs from the family estimates. c) Cumulative sequence plotted against cumulative ordered recombination length for each LG 
(dark gray curves) and genome-wide (gray dashed curve). The black dotted line is the identity (y = x) line. The Gini coefficient corresponds to the area 
delimited by each curve and the identity line. d) The Gini coefficient of recombination rates for each LG plotted against its physical length. Dashed gray 
line is the genome-average Gini coefficient. e) The Gini coefficient of recombination plotted against the average nucleotide diversity of each LG.
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(Fig. 2c). Overall, 80% of recombination occurs in approximately 
30% of the sequence (dashed gray line in Fig. 2c). However, there 
was substantial variation in the distribution of recombination 
among LGs. To further measure this skewness, we used the Gini 
coefficient of recombination rates for each chromosome, which 
is a measure of inequality among the values of a frequency distri-
bution. Graphically, this corresponds to the area between each 
curve in Fig. 2c and the identity (y = x) line and ranges from 0 to 
1. Smaller values indicate an evenly spread landscape (every win-
dow has the same recombination rate) and higher values a more 
variable one (windows show large differences in recombination 
rates). The genome-wide average Gini coefficient was 0.67, and 
the LG-specific estimates varied between 0.44 and 0.77 (LG 36 
and LG 22, marked with a blue square and a green triangle, re-
spectively, in Fig. 2). Along with a LG of an intermediate Gini coef-
ficient of 0.61, LG 32 (aquamarine diamond in Fig. 2), their 
recombination landscapes are presented in Fig. 2b. We found 
that the Gini coefficient depended on the physical length of 
the LG, with more evenly spread (and elevated) recombination 
rates in smaller LGs and more concentrated landscapes in larger 

ones (Fig. 2d), although the effect reached a plateau as the 
length increased above 25 Mb. Further, the Gini coefficients 
were strongly negatively correlated with the average nucleotide 
diversity of the LG, with more concentrated recombination 
peaks associated with lower average nucleotide diversity 
(Pearson’s r = −0.87, 95% CI: −0.92, −0.76) (Fig. 2e). Overall, re-
combination rates varied substantially among the different 
LGs of the barn owl assembly.

Correlates of recombination
To identify genomic correlates of recombination rates, we anno-
tated 10 kb windows with more than 5 times the genome-wide 
average recombination rate as recombination “hotspots” windows 
(Fig. 3a). We identified 3,805 such windows containing 30% of the 
total genetic length. We also annotated 4,677 windows with less 
than 5 times the average recombination rate, i.e. recombination 
“coldspots.” We compared both hotspot and coldspot with a set 
of 4,000 randomly chosen windows that were not annotated as ei-
ther hotspots or coldspots. An example of hotspots and coldspots 
across a particular LG is shown in Fig. 3b. We found that windows 
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Fig. 3. Correlates of recombination. a) The distribution of recombination rates in 10 kb windows. We define hotspots as windows with more than 5 times 
the genome-average recombination rate and coldspots as windows with a recombination rate less than a fifth of the average. b) Example of annotated 
coldspots and hotspots in LG 32. Vertical lines below are locations of male (top row) and female (bottom row) COs from the family estimates. Violin plots 
of characteristics of hotspots, coldspots, and a similar sized set of random windows that belong in neither category. c) Position along LG. d) GC content. e) 
Nucleotide diversity. f) Number of annotated genes. g) Recombination is increased around annotated TSSs (full line) as well as CGIs (dashed line). RRR80 is 
the recombination rate of each 1 kb window divided by the average in 80 kb around. The lines show the average across all identified elements.
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with high recombination rates were most often identified at the 
ends of LGs, had higher GC content and nucleotide diversity, 
and colocalized with genes (Fig. 3c–f). On the contrary, coldspots 
were found in the middle of the LGs and were depleted in GC con-
tent, nucleotide diversity, and genes.

In addition, because birds lack the PRDM9 gene, recombination 
hotspots are expected to localize to TSSs, as well as CGIs (Singhal 
et al. 2015; Baker et al. 2017). To verify this, we used estimates 
of recombination frequency in non-overlapping windows of 
1,000 bp (1 kb) along the genome. Windows that were annotated 
to contain a TSS (n = 17,191, 1.5% of windows) or contained a 
CGI spanning the whole window (n = 13,971, 1.3% of windows) 
were identified, and their recombination rate was divided by 
the average recombination rate in 40 kb upstream and 40 kb 
downstream of the focal window (relative recombination rate in 
80 kb—RRR80). The focal windows showed elevated recombin-
ation rates compared to other windows in their vicinity (Fig. 3g).

Recombination landscapes across populations
To quantify the change of the recombination landscape across 
European populations of the species, we used 3 populations 
from the Western Palearctic: Portugal (PT, n = 13), Great Britain 
(GB, n = 13), and Switzerland (CH, n = 76) (Fig. 4a). For Portugal, 
we pooled together 3 samples from Morocco and 10 from 
Portugal since they have very high genetic similarity (Cumer, 
Machado, Dumont, et al. 2022). Because the sample size in 
Switzerland was far larger than the other 2 populations and to 
test the robustness of our results, we randomly subsampled 5 
sets of 13 individuals from Switzerland, creating pseudoreplicate 
populations. Genetic length estimates differed between popula-
tions. Portugal showed a 5-fold increase in genetic length while 
GB showed a 2-fold increase compared to the family linkage 
map. The Swiss subset data sets underestimated the total genetic 
length up to 2.4 times. For all populations, we scaled the results so 
that each scaffold would match the corresponding linkage map 
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Fig. 4. Comparison of recombination landscapes between populations. a) Map of sampled populations. Numbers correspond to genome-wide pairwise 
FST values (Machado, Cumer, et al. 2022). b) Example of recombination landscape for 1 kb windows in all data sets for the first 5 Mb of LG 2. Points above 
each plot show local hotspots for each population. Local hotspots are identified as at least two consecutive windows with a recombination rate of at least 
five times the average in a region of 80kb around them (RRR80 > 5). c) Correlation matrix of recombination rates for 1 kb windows (above diagonal) or 
100 kb windows (below diagonal). d) Relative recombination rates in 80 kb around (only 40 kb plotted) 1 kb windows annotated as hotspots in the full 
Swiss data set. Each line is the relative recombination rate in all other populations. Gray lines are the subsets from Switzerland with n = 13. CH: full Swiss 
data set (n = 76); PT: Portuguese data set (n = 13); GB: Great Britain data set (n = 13); CH13: undersampled first Swiss data set (n = 13); CH13_2: 
undersampled second Swiss data set (n = 13).
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estimate. After scaling, we compared all populations with the 
linkage map in 1 Mb windows along the genome and found 
that genome-average correlations were higher than 0.69 
(Supplementary Fig. 10 in Supplementary File 1). At a finer scale, 
however, recombination landscapes varied among populations 
(an example landscape for all populations is presented at the 
1 kb scale for the first 5 Mb of LG 32 in Fig. 4b; all landscapes in 
Supplementary Fig. 11 in Supplementary File 1). Estimates in GB 
showed reduced resolution at the finer scales (aquamarine line 
in Fig. 4b), likely due to reduced genomic diversity and historically 
smaller Ne in the population (Supplementary Table 1 and Fig. 3 in 
Supplementary File 1; see also Machado, Cumer, et al. 2022).

We quantified the divergence of the recombination landscapes 
as the correlation of recombination rates on different window 
sizes (1 and 100 kb) among all pairs of populations (Fig. 4c). The re-
combination landscapes between populations were concordant at 
the broad scale with the correlation steadily decreasing as the 
window size got smaller. The subsampled sets from Switzerland 
showed that correlations between CH and PT were slightly lower 
than between CH and the subsets. It also showed that broad-scale 
correlations in GB were not substantially no different between the 
CH subsets and PT while the fine scale (1 kb) was not as well 
correlated.

Figure 2b and c provide evidence for the existence of fine-scale 
hotspots in the barn owl recombination landscape. Thus, we 
looked for at least 2 consecutive 1 kb windows with a recombin-
ation rate higher than 5 times the average in 80 kb around them 
(relative recombination rate in 80 kb—RRR80), following defini-
tions of a local hotspot in the literature (Myers et al. 2005; 
Singhal et al. 2015; Kawakami et al. 2017), and careful filtering 
based on recombination rates and repeat content. After filtering, 
a set of 1,566 windows were identified as local hotspots, harboring 
8,171 variants. We then quantified the RRR80 of the other popula-
tions on those windows (Fig. 4d). The 5 Swiss subsampled data 
sets with n = 13 provided a measure of estimation error and 
showed strong to moderate increase on the hotspot windows. 
Recombination rates in the Portuguese sample showed a marked 
increase in the windows, indistinguishable from the Swiss sub-
sampled data sets, while the signal in the samples from Great 
Britain was outside the range of the subsampled data sets.

Discussion
Recombination is an evolutionary force with direct and indirect 
implications for reproduction and evolution, and while it varies 
on different scales, our knowledge and ability to quantify this vari-
ation are often limited. In this study, using an extensive whole 
genome sequencing data set of barn owls, we inferred recombin-
ation with 2 different methods to describe broad and fine-scale 
variation in recombination variation: linkage mapping on a pedi-
greed population and a LD-based approach on 3 different popula-
tions. Using both methods allowed us to identify crossing over in 
contemporary families and infer haplotype shuffling in the co-
alescent history of our data set. We first identified 40 LGs in the 
barn owl genome assembly and estimated the recombination 
rate to be ∼2.3 cM/Mb. We showed that in the barn owl, the overall 
length of genetic maps shows no clear distinction between males 
and females, but sexes had fine-scale differences in CO placement 
and shuffling proportions. Despite few (1 to 2) COs per chromo-
some, we found large variation in the location of these COs among 
different LGs, with some LGs harboring large stretches of reduced 
recombination. We showed that this variation in the distribution 
of recombination comes in tandem with variation in the genetic 

diversity of the different LGs. At a more fine-scale resolution, re-
combination rates were increased in windows that contain TSSs 
and CGIs. Equally, recombination hotspots at the 10 kb scale 
showed an elevated GC ratio, diversity, and gene density and 
were most often found at the ends of LGs. Lastly, population com-
parisons showed local recombination hotspot conservation des-
pite high statistical noise. We discuss these results and their 
implications below.

LGs confirm the near completeness of the barn 
owl assembly
Complete genome assemblies are a useful resource that requires 
multiple sources of information. The karyotype of the barn owl 
contains 45 autosomal pairs with a large Z chromosome and de-
graded W (Belterman and De Boer 1984; Rebholz et al. 1993; 
Peona et al. 2018). The latest barn owl assembly v4.0 (Machado, 
Cumer, et al. 2022) was assembled into superscaffolds using optic-
al genome mapping (BioNano; Lam et al. 2012). In the present 
study, we verified and improved the barn owl assembly by anchor-
ing the largest 41 scaffolds into 40 LGs and revealed that the gen-
ome assembly of the barn owl is of chromosome-level quality 
(though not telomere to telomere). However, there are still 6 auto-
somes unaccounted for in the linkage map, and the W chromo-
some is also not present because the assembly uses a male 
individual (Ducrest et al. 2020; Machado, Cumer, et al. 2022). 
These small autosomes might be partially present in the physical 
assembly, since smaller scaffolds with a few tens of identified 
markers that passed filtering could not be confidently allocated 
to LGs. Regardless, the “missing” chromosomes are likely the 
smallest 6 microchromosomes, or dot chromosomes, notoriously 
difficult to sequence and assemble due to their high GC content 
and reduced chromatin accessibility (Burt 2002; Bravo et al. 2021; 
Waters et al. 2021). Notably, the dot chromosomes were only re-
cently assembled in the chicken genome (Huang et al. 2023) and 
are missing from most available bird reference genomes (Peona 
et al. 2018; Baalsrud et al. 2024). It is likely that most microchromo-
somes will remain elusive until future studies make use of ad-
vances in long-read technologies (Marx 2023) to complete the 
reference genomes of birds. In this endeavor, linkage mapping, 
when available, can be a valuable tool (e.g. Peñalba et al. 2020; 
Robledo-Ruiz et al. 2022).

Differential shuffling between sexes due to CO 
placement
Our results suggest the presence of variation in CO placement be-
tween sexes that is not immediately apparent when investigating 
sex differences at overall genetic map length of each LG. This vari-
ation generates a differential shuffling of markers in each sex 
among different chromosomes with the overall pattern showing 
that males recombine less evenly than females along the length 
of the LGs. In turn, this leads to a greater shuffling of markers, 
as observed in larger chromosomes, where male COs situated 
more toward the middle of the sequence shuffle most of the var-
iants in the chromosome. In avian studies, results are inconclu-
sive for a general pattern of heterochiasmy in the class. For 
example, male collared flycatchers and male hihis (Notiomystis 
cincta) exhibit higher genetic lengths than females and recombine 
more toward the ends of the chromosomes (Kawakami et al. 2014; 
Smeds et al. 2016; Tan et al. 2024). On the other hand, sparrows 
(Passer domesticus) and great tits (Parus major) show higher female 
recombination (van Oers et al. 2014; McAuley et al. 2024), and other 
species such as the great reed warbler (Acrocephalus arundinaceus) 
show no pattern on the broad scale but a clear male bias toward 
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the telomeres (Zhang et al. 2024). Recently, there has been an ef-
fort to recharacterize heterochiasmy in CO placement with stud-
ies showing that there are heritable fine-scale sex differences in 
recombination in birds (McAuley et al. 2024; Tan et al. 2024; 
Zhang et al. 2024). Although fine-scale information on sex differ-
ences is not available for other bird species, the emerging pattern 
is that descriptions of recombination patterns at the LG level 
might not reveal the whole picture of heterochiasmy in birds 
and a more thorough quantification of sex-specific recombination 
is required.

Heterochiasmy is pervasive in eukaryotes (Burt et al. 1991; 
Sardell and Kirkpatrick 2020). In the most extreme version of sex 
differences, one sex does not recombine at all (achiasmy), almost 
always the heterogametic sex [for example XY Drosophila males 
and ZW females in Lepidoptera or the common silk worm 
(Bombyx mori); Morgan 1914; Burt et al. 1991; Goldsmith et al. 
2005; Jiggins et al. 2005]. For most species, the reality is more 
nuanced and is independent of which sex is heterogametic. A 
prominent pattern of heterochiasmy is that males often recom-
bine more toward the telomeres of a chromosome (Kong et al. 
2010; Giraut et al. 2011; Johnston et al. 2016; Brekke et al. 2023; 
Venu et al. 2024), although there are exceptions (Kianian et al. 
2018; Rifkin et al. 2022). While the evolutionary reasons behind 
the existence of heterochiasmy remain unexplained (Burt et al. 
1991; Mank 2009; Sardell and Kirkpatrick 2020), hypotheses have 
been proposed such as differences in haploid selection intensity 
(Lenormand and Dutheil 2005) or female meiotic drive 
(Brandvain and Coop 2012). Haploid selection predicts that the 
sex with more intense selection during the haploid phase (e.g. 
sperm competition) will show reduced recombination while the 
meiotic drive hypothesis predicts increased rates of recombin-
ation close to the centromeres in females. Barn owls show very 
low rates of extrapair copulation (Roulin et al. 2004) and therefore 
low sperm competition, and in birds and mammals, the egg com-
pletes meiosis II only after fertilization leaving little room for hap-
loid selection (Mira 1998). Further, the emerging patterns of 
heterochiasmy, and its frequent absence, do not lend support to 
the haploid selection theory in birds, which was also not asso-
ciated with sperm competition intensity in eutherian mammals 
(Mank 2009). Concerning female meiotic drive, because most 
avian assemblies lack annotation of centromeres, thus far no 
studies have been published on this topic in birds. While we at-
tempted to annotate centromeres in our assembly, the lack of as-
sembled repeats (often the last part of a reference to be 
assembled) and the placement of centromeres at the distal ends 
of the LGs confounded results (Belterman and De Boer 1984; 
Rebholz et al. 1993; Benham et al. 2024). Thus, to reach conclusions 
about heterochiasmy in birds, the use of more complete reference 
genomes with assembled repeats will be invaluable (Peona et al. 
2018; Robledo-Ruiz et al. 2022; Huang et al. 2023).

Heterochiasmy is most apparent on the sex-linked chromosome. 
Females, the heterogametic sex in birds, recombine exclusively on 
the PAR of the Z chromosome where sequence homology between 
the Z and W chromosomes is maintained. Beyond the PAR region, 
the 2 chromosomes have diverged so drastically in the >100 million 
years since their evolution from a pair of autosomes, that in karyo-
typic studies they appear like different elements (i.e. they are het-
eromorphic) (Belterman and De Boer 1984; Rebholz et al. 1993; 
Handley et al. 2004). While this is true for most birds 
(Neognathae), ratite birds (Palaeognathae) maintain homomorphic 
sex chromosomes with large PAR, which spans 50 Mb in the ostrich 
(Mank and Ellegren 2007; Yazdi et al. 2023). The variable degradation 
of sex chromosome pairs has been linked to multiple factors, like 

age of the sex chromosomes and strength of sexual conflict, in ani-
mals and especially in plants that have evolved ZW and XY systems 
independently multiple times (Bergero and Charlesworth 2009; 
Charlesworth 2013; Wright et al. 2016; Charlesworth 2019). Future 
work in the barn owl such as assembling the W chromosome and 
identifying the sex-determining region and its contents will help 
shed more light on the place of the Tytonidae on the sex chromo-
some evolution landscape.

Variation in recombination rate among and 
within LGs
Our results show that barn owl LGs recombine at most twice per 
meiosis. This result is in line with an expectation of 1 CO per 
chromosome (or chromosome arm) and the generally small 
(<70 Mb) acrocentric (or telocentric) chromosomes in the barn 
owl karyotype (Belterman and De Boer 1984; Rebholz et al. 1993; 
Coop and Przeworski 2007). However, these recombination fre-
quencies contrast with results from other bird species. For ex-
ample, the syntenic chromosome 2 of chickens and flycatchers 
with an approximate length of 150 Mb shows an average of 6 
COs per meiosis (300 cM) (Groenen et al. 2009; Kawakami et al. 
2014). The same chromosome has a genetic length of 175 cM in 
sparrows and 100 cM in great tits and superb fairy-wrens (van 
Oers et al. 2014; Peñalba et al. 2020; McAuley et al. 2024). The source 
of this variation in the order is unknown. Reasonable hypotheses 
include the evolution of the recombination landscape, localized 
suppression of recombination in some species (for example 
through segregating structural variations like inversions), or 
interspecific variation in the strength of CO interference 
(Kirkpatrick 2010; Otto and Payseur 2019). Higher quality linkage 
map data on more bird species can help identify the breadth of re-
combination variation in the class, and a meta-analysis of the 
available data sets can provide a much needed rigorous 
comparison.

In the barn owl, some LGs appear to recombine less than once 
per meiosis (genetic length < 50 cM). However, since the absence 
of an obligate CO can lead to aneuploidy, which, coupled with 
the LGs’ intermediate size, should generate severely deleterious 
consequences, this is unlikely to be the true recombination fre-
quency of these LGs (Hassold et al. 2007). A more likely explanation 
is that in these chromosomes, the genetic length is less than 50 cM 
due to missing markers at the distal parts of the chromosome. 
Because our marker data set used is relatively extensive, this dis-
crepancy likely originates at the assembly stage, where parts of 
the sequence might have been misassembled or be present in 
small scaffolds. Another notable outlier in our study is the Z 
chromosome that in males recombines almost 3 times less than 
the autosomes. One explanation is a lack of marker coverage, es-
pecially for scaffold 13, that might have been filtered out during 
linkage mapping. On the other hand, the Z chromosome harbors 
a low-recombination region in the middle and is the only meta-
centric chromosome in the barn owl karyotype and the reduction 
could be due to pericentromeric suppression or segregating struc-
tural variations that are found on the Z chromosome in other bird 
species (Knief et al. 2016, 2017; Yazdi and Ellegren 2018).

We find recombination rates to vary substantially between 
and within chromosomes. As expected from an obligate CO per 
chromosome, smaller chromosomes tend to have higher rates 
(per bp) of recombination compared to longer chromosomes. In 
addition, smaller chromosomes show a more uniform distribution 
of recombination rates along their length. Longer chromosomes 
exhibit a U-shaped pattern, with reduced recombination in 
their center sometimes spanning large parts of the chromosome. 
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This relationship between and within chromosomes has been 
found in other species (e.g. Backström et al. 2010; 
Bascón-Cardozo et al. 2024; Castellani et al. 2024), and Haenel 
et al. (2018), in a meta-analysis of recombination rates of different 
species, proposed a model where the length of a chromosome and 
the distance from the telomere are the major factors impacting re-
combination rates. This model was recently extended by Brazier 
and Glémin (2022) based on a large data set of plant linkage 
maps, to include centromeric position and the placement of a sin-
gle CO per chromosome. Our results follow this general pattern, 
although most LGs have interspersed signals of reduced recom-
bination that could be due to segregating structural variants 
and/or CO interference (Kirkpatrick 2010; Otto and Payseur 
2019). Regardless, the placement of COs on distal parts of the 
chromosomes is an important aspect of recombination that 
can inform different genetic analyses, from calculation of sum-
mary statistics to selection inference (Knief et al. 2017; Booker 
et al. 2020).

In the barn owl, these broad-scale patterns of recombination 
variation are associated with varying levels of nucleotide diver-
sity, a correlation which we observe on 2 scales. Small LGs with 
uniform and large recombination rates show higher genetic diver-
sity than large LGs with punctuated landscapes. At the same time, 
at a finer scale (10 kb), hotspot windows coinciding with family 
COs show higher nucleotide diversity than coldspot windows 
where family COs are rare. A similar correlation of genetic diver-
sity and recombination is observed in bird species and across 
the tree of life, although there are exceptions and its magnitude 
varies (Nordborg et al. 2005; Webster and Hurst 2012; Cutter and 
Payseur 2013; Kawakami et al. 2014; Rowan et al. 2019; Peñalba 
et al. 2020). A proposed explanation for this association is the mu-
tagenic effect of recombination that has been shown to exist in 
multiple species (Arbeithuber et al. 2015; Rattray et al. 2015; 
Halldorsson et al. 2019). Another explanation is the interplay of se-
lection and recombination. If recombination is spread throughout 
the length of the sequence, neutral alleles are uncoupled faster 
from selected ones that tend to drag them to extinction or fixation, 
thus allowing an increase of standing variation. On the contrary, 
long stretches of reduced recombination, through the action of 
linked selection, lead to reduced diversity (Charlesworth et al. 
1993; Charlesworth and Jensen 2021). While both effects can be 
acting at the same time, it can be hard to distinguish their relative 
contributions especially because recombination-induced muta-
tion is hard to quantify in nonmodel species and the relative ef-
fects might be species specific (Cutter and Payseur 2013).

A recurring observation is that recombination rates correlate 
with multiple genomic features without a clear direction of caus-
ality. For example, as illustrated here, windows with increased re-
combination rates are found in gene-rich regions, a finding 
prevalent in both plants and animals (e.g. Paape et al. 2012; 
Kawakami et al. 2014; Rifkin et al. 2022). An attractive explanation 
for this pattern is an adaptive one. In gene-rich regions, targets for 
selection (positive or negative) are increased, and as a conse-
quence, so is the potential for interference between selected al-
leles [Hill–Robertson interference (HRI); Hill and Robertson 
1966]. Higher recombination rates in these regions can mitigate 
this effect. However, indirect selection for increased recombin-
ation might be too weak to drive this phenomenon (Roze 2021), 
since only a few COs are required to overcome HRI. Instead genes 
and COs might colocalize because of underlying factors like ac-
cessible chromatin, as suggested here by the increase of recom-
bination around TSSs and CGIs or through modulating effects of 
transposable element density (Baker et al. 2017; Kent et al. 2017; 

Kianian et al. 2018; Venu et al. 2024). Similarly, GC content can cor-
relate with increased recombination both through colocalization 
of COs and CGIs and through gBGC (Eyre-Walker 1993; Duret 
and Galtier 2009). As recombination landscapes of more species 
accumulate, comparative studies will be more equipped to an-
swer questions regarding the directionality and strength of these 
forces. For example, characterizing recombination patterns in 
species with varying magnitudes of these forces (e.g. different 
GC conversion bias or different strength of recombination- 
induced mutagenesis) might help pick apart their relative contri-
bution. To this end, exploring the recombination landscapes of 
different species is a valuable first step.

Population differences
The populations we use in our study show a shallow genetic differ-
entiation resulting from an out of refugium expansion following 
the last glacial maximum and facilitated by moderate dispersal 
over the Western European continent (Cumer, Machado, 
Dumont, et al. 2022; Machado, Topaloudis, et al. 2022). Inspired 
by Talbi et al. (2024), we attempted to measure statistical noise 
from the sampling of genealogies in the inference of recombin-
ation landscapes through subsampling the Swiss data set 5 times 
down to n = 13. This showed that while correlations between 
Switzerland and Portugal were slightly lower than between 
Switzerland and the subsets, hotspot sharing was indistinguish-
able. We interpret this as evidence of divergence in parts of the 
recombination landscape. While this can be a signal of between- 
population differences in segregating structural variants, trans-
posable elements, or variation in some part of the recombination 
machinery, it can also be confounded through the effect of LD. 
Inferring recombination rates through LD means that selection 
and population size fluctuations can impact the inferred result 
(O’Reilly et al. 2008; Johnston and Cutler 2012; Dapper and 
Payseur 2018). Especially at the scale of a few kilobases, methods 
are known to show large statistical noise that depends on sample 
size, demography, and sequencing artifacts (Raynaud et al. 2023; 
Talbi et al. 2024). In our study, estimates were especially problem-
atic with the samples from Great Britain where low genetic diver-
sity coupled with a small sample size led to inconclusive results. 
While LD-based approaches provide an easy way to quantify 
the recombination landscape in multiple populations or species, 
ruling out confounding factors can be challenging, unless a 
more robust method of inferring recombination is used, such as 
linkage mapping.

Concerning evolving recombination landscapes, past investi-
gations have focused on the effect of the presence and absence 
of the PRDM9 gene. Species where the gene is active seem to 
have fast-evolving hotspots, possibly through erosion of identified 
motif sites (Coop and Myers 2007; Myers et al. 2010; Baker et al. 
2017; Raynaud et al. 2024). On the contrary, in species without 
PRMD9, recombination hotspots tend to be preserved over longer 
evolutionary scales and colocalize with open chromatin (Auton 
et al. 2013; Lam and Keeney 2015; Singhal et al. 2015; Kawakami 
et al. 2017). Recently, both the relevance of PRDM9-driven hotspots 
(Hoge et al. 2024; Joseph et al. 2024) and the evolutionary stability of 
recombination landscapes in species without the gene have been 
questioned (Talbi et al. 2024). Beyond mammals, the lack of a 
fast-evolving hotspot gene does not imply the lack of recombin-
ation divergence that has been observed even in closely related 
taxa (Stapley et al. 2017). Multiple genes have been shown to 
harbor heritable variation in modifying the number and place-
ment of CO events and have thus the potential to evolve under 
direct and indirect selective pressures (Reynolds et al. 2013; 
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Johnston et al. 2018; Dreissig et al. 2020; Arter and Keeney 2024 ; 
Johnston 2024). Yet, how often differences in recombination land-
scapes are adaptive is less well known.

Conclusion
To conclude, we present the recombination landscape of the barn 
owl using both linkage mapping and LD-based inference. The barn 
owl genome is now equipped with an assembly comprised of 40 
identified distinct LGs and a detailed recombination map. It is 
thus the first species in the Strigiformes order with significant 
genomic resources, paving the way for further analyses like 
genome-wide association studies and haplotype phasing. 
Concerning recombination, the 2 methods applied allow us to 
quantify variation in recombination between populations, sexes, 
chromosomes, and fine-scale genomic windows. We verify that 
observations in passerine species, like fine-scale heterochiasmy 
and large regions of no recombination, are found outside of this 
clade. We also highlight the complex interplay of recombination 
and genetic diversity. Overall, these results contribute to our 
growing understanding of recombination in eukaryotes and 
birds specifically, providing a more comprehensive overview 
of the changing recombination landscape and divergence be-
tween sexes.
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