Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Nov 2;17(21):6337–6347. doi: 10.1093/emboj/17.21.6337

Repression by the 3' UTR of fem-3, a sex-determining gene, relies on a ubiquitous mog-dependent control in Caenorhabditis elegans.

M Gallegos 1, J Ahringer 1, S Crittenden 1, J Kimble 1
PMCID: PMC1170958  PMID: 9799241

Abstract

The fem-3 sex-determining gene is repressed post-transcriptionally via a regulatory element in its 3' untranslated region (UTR) to achieve the switch from spermatogenesis to oogenesis in the Caenorhabditis elegans hermaphrodite germ line. In this paper, we investigate the fem-3 3' UTR control in somatic tissues using transgenic reporter assays, and we also identify six genes essential for this control. First, we find that a reporter transgene bearing a wild-type fem-3 3' UTR is repressed in somatic tissues, whereas one bearing a mutant fem-3 3' UTR is derepressed. Moreover, control by mutant 3' UTRs is temperature sensitive as predicted from the temperature sensitivity of the fem-3 gain-of-function (gf) mutations. Secondly, we find a fem-3 3' UTR RNA-binding activity in somatic tissues, in addition to the previously reported germ-line-specific binding by FBF. Thirdly, we find that each of six genes, mog-1-mog-6, is required for repression by the fem-3 3' UTR. Therefore, the mog genes not only affect the sperm/oocyte switch in the germ line, but also function in somatic tissues. We suggest that the mog genes may encode components of a ubiquitous machinery that is used for fem-3 3' UTR-mediated repression and the sperm/oocyte switch.

Full Text

The Full Text of this article is available as a PDF (438.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahringer J., Kimble J. Control of the sperm-oocyte switch in Caenorhabditis elegans hermaphrodites by the fem-3 3' untranslated region. Nature. 1991 Jan 24;349(6307):346–348. doi: 10.1038/349346a0. [DOI] [PubMed] [Google Scholar]
  2. Austin J., Kimble J. glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell. 1987 Nov 20;51(4):589–599. doi: 10.1016/0092-8674(87)90128-0. [DOI] [PubMed] [Google Scholar]
  3. Barton M. K., Kimble J. fog-1, a regulatory gene required for specification of spermatogenesis in the germ line of Caenorhabditis elegans. Genetics. 1990 May;125(1):29–39. doi: 10.1093/genetics/125.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barton M. K., Schedl T. B., Kimble J. Gain-of-function mutations of fem-3, a sex-determination gene in Caenorhabditis elegans. Genetics. 1987 Jan;115(1):107–119. doi: 10.1093/genetics/115.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beanan M. J., Strome S. Characterization of a germ-line proliferation mutation in C. elegans. Development. 1992 Nov;116(3):755–766. doi: 10.1242/dev.116.3.755. [DOI] [PubMed] [Google Scholar]
  6. Beelman C. A., Parker R. Degradation of mRNA in eukaryotes. Cell. 1995 Apr 21;81(2):179–183. doi: 10.1016/0092-8674(95)90326-7. [DOI] [PubMed] [Google Scholar]
  7. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Curtis D., Lehmann R., Zamore P. D. Translational regulation in development. Cell. 1995 Apr 21;81(2):171–178. doi: 10.1016/0092-8674(95)90325-9. [DOI] [PubMed] [Google Scholar]
  9. Deshler J. O., Highett M. I., Schnapp B. J. Localization of Xenopus Vg1 mRNA by Vera protein and the endoplasmic reticulum. Science. 1997 May 16;276(5315):1128–1131. doi: 10.1126/science.276.5315.1128. [DOI] [PubMed] [Google Scholar]
  10. Doniach T. Activity of the sex-determining gene tra-2 is modulated to allow spermatogenesis in the C. elegans hermaphrodite. Genetics. 1986 Sep;114(1):53–76. doi: 10.1093/genetics/114.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dubnau J., Struhl G. RNA recognition and translational regulation by a homeodomain protein. Nature. 1996 Feb 22;379(6567):694–699. doi: 10.1038/379694a0. [DOI] [PubMed] [Google Scholar]
  12. Ellis R. E., Kimble J. The fog-3 gene and regulation of cell fate in the germ line of Caenorhabditis elegans. Genetics. 1995 Feb;139(2):561–577. doi: 10.1093/genetics/139.2.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Francis R., Barton M. K., Kimble J., Schedl T. gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans. Genetics. 1995 Feb;139(2):579–606. doi: 10.1093/genetics/139.2.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goodwin E. B., Hofstra K., Hurney C. A., Mango S., Kimble J. A genetic pathway for regulation of tra-2 translation. Development. 1997 Feb;124(3):749–758. doi: 10.1242/dev.124.3.749. [DOI] [PubMed] [Google Scholar]
  15. Goodwin E. B., Okkema P. G., Evans T. C., Kimble J. Translational regulation of tra-2 by its 3' untranslated region controls sexual identity in C. elegans. Cell. 1993 Oct 22;75(2):329–339. doi: 10.1016/0092-8674(93)80074-o. [DOI] [PubMed] [Google Scholar]
  16. Graham P. L., Kimble J. The mog-1 gene is required for the switch from spermatogenesis to oogenesis in Caenorhabditis elegans. Genetics. 1993 Apr;133(4):919–931. doi: 10.1093/genetics/133.4.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Graham P. L., Schedl T., Kimble J. More mog genes that influence the switch from spermatogenesis to oogenesis in the hermaphrodite germ line of Caenorhabditis elegans. Dev Genet. 1993;14(6):471–484. doi: 10.1002/dvg.1020140608. [DOI] [PubMed] [Google Scholar]
  18. Henderson S. T., Gao D., Lambie E. J., Kimble J. lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. Development. 1994 Oct;120(10):2913–2924. doi: 10.1242/dev.120.10.2913. [DOI] [PubMed] [Google Scholar]
  19. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  20. Hodgkin J. A., Brenner S. Mutations causing transformation of sexual phenotype in the nematode Caenorhabditis elegans. Genetics. 1977 Jun;86(2 Pt 1):275–287. [PMC free article] [PubMed] [Google Scholar]
  21. Hodgkin J. Sex determination in the nematode C. elegans: analysis of tra-3 suppressors and characterization of fem genes. Genetics. 1986 Sep;114(1):15–52. doi: 10.1093/genetics/114.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jones D., Dixon D. K., Graham R. W., Candido E. P. Differential regulation of closely related members of the hsp16 gene family in Caenorhabditis elegans. DNA. 1989 Sep;8(7):481–490. doi: 10.1089/dna.1.1989.8.481. [DOI] [PubMed] [Google Scholar]
  23. Kelley R. L., Wang J., Bell L., Kuroda M. I. Sex lethal controls dosage compensation in Drosophila by a non-splicing mechanism. Nature. 1997 May 8;387(6629):195–199. doi: 10.1038/387195a0. [DOI] [PubMed] [Google Scholar]
  24. Kuwabara P. E., Kimble J. Molecular genetics of sex determination in C. elegans. Trends Genet. 1992 May;8(5):164–168. doi: 10.1016/0168-9525(92)90218-s. [DOI] [PubMed] [Google Scholar]
  25. Legagneux V., Bouvet P., Omilli F., Chevalier S., Osborne H. B. Identification of RNA-binding proteins specific to Xenopus Eg maternal mRNAs: association with the portion of Eg2 mRNA that promotes deadenylation in embryos. Development. 1992 Dec;116(4):1193–1202. doi: 10.1242/dev.116.4.1193. [DOI] [PubMed] [Google Scholar]
  26. Murata Y., Wharton R. P. Binding of pumilio to maternal hunchback mRNA is required for posterior patterning in Drosophila embryos. Cell. 1995 Mar 10;80(5):747–756. doi: 10.1016/0092-8674(95)90353-4. [DOI] [PubMed] [Google Scholar]
  27. Ostareck D. H., Ostareck-Lederer A., Wilm M., Thiele B. J., Mann M., Hentze M. W. mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3' end. Cell. 1997 May 16;89(4):597–606. doi: 10.1016/s0092-8674(00)80241-x. [DOI] [PubMed] [Google Scholar]
  28. Parkhurst S. M. Groucho: making its Marx as a transcriptional co-repressor. Trends Genet. 1998 Apr;14(4):130–132. doi: 10.1016/s0168-9525(98)01407-3. [DOI] [PubMed] [Google Scholar]
  29. Pazin M. J., Kadonaga J. T. SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions? Cell. 1997 Mar 21;88(6):737–740. doi: 10.1016/s0092-8674(00)81918-2. [DOI] [PubMed] [Google Scholar]
  30. Pikielny C. W., Rosbash M. Specific small nuclear RNAs are associated with yeast spliceosomes. Cell. 1986 Jun 20;45(6):869–877. doi: 10.1016/0092-8674(86)90561-1. [DOI] [PubMed] [Google Scholar]
  31. Rand J. B., Russell R. L. Choline acetyltransferase-deficient mutants of the nematode Caenorhabditis elegans. Genetics. 1984 Feb;106(2):227–248. doi: 10.1093/genetics/106.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rosenquist T. A., Kimble J. Molecular cloning and transcript analysis of fem-3, a sex-determination gene in Caenorhabditis elegans. Genes Dev. 1988 May;2(5):606–616. doi: 10.1101/gad.2.5.606. [DOI] [PubMed] [Google Scholar]
  33. Schedl T., Graham P. L., Barton M. K., Kimble J. Analysis of the role of tra-1 in germline sex determination in the nematode Caenorhabditis elegans. Genetics. 1989 Dec;123(4):755–769. doi: 10.1093/genetics/123.4.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schedl T., Kimble J. fog-2, a germ-line-specific sex determination gene required for hermaphrodite spermatogenesis in Caenorhabditis elegans. Genetics. 1988 May;119(1):43–61. doi: 10.1093/genetics/119.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Singer R. H. RNA zipcodes for cytoplasmic addresses. Curr Biol. 1993 Oct 1;3(10):719–721. doi: 10.1016/0960-9822(93)90079-4. [DOI] [PubMed] [Google Scholar]
  36. Smibert C. A., Wilson J. E., Kerr K., Macdonald P. M. smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo. Genes Dev. 1996 Oct 15;10(20):2600–2609. doi: 10.1101/gad.10.20.2600. [DOI] [PubMed] [Google Scholar]
  37. Stringham E. G., Dixon D. K., Jones D., Candido E. P. Temporal and spatial expression patterns of the small heat shock (hsp16) genes in transgenic Caenorhabditis elegans. Mol Biol Cell. 1992 Feb;3(2):221–233. doi: 10.1091/mbc.3.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wang Z. F., Whitfield M. L., Ingledue T. C., 3rd, Dominski Z., Marzluff W. F. The protein that binds the 3' end of histone mRNA: a novel RNA-binding protein required for histone pre-mRNA processing. Genes Dev. 1996 Dec 1;10(23):3028–3040. doi: 10.1101/gad.10.23.3028. [DOI] [PubMed] [Google Scholar]
  39. Webster P. J., Liang L., Berg C. A., Lasko P., Macdonald P. M. Translational repressor bruno plays multiple roles in development and is widely conserved. Genes Dev. 1997 Oct 1;11(19):2510–2521. doi: 10.1101/gad.11.19.2510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wickens M., Anderson P., Jackson R. J. Life and death in the cytoplasm: messages from the 3' end. Curr Opin Genet Dev. 1997 Apr;7(2):220–232. doi: 10.1016/s0959-437x(97)80132-3. [DOI] [PubMed] [Google Scholar]
  41. Zhang B., Gallegos M., Puoti A., Durkin E., Fields S., Kimble J., Wickens M. P. A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature. 1997 Dec 4;390(6659):477–484. doi: 10.1038/37297. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES