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Abstract

Purpose: Appropriate opioid management is crucial to reduce opioid overdose risk for ICU 

surgical patients, which can lead to severe complications. Accurately predicting postoperative 

opioid needs and understanding the associated factors can effectively guide appropriate opioid use, 

significantly enhancing patient safety and recovery outcomes. Although machine learning models 

can accurately predict postoperative opioid needs, lacking interpretability hinders their adoption in 

clinical practice.

Methods: We developed an interpretable deep learning framework to evaluate individual 

feature’s impact on postoperative opioid use and identify important factors. A Permutation Feature 

Importance Test (PermFIT) was employed to assess the impact with a rigorous statistical inference 

for machine learning models including Support Vector Machines, eXtreme Gradient Boosting, 

Random Forest, and Deep Neural Networks (DNN). The Mean Squared Error (MSE) and Pearson 

Correlation Coefficient (PCC) were used to evaluate the performance of these models.

Results: We conducted analysis utilizing the electronic health records of 4,912 surgical patients 

from the Medical Information Mart for Intensive Care database. In a 10-fold cross-validation, 

the DNN outperformed other machine learning models, achieving the lowest MSE (7889.2 mcg) 

and highest PCC (0.283). Among 25 features, 13—including age, surgery type, and others—were 

identified as significant predictors of postoperative opioid use (p < 0.05).

Conclusion: The DNN proved to be an effective model for predicting postoperative opioid 

consumption and identifying significant features through the PermFIT framework. This approach 

offers a valuable tool for precise opioid prescription tailored to the individual needs of ICU 

surgical patients, improving patient outcomes and enhancing safety.
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Introduction

A significant portion of patients admitted to Intensive Care Units (ICUs) undergo different 

type of surgical procedures [1,2]. These procedures span a broad spectrum of specialties, 

from routine outpatient treatments to complex interventions requiring hospitalization. 

Effective postoperative pain management is crucial to expedite recovery and enhance patient 

outcomes. Historically, opioids have been instrumental in providing potent analgesic effects 

to alleviate postoperative pain and improve patient comfort [3,4]. However, the widespread 

use of opioids for postoperative pain relief has contributed to the escalating opioid crisis, 

posing significant public health challenges. Inappropriate or excessive opioid use can 

lead to adverse outcomes such as dependency, addiction, overdose, and fatalities [5–11]. 

Additionally, opioid-related side effects like respiratory depression, nausea, constipation, 

and sedation can compromise patient safety and impede recovery if not adequately 

managed [12–15]. Therefore, while opioids remain a vital component of postoperative 

pain management, it is imperative to balance their benefits and risks, implementing 

comprehensive strategies to mitigate opioid-related harm and optimize patient care. Accurate 

prediction of postoperative opioid use is essential for achieving a delicate balance between 

optimizing pain control and mitigating associated risks. Precise forecasting of opioid 

consumption following surgery allows healthcare providers to tailor pain management 

strategies to individual patient needs, reducing the risk of overprescription while ensuring 

adequate pain relief [16–19].

However, accurate prediction presents several challenges. Variations in patient responses to 

opioids, differences in pain perception, age, sex, and the complexity of surgical procedures 

can all influence opioid requirements, complicating individualized prediction [11, 20–24]. 

Additionally, the multifaceted nature of postoperative pain, involving both nociceptive 

and neuropathic components, further complicates opioid consumption prediction [25–27]. 

Therefore, the potential for opioid-related adverse effects and the risk of misuse and 

addiction underscores the importance of precise individualized prediction to optimize 

pain management outcomes while minimizing harm [16–18]. Overcoming these challenges 

necessitates advanced predictive modeling techniques [28–31]. By integrating predictive 

analytics with clinical expertise, healthcare providers can enhance their ability to accurately 

forecast postoperative opioid use, ultimately improving patient safety and optimizing 

postoperative pain control.

Existing predictive models for postoperative opioid consumption often adopt parametric 

techniques, which necessitate restrictive assumptions by explicitly specifying the functional 

association between predictors and postoperative opioid consumption [22,28,32]. These 

restrictive assumptions may not hold in clinical practice and are unverifiable [33,34]. 

Misspecification of the functional association format can lead to inaccurate predictions. 

Conversely, many machine learning methods developed in recent years relax many of 
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these restrictive assumptions [35]. In this study, we investigated the effectiveness of four 

commonly used machine learning models in predicting postoperative opioid consumption. 

Specifically, we compared Support Vector Machine (SVM), Extreme Gradient Boosting 

(XGBoost), Random Forest (RF), and Deep Neural Network (DNN) based on patients’ 

demographics, clinical, preoperative, and operative features [36–42]. While these machine 

learning models are robust in exploring complex associations, they lack transparency 

in evaluating each individual feature’s impact on postoperative opioid consumption due 

to the abstract algorithms used [43–45]. Identifying important features associated with 

postoperative opioid consumption helps strengthen our understanding of postoperative 

opioid consumption mechanisms and improves postoperative pain management for ICU 

surgery patients. To address transparency limitation of machine learning models, we adopted 

the permutation-based feature importance test (PermFIT) procedure [46]. The overall goal of 

this paper is to develop and validate a machine learning framework for accurate personalized 

postoperative opioid need prediction and identify the associated important features under 

complex associations based on ICU surgical patients’ Electronic Health Records (EHRs) 

captured in clinical practice.

Materials and Methods

Study Design

This prognostic study followed TRIPOD guidelines with data included in This study 

extracted from the Medical Information Mart for Intensive Care (MIMIC-III) database 

[47]. This large database includes the EHRs of patients admitted to critical care units at 

the Beth Israel Deaconess Medical Center between 2001 and 2012. We developed and 

validated a robust predictive model under complex association relationship for accurate 

postoperative opioid consumption prediction in ICU surgery patients by investigating a set 

of commonly used machine learning models. Additionally, significant factors associated 

with postoperative opioid consumptions for each machine learning model were identified 

under the PermFIT framework [46], providing an in-depth understanding of postoperative 

opioid consumption mechanisms for ICU patients. More importantly, evaluation of each 

individual feature’s impact on postoperative opioid consumption will enable each of 

the black-box machine learning model to be interpretable, i.e., our feature importance 

identification for machine learning models was derived from rigorous statistical inference 

which is not available in existing postoperative opioid prediction models.

Study Population

The MIMIC-III database contains EHRs of over 40,000 patients admitted to the 

ICU, with 17,611 undergoing surgical procedures [47]. Among these surgical patients, 

7,192 had documented opioid consumptions during their hospital stay. To ensure the 

reliability of our dataset, rigorous preprocessing procedures were implemented, revealing 

two distinct modalities for intravenous opioid administration: continuous infusion and 

discreet bolus dose. While some patients exclusively received opioids via continuous 

infusion (n=619), a large proportion patients underwent intravenous push administration 

(n=7,106). Additionally, a subset received opioids through both methods (n=533). Given 

pharmacokinetic differences, our analysis focused solely on opioids administered via 
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intravenous push. Although oral opioids like Oxycodone are common in clinical practice, 

their absence in our dataset led to the exclusion of oral opioid data, resulting in a cohort 

of 7,106 patients receiving intravenous opioids. Refinement procedures eliminated aberrant 

observations, including extreme opioid intake and missing values. Furthermore, to avoid 

redundancy, in cases where patients had multiple hospital admissions (HADM_ID), a 

random selection process was employed to retain only one HADM_ID per patient. Our 

analysis ultimately included 4,912 surgery patients with complete demographic, clinical, 

preoperative, operative, and postoperative features. Detailed data processing procedures are 

presented in Figure 1.

Opioid Consumption Derivation and Covariates

The average daily postoperative opioid consumption was derived and calculated as the 

intake amount of four opioid drugs frequently used in early recovery period after 

surgery: morphine, hydromorphone, fentanyl, and meperidine via intravenous push route, 

converted to morphine equivalent dose [48,49] , using Micrograms (mcg) as the unit of 

measurement. 25 Variables, Including Demographic (e.g., age, sex, ethnicity), preoperative 

(e.g., prior medical history), operative (e.g., surgery types), and other clinical features, were 

incorporated as input features of each machine learning model for predicting the average 

daily postoperative opioid consumption.

Statistical Analysis

Build Interpretable Machine Learning Models for Opioid Use Prediction—A 

10-fold cross-validation strategy was adopted to evaluate the prediction performance of each 

machine learning model in predicting the postoperative opioid consumption as depicted in 

Figure 1. Specifically, by randomly partitioning the dataset into ten distinctive subsets, each 

fold of the 10 subsets was alternatively used as a testing set, while the rest of 9 folds 

were used to train the machine learning model. Four commonly used machine learning 

models including SVM, RF and XGBoost, and DNN were developed and validated based 

on MIMIC-III EHR data. To identify the significant features associated with postoperative 

opioid consumption for each machine learning model, we adopted the PermFIT framework 

[37]. To comprehensively evaluate the model performance in predicting the postoperative 

opioid consumption, we employed two evaluation metrics: Mean Square Error (MSE) - a 

quantitative measure of the average squared difference between predicted daily postoperative 

opioid consumptions and actual daily postoperative opioid consumptions, and Pearson 

Correlation Coefficient (PCC) - measures the strength and direction of the linear relationship 

between predicted and actual daily postoperative opioid consumptions.

Tuning Machine Learning Models—Machine learning models were meticulously 

tuned. The SVM model’s tuning involved optimizing gamma (from 10−4 to 1) and cost 

parameters (1 to 100) through a cross-validation strategy. For the RF model, 1000 trees were 

grown with other tuning parameters determined by cross-validation. Similarly, XGBoost’s 

hyperparameters were tuned through a cross-validation scheme. For the DNN model, what 

we adopted was a revised DNN ensemble to deal with the unstable prediction challenge due 

to the random parameter initialization in the conventional DNN algorithm. In the revised 

DNN model, two procedures were introduced to address the unstable prediction issue, i.e., 
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bootstrap aggregating and filtering [50]. Our DNN model utilized an ensemble of 100 

models, with 4 hidden layers, 50, 40, 30, 20 hidden nodes from the first to the last layer, 

respectively, employing a mini batch size 30.

Results

ICU Surgical Patients’ Basic Characteristics

In the cohort of 4,912 surgical patients, all were aged 18 or older, with a mean age of 

65.2 years. Of these, 3,127 (63.7%) were male, and 1,785 (36.3%) were female. Among the 

patients, 2,551 (51.9%) underwent cardiac surgeries, 1,089 (22.2%) had general surgeries, 

while 527 (10.7%), 284 (5.8%), 248 (5.0%), 186 (3.8%), and 27 (0.5%) underwent 

neurologic, circulatory, thoracic, musculoskeletal, and plastic surgeries, respectively. A 

summary of the demographic characteristics for 4,912 surgical patients included in this 

study is presented in Table 1.

Model Performance Comparison on Postoperative Opioid Usage Prediction

Under the permutation feature importance test framework, we identified the important 

features associated with average daily postoperative opioid consumption for each of machine 

learning models (DNN, RF, SVM, XGBoost). The identified important features for each 

model were then included in the corresponding machine learning model for predicting 

average daily postoperative opioid consumption based on the testing data. The models are 

referred to as DNN, RF, SVM, and XGBoost, respectively, and they are interpretable since 

each of the input feature’s impact on the outcome can be expressively evaluated. It is 

worth noting that when training the machine learning predictive models and identifying the 

important features for each machine learning model all the testing samples were withheld 

without leaking to influence model training and feature importance evaluation during model 

training and feature importance identification processes to avoid overfitting. The results of 

the analysis are presented in Table 2.

Table 2 reveals that in the reduced models where only the identified significant features (p-

value < 0.05) were included for predicting average daily postoperative opioid consumption, 

the MSE and PCC along with their corresponding 95% confidence intervals (CI), were 

as follows: DNN (7889.23 [5751.744, 10026.716], 0.283 [0.165, 0.401]), SVM (8810.669 

[6034.788,11586.550], 0.236 [0.152, 0.320]), RF (8214.330 [6180.240, 10248.420], 0.225 

[0.115, 0.335]), and XGBoost (8681.910 [6054.787, 11309.033], 0.217 [0.144, 0.290]). 

DNN outperformed all other models in terms of all evaluation metrics considered.

Identified Important Features Associated with ICU Patient’s Postoperative Opioid Use

Using the permutation feature importance test framework, we identified the important 

features associated with postoperative opioid consumption for each machine learning model 

across each fold of 10-fold cross-validation. Figure 2 displays the heatmap of the frequency 

of identified important features for each machine learning method at a significance level 

of 0.05. It’s evident from This figure that patient age and surgery type are consistently 

identified as significant factors for average daily postoperative opioid consumption across 

all 10 folds by all four machine learning methods. Moreover, sex, serum calcium, serum 
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potassium, diabetes, admission type, alcohol abuse, and cerebrovascular disease/stroke 

were identified as significant factors associated with average daily postoperative opioid 

consumption across all 10 folds by the DNN model.

Discussion

The management of opioids in ICU surgical patients during the early recovery period 

post-surgery poses significant clinical challenges, requiring accurate prediction and 

understanding of factors influencing opioid consumption for optimal pain management 

strategies. In This prognostic study, we comprehensively evaluated a range of commonly 

used machine learning models, including SVM, XGBoost, RF, and DNN, to construct 

and validate a robust predictive model for accurate postoperative opioid consumption in 

ICU surgical patients using EHR data from clinical practice. Among these models, the 

DNN model outperformed others by achieving the lowest mean squared error and the 

highest Pearson correlation coefficient. This underscores the effectiveness of the DNN 

model in capturing the intricate associations between clinical features and postoperative 

opioid consumption. Using a permutation feature importance test framework, the DNN 

model identified a total of 13 significant features associated with postoperative opioid 

consumption in every fold of the 10-fold cross-validation analysis, including age, surgery 

type, sex, serum CO2 levels, serum calcium, serum potassium, alcohol/drug abuse history, 

cerebrovascular disease, admit location, diabetes, and admit type among a total of 25 

features. While many of these findings align with prior research, some are novel. For 

instance, studies have consistently shown a decrease in postoperative opioid prescription 

with increasing age [23,51,52]. Additionally, research has highlighted the physiological 

connection between opioid usage and vital signs such as serum potassium, CO2 level, and 

platelet count [53]. Notably, the Permutation Feature Importance Test (PermFIT) utilized in 

this study differs significantly from other existing feature selection methods like the Shapley 

Value-Based Method (SHAP) [54]. While PermFIT not only assesses the importance score 

for each individual feature but also provides statistical inference, enabling the identification 

of statistically significant features, SHAP solely evaluates each feature’s importance score 

for relative importance ranking. This suggests that features identified via SHAP could 

be statistically insignificant, potentially misleading clinical decision-making. This study 

highlights the potential of using interpretable deep learning frameworks to enhance precision 

opioid prescription in ICU surgery. By identifying crucial influencing features, our approach 

offers a valuable tool for tailoring opioid prescriptions to the individual needs of surgical 

patients in ICUs, potentially improving patient outcomes and enhancing safety.

Limitation

This study was limited by the absence of certain crucial features, such as preoperative pain 

scores and surgery duration. These factors are important as they may significantly impact 

postoperative opioid consumption. Future research should aim to include these variables 

to provide a more comprehensive understanding of the determinants of opioid use in ICU 

surgical patients.

Zhu et al. Page 6

J Surg (Lisle). Author manuscript; available in PMC 2025 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusion

The study results underscore the effectiveness of the PermFIT-DNN model in flexibly 

identifying significant features for robust and accurate postoperative opioid consumption 

prediction, accompanied by solid statistical interpretations. This model not only enhances 

prediction accuracy using these identified important features but also provides valuable 

insights into the factors influencing opioid use in ICU surgical patients. These findings 

hold potential for informing the development of predictive tools to facilitate evidence-

based clinical decision-making, particularly regarding personalized postoperative opioid 

prescription recommendations. However, the study’s limitations suggest that some important 

features related to postoperative opioid consumption, such as preoperative pain scores 

and surgery duration, may not have been captured. This highlights the need for more 

comprehensive investigations. Future research should aim to integrate a broader collection 

of postoperative opioid consumption data to train the DNN model within the PermFIT 

framework. By doing so, a more complete set of important features could be identified, 

further enhancing the prediction accuracy and ultimately improving patient outcomes in ICU 

settings.
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Figure 1: 
Data Extraction and Modeling Architecture.
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Figure 2: 
Frequency Heatmap of Features.
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Table 1:

Summary of Key Demographic Features.

Categorical Features No. (%)

Sex Female 1785 (36.3)

Male 3127 (63.7)

Insurance Medicare/Government 2796 (56.9)

Self-Pay/Private 1761 (35.9)

Medicaid 355 (7.2)

Ethnicity Black/African 254 (5.2)

Hispanic/Latino 165 (3.4)

White 3715 (75.6)

Other 245 (5.0)

Unknown 533 (10.9)

Marital Status Married 2748 (55.9)

Single 990 (20.2)

Widowed 565 (11.5)

Divorced/Separated 411 (8.4)

Other 198 (4.0)

Surgery Types Cardiac Surgery 2551 (51.9)

General Surgery 1089 (22.2)

Neurologic Surgery 527 (10.7)

Circulatory Surgery 284 (5.8)

Thoracic Surgery 248 (5.0)

Musculoskeletal Surgery 186 (3.8)

Plastic Surgery 27 (0.5)
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Table 2:

Performance Comparison for Daily Postoperative Opioid Consumption.

Model MSE (95% CI) PCC (95% CI)

DNN 7889.230 (5751.744, 10026.716) 0.283 (0.165, 0.401)

SVM 8810.669 (6034.788,11586.550) 0.236 (0.152, 0.320)

RF 8214.330 (6180.240, 10248.420) 0.225 (0.115, 0.335)

XGBoost 8681.910 (6054.787, 11309.033) 0.217 (0.144, 0.290)
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