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ABSTRACT

Pathogen-associated molecular patterns (PAMPs) are highly conserved motifs originating 
from microorganisms that act as ligands for pattern recognition receptors (PRRs), which 
are crucial for defense against pathogens. Thus, PAMP-mimicking vaccines may induce 
potent immune activation and provide broad-spectrum protection against microbes. 
Dextran encapsulation can regulate the surface characteristics of nanoparticles (NPs) and 
induces their surface modification. To determine whether dextran-encapsulated NPs can 
be used to develop antiviral vaccines by mimicking viral PAMPs, we synthesized NPs in a 
cyclohexane inverse miniemulsion (Basic-NPs) and further encapsulated them with dextran 
or tetramethylrhodamine isothiocyanate (TRITC)-dextran (Dex-NPs or TDex-NPs). We 
hypothesized that these dextran encapsulated NPs could activate innate immunity through 
cell surface or cytosolic PRRs. In vitro and in vivo experiments were performed using RAW 
264.7 and C57BL/6 mice to test different concentrations and routes of administration. 
Only TDex-NPs rapidly increased retinoic acid-inducible gene I (RIG-I) at 8 h and directly 
bound to it, producing 120–300 pg/ml of IFN-α via the ERK/NF-κB signaling pathway in 
both in vitro and in vivo models. The effect of TDex-NPs in mice was observed exclusively 
with footpad injections. Our findings suggest that TRITC-dextran encapsulated NPs exhibit 
surface properties for RIG-I binding, offering potential development as a novel antiviral and 
anticancer RIG-I agonist.
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INTRODUCTION

The application of nanotechnology in biomedical engineering has gained substantial 
interest in recent years (1,2). Nanoparticles (NPs) typically range in size from 1 to 100 nm, 
and various types of NPs, including lipid-based NPs (liposomes and micelles), organic/
inorganic NPs, nanopolymers, emulsions, and virus-like particles, have been developed for 
novel pharmaceutical approaches such as drug delivery, cancer therapy, and bioimaging 
(3). Recently, NPs have also been employed in developing vaccines for various diseases. 
These vaccines primarily interact with the immune system by targeting innate immune 
responses and protecting against pathogens via molecular pattern recognition receptors 
(PRRs) (4). Engineered nanovaccines have emerged as a key field in vaccine development. 
These specialized NPs are constructed with Ags of interest or immunomodulatory 
materials through conjugation, encapsulation, adsorption, or simple mixing (5). NPs 
loaded with specific Ags may activate the humoral immune system to protect the host from 
corresponding pathogens (5). Furthermore, nanovaccines that capture pathogen-associated 
molecular patterns (PAMPs) elicit robust humoral immune responses and protect the host 
from a broad range of microbes, making them ideal candidates for novel antibacterial 
vaccines (6,7). Additionally, some NPs may stimulate innate immune responses by acting as 
ligands for PRRs. These PRR-engaging NPs are considered potential adjuvants or innovative 
vaccines, distinct from traditional vaccines (4,8).

The surface properties and patterns of NPs significantly affect their interactions with 
biomolecules, cells and microorganisms (9,10). Therefore, surface pattern-associated NPs 
exhibit distinct physical and chemical surface characteristics that mimic PAMPs or damage-
associated molecular patterns (5,11). As a result, these NPs can activate various components 
of the innate immune system, including macrophages, dendritic cells, and other immune 
cells, through mechanisms similar to pathogen recognition (12,13). The interaction between 
NPs and the innate immune system is of particular interest due to its implications for the 
safety and efficacy of nanomedicines and nanomaterials (14). Understanding how different 
surface patterns influence immune activation can aid in designing NPs that are either more 
effective for therapeutic purposes or less likely to induce unwanted immune responses 
(4). Polysaccharides are used in NP surface modification due to their biocompatibility and 
versatility. They enhance NPs’ stability, circulation time, and cellular uptake, facilitating 
targeting of specific cells in immune responses (15). Different polysaccharides, such 
as polyethylene glycol (PEG) and dextran, are commonly introduced to enhance NP 
functionality. PEGylation, or coating NPs with PEG, prevents aggregation and reduces non-
specific immune cell uptake. In contrast, dextran layers promote NP uptake by Ag-presenting 
cells, such as macrophages and dendritic cells, thus enhancing the immune response (15).

Retinoic acid-inducible gene I (RIG-I) is a critical molecule in the innate immune system 
that senses viral ss- or dsRNA (16) and activates downstream signaling cascades to induce 
the transcription of genes encoding type I IFNs, which confer an antiviral state by inhibiting 
viral replication and cell-to-cell transmission of the virus (17,18). RIG-I plays a central 
role not only in immunity against viral infections but also in anticancer immunity (17,18). 
Even in the absence of adaptive immunity, stimulation of RIG-I provides broad protection 
against viral infections in a type I IFN-dependent manner (19). Furthermore, the activation 
of RIG-I signaling in tumors induces cancer cell death and recruits immune cells to the 
tumor microenvironment, thereby enhancing the antitumor effects of cancer therapy (20). 
Thus, RIG-I is a potential target for immunomodulatory drugs. RIG-I agonists are mostly 
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engineered as short nucleotides or RNA (18,21). RIG-I agonists are being explored for 
therapeutic applications in treating viral infections and cancer due to their ability to enhance 
immune responses (17,22,23).

RIG-I agonists face multiple barriers to therapeutic efficacy that are shared with many 
oligonucleotide therapies, including a short plasma half-life (i.e., minutes), high 
susceptibility to nuclease degradation, inefficient intracellular delivery, and, critically, 
degradation in lysosomes with minimal delivery to the cytosol where RIG-I is located 
(24,25). To overcome these barriers, research has highlighted the advantages of using NPs 
for the delivery of RIG-I agonists. NP-based delivery systems enhance the stability, efficacy, 
and targeting of RIG-I agonists (26-28). These NPs protect the agonists from degradation, 
facilitate cellular uptake, and allow for controlled release (29-31). Various materials, including 
lipids and polymers, can be used to optimize the NPs for specific therapeutic needs (32-35). 
The effectiveness of NP-delivered RIG-I agonists has recently been demonstrated in both 
antiviral applications and cancer treatments. In antiviral contexts, they enhance immune 
responses when used as adjuvants in vaccines against viral pathogens such as severe acute 
respiratory syndrome coronavirus 2 (36). In cancer treatment, NP formulations with RIG-I 
agonists have led to significant tumor growth inhibition and enhanced immune response 
against various cancers (37-39). Therefore, the integration of RIG-I agonists with NP delivery 
systems presents a promising and innovative approach for enhancing both antiviral vaccine 
development and cancer immunotherapy.

This study aimed to evaluate novel dextran-encapsulated NPs that mimic viral PAMPs 
for activating the RIG-I pathway and IFN production. We specifically found the ability of 
tetramethylrhodamine isothiocyanate (TRITC)-dextran encapsulated NPs (TDex-NPs) 
to stimulate RIG-I and IFN production both in vitro and in vivo. Our findings suggest that 
TDex-NPs are promising candidates for the development of innovative immunotherapeutic 
strategies with potential broad applications in antiviral therapy and cancer immunotherapy.

MATERIALS AND METHODS

Construction and preparation of NPs
A water soluble macroinitiator, poly (ethylene glycol) functionalized bromide (PEO5000-Br)  
was synthesized using a reported procedure (20). Using a similar procedure, 
2-bromoisobutyryl bromide (0.46 g, 2.0 mmol, #252271; Sigma-Aldrich, St. Louis, MO, 
USA) was added dropwise to a solution of poly (ethylene glycol) monomethyl ether (Mn = 
5,000 g/mol, 5.0 g, 1.0 mmol, #81323; Sigma-Aldrich) and triethylamine (0.2 g, 2.0 mmol, 
#471283; Sigma-Aldrich) in dichloromethane (75.0 ml, #3030-4404; Daejung, Siheung, 
Korea) at 0°C. The resulting solution was stirred for 16 h at 25°C. The product was isolated 
in hexane (#139386; Sigma-Aldrich) and dried in a vacuum dry oven for 24 h at 25°C (Basic-
NPs). NPs encapsulated in dextran (average mol wt up to 11,600 Da, #00270; Sigma-Aldrich) 
(Dex-NPs) or TRITC-dextran (average mol wt up to 10,000, #R8881; Sigma-Aldrich) (TDex-
NPs) were synthesized via ‘Activators Generated by Electron Transfer for Atom Transfer 
Radical Polymerization’ (21). PEO5000-Br, oligo monomethyl ether methacrylates (OEOMA 
300), and poly (ethylene oxide) dimethacrylate (PEODMA) were used as a macroinitiator, 
biocompatible monomer, and crosslinker, respectively. Tris ([2-pyridyl] methyl) amine 
(TPMA), copper (II) bromide (CuBr2), and Span 80 were used as a ligand, catalyst, and 
surfactant, respectively. An aqueous solution of PEO5000-Br (74.4 mg, 0.014 mmol), OEOMA 
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300 (1.3 g, 4.3 mmol), PEODMA (97.5 mg, 0.13 mmol), TPMA (2.1 mg, 0.007 mmol), CuBr2 
(1.6 mg, 0.007 mmol), encapsulation materials (Dextran or TRITC-dextran) (6.5 mg), and 
3rd deionized water (1.4 ml) were mixed in a 50.0 ml Schlenk flask. To the aqueous solution, 
we added an organic solution of Span 80 (1.0 g) in cyclohexane (20.0 g). The mixture was 
sonicated for 20 min in an ice bath at 0°C to form a stable inverse miniemulsion. Oxygen 
was removed from the milky emulsion via nitrogen bubbling for 30 min. The reaction was 
initiated by adding an aqueous solution of ascorbic acid (0.028 mmol/ml, 0.004 mmol, 155 
μl). Subsequently, the reaction was terminated by exposing to air after 24 h. The resulting 
NPs were separated via centrifugation (21,206 ×g, 20 min, 4°C), and decantation of the 
supernatant was repeated. The same procedure was performed twice adding tetrahydrofuran 
(#34865; Sigma-Aldrich) to remove residue reactants. For footpad injection, NPs were 
concentrated via centrifuging for 60 min at 21,206 ×g and 4°C. The supernatant was removed 
and 200 μl of PBS was added to achieve a final concentration of 7.5 mg/ml.

Dynamic light scattering (DLS) measurement
DLS measurements were conducted to determine the size distribution and hydrodynamic 
radius of the NPs. The samples were prepared by diluting the NP suspension in appropriate 
solvent to an optimum concentration, typically around 0.1 mg/ml, to ensure reliable 
scattering intensity. DLS measurements were performed using a Zetasizer Nano ZS (Malvern 
Instruments, Malvern, UK) equipped with a 633 nm laser at a scattering angle of 173°. Data 
were acquired at a fixed temperature of 25°C. Each measurement was repeated 3 times to 
ensure accuracy, with data being analyzed using the provided software to obtain the size 
distribution profile through cumulant analysis. Before the measurements, the instrument 
was calibrated using NIST-traceable standard sizes to ensure accuracy and reliability. Results 
are reported as the z-average diameter and polydispersity index, which provides insights into 
the uniformity of the particle size distribution.

Cell culture
RAW 264.7, a murine macrophage cell line, was obtained from the Korean Cell Line Bank 
and cultured in DMEM (LM001-01; WelGene, Gyeongsan, Korea) supplemented with 10% 
(v/v) FBS (26-140-079; Gibco, Waltham, MA, USA) and 1% penicillin/streptomycin (LS202-02; 
WelGene) at 37°C and 5% CO2. Cells (0.5×106 or 0.05×106) were cultured in a 35- or 24-well 
culture dish, respectively, and treated with polyinosinic-polycytidylic acid (poly[I:C]) (0.2 
µg/ml, P1530; Sigma-Aldrich) or NPs at various doses or time points for further analysis. To 
examine their stability, TDex-NPs were kept at 4°C for 1 or 3 months, and cells were treated 
with fresh, 1-month-old, or 3-month-old TDex-NPs for 18 h at various doses, followed by 
further analysis. As the American Type Culture Collection recommends (40), RAW 264.7 
cells were used up to a passage number of 18 for optimal performance related to their 
differentiation and stability.

Animal studies
Female C57BL/6 mice were obtained from Orient Bio, Inc. (Seongnam, Korea) and 
maintained under specific pathogen-free conditions with food and water available ad libitum. 
This study was approved by the Institutional Animal Care and Use Committee of the Konkuk 
University (KU IACUC Protocol # 17030). Separate groups of mice received intravenous (IV) 
or intraperitoneal (IP) injection of PBS or 200 μg of NPs, respectively. After 72 h, the mice 
were sacrificed, and the spleen, liver, lungs, lymph nodes (LNs), and thymus were harvested 
and prepared for immunoblotting or immunofluorescence assays. TDex-NPs (200 μg/100 μl) 
were intravenously or intraperitoneally injected into mice, and their sera collected at 0, 1, 3, 5, 
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and 7 days were analyzed for various cytokines using ELISA. For footpad injection of NPs, 150 
μg/20 μl of NPs was injected into the left footpad or both footpads of mice.

MTT assay
RAW 264.7 cells were cultured in 96-well plates and treated with 1, 10, 100, or 200 µg/ml of 
Basic-NPs, Dex-NPs, and TDex-NPs. After 18 h of treatment, 10 µg of MTT (Sigma-Aldrich) 
dissolved in 100 μl PBS was added to each well, and the plates were incubated for 2 h at 37°C. 
Subsequently, MTT was removed, and 100 μl of DMSO was added to each well. Absorbance 
was measured at 560 nm using a SpectraMax microplate reader (Molecular Devices, San Jose, 
CA, USA).

Immunofluorescence assay
RAW 264.7 cells were cultured on coverslips, washed with PBS, and fixed with 100% acetone 
(#179124; Sigma-Aldrich) at 25°C. After washing with PBS, cells were incubated overnight at 
4°C with primary Abs against RIG-I (sc-376845, 1:100; Santa Cruz, Dallas, TX, USA). After 
washing with PBS, the cells were incubated with secondary Abs conjugated to the respective 
fluorescent dyes (e.g., Alexa Fluor 488 or 594, 1:4,000–5,000) and DAPI (D1306; Invitrogen, 
Waltham, MA, USA), followed by extensive washing with PBS. All primary and secondary 
Abs were diluted in PBS containing 3% CAS-BLOCK histochemical reagent (#008120; 
Invitrogen). The cells were mounted using Gel Mount Aqueous Mounting Medium (g0918; 
Sigma-Aldrich). For immunofluorescent staining of mouse tissues including LNs, spleen, 
liver, lung, and thymus, isolated tissues from C57BL/6 mice were embedded and frozen 
in Tissue-Tek® optimal cutting temperature compound (Sakura Finetechnical Co., Tokyo, 
Japan). The frozen tissues were then sectioned at a thickness of 10 µm using a cryostat 
(Leica CM3050 S or equivalent) and mounted onto Superfrost Plus microscope slides 
(Thermo Fisher Scientific, Waltham, MA, USA). Slides were air-dried for 30 min at 15°C–25°C 
to improve tissue adherence. For immunofluorescence staining, sections were initially 
rehydrated and washed three times in PBS for 5 min each. Blocking of nonspecific binding 
sites was performed by incubating the sections in a blocking buffer containing 3% CAS-
BLOCK histochemical reagent in PBS for 1 h at room temperature. Slides were incubated with 
primary Abs (1:100) overnight at 4°C in a humidified chamber to ensure specific binding. 
After incubation, sections were washed three times with PBS for 5 min each to remove excess 
primary Abs. For detection, fluorophore-conjugated secondary Abs were diluted in blocking 
buffer and applied to the sections, which were then incubated in the dark for 1 h at room 
temperature. Following secondary Ab incubation, sections were counterstained with DAPI 
at a dilution of 1:5,000 in PBS for 5 min to visualize nuclei. Fluorescent images of the cells or 
tissue sections were captured using a deconvolution microscope (Olympus Korea Co. Ltd., 
Seoul, Korea) and processed with image analysis software such as ImageJ or MetaMorph 
software (MetaMorph Inc., San Jose, CA, USA).

Western blot analysis
Cells or tissues obtained from mice were lysed in radioimmunoprecipitation assay buffer 
supplemented with a protease inhibitor cocktail and phenylmethylsulfonyl fluoride 
(#52332; Sigma-Aldrich). The lysates were centrifuged for 5 min at 13,500 rpm (rcf ), and 
supernatants were further quantified via bicinchoninic acid assay using a WelProt Protein 
Assay Kit (WelGene). Lysates were heated at 95°C for 10 min with 5× SDS sample loading 
buffer containing β-mercaptoethanol. Protein lysates were separated via 10%–12% SDS-
PAGE electrophoresis and transferred to polyvinylidene fluoride membranes (IPVH08100; 
Millipore, Burlington, MA, USA) using standard wet blot procedures. Membranes were 
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blocked for 1 h at room temperature with 5% skim milk dissolved in TBST solution and 
incubated overnight at 4°C with following primary Abs (1:500–1:2,000): RIG-I, GAPDH, 
TLR2, TLR3, TLR4, GAPDH, β-actin (Santa Cruz), ERK, pERK, AKT, pAKT, NF-κB, 
and pNF-κB (Cell Signaling Technology, Danvers, MA, USA). After incubation with the 
respective HRP-conjugated secondary Abs (1:10,000–20,000) (Jackson ImmunoResearch 
Laboratories, Inc., West Grove, PA, USA) for 1 h at room temperature, HRP substrate 
(Millipore) was added, and the proteins were visualized via a chemiluminescent assay using 
the LAS-4000 imaging system (Fujifilm, Tokyo, Japan). The intensity of the bands in western 
blotting was accurately measured using ImageJ (http://rsb.info.nih.gov/ij/).

Immunoprecipitation
RAW 264.7 cells were lysed as described previously (41). and incubated with an Ab against 
RIG-I in a shaker at 4°C for 30 min. Lysates were centrifuged for 5 min at 4°C and 15,928 
×g, and the supernatant was collected. Either trypsin-EDTA (Gibco) or PBS was added 
to the supernatant, and the mixture was centrifuged for 5 min at 4°C, 13,000 rpm (rcf ). 
Supernatants were collected and immunoblot analysis for RIG-I was performed as previously 
described (42).

ELISA
Cell culture supernatants from RAW 264.7 (1:2 diluted) and blood samples from venous 
sinuses of the mice were collected, and the levels of mouse IL-10 (BD Biosciences, Franklin 
Lakes, NJ, USA), IFN-α (PBL Assay Science, Piscataway, NJ, USA), and TNF-α (BioLegend, 
San Diego, CA, USA) were measured in duplicate using corresponding ELISA kits per the 
manufacturer’s instructions. The absorbance of the plates was measured at 450 nm using a 
SpectraMax microplate reader (Molecular Devices).

Statistical analysis
Data are presented as the mean ± SD. The statistical significance of differences among 
experimental groups was determined using one-way ANOVA or an unpaired t-test (p-value 
<0.05). All statistical analyses were performed using GraphPad Prism, version 9 (GraphPad 
Software, San Diego, CA, USA).

RESULTS

Construction and characterization of NPs
Basic-NPs, Dex-NPs, and TDex-NPs were synthesized via AGET-ATRP inverse miniemulsion 
(Fig. 1A and B). These NPs were not soluble in any solvent, including cyclohexane, 
tetrahydrofuran or water, indicating that crosslinking had occurred in the presence of 
PEODMA during polymerization. The purified TDex-NPs were present as a stable pink 
dispersion (Fig. 1C, left). In addition, a typical red optical fluorescence signal was detected 
at 556 nm excitation and 580 nm emission under a fluorescence microscope (Fig. 1C, right). 
These results indicated that TRITC-dextran was encapsulated by TDex-NPs. The particle 
size and size distribution of NPs were measured using DLS, and both Dex-NPs and TDex-
NPs showed a narrow size distribution of about 100±10 nm and 102±20 nm in diameter, 
respectively (Fig. 1D). For the stability test of dextran encapsulated NPs, their size was 
measured after 90 days, which showed diameters (approximately 101±20 nm and 109±10 nm, 
respectively) similar to those obtained at the initial stage (Fig. 1E).
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TDex-NPs activate RIG-I in RAW 264.7 cells with minimal toxicity
To examine whether NPs were toxic to cells, cells were treated with Basic-NPs, Dex-NPs, 
and TDex-NPs for 18 h at varying doses (0, 1, 10, 100, or 200 µg/ml), and cell viability was 
analyzed using the MTT assay. Although cells showed <80% viability at both 100 and 200 µg/
ml of all NPs, TDex-NPs were less toxic than Basic-NPs and Dex-NPs at all doses examined 
(Supplementary Fig. 1A).

We examined whether Dex-NPs or TDex-NPs stimulated cytosolic PRRs. When RAW 264.7 
cells were treated with Basic-NPs, Dex-NPs, and TDex-NPs for 18 h and immunoblotting 
experiments were performed for RIG-I, TLR-2, and TLR-3, TDex-NPs elicited the greatest 
increase in RIG-I levels at 1 µg/ml (over 3.5-fold higher than baseline), whereas both 
Basic-NPs and Dex-NPs showed a marked increase only at 10 µg/ml (Fig. 2A, top row). 
However, none of NPs increased both TLR-2 and TLR-3 (Fig. 2A, middle row). Given that 
TDex-NPs were loaded with TRITC-dextran, their uptake was analyzed in vitro using an 
immunofluorescence microscope (red). RAW 264.7 cells were treated with TDex-NPs for 
various durations. Its uptake was clearly evident at 24 h, and it was found to be further 
accumulated at 72 h (Fig. 2B).

The efficiency of TDex-NPs in increasing RIG-I expression was examined by treating cells 
with 10 µg/ml of TDex-NPs for various durations (0, 2, 8, 24, 48, and 72 h). The 10 μg contains 
approximately 6.02×1014 TRITC-dextran NPs. A rapid increase in RIG-I expression was noted 
at 8 h, with the maximum level achieved at 24 h (over 4- and 17-fold higher than baseline, 
respectively) (Fig. 2C). The stability of TDex-NPs over time was examined by treating cells 
with fresh, 1-, or 3-month-old TDex-NPs for 18 h at various doses, which were kept at 4°C (0.1, 
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Figure 1. Characterization and stability of NPs loaded with dextran and TRITC-dextran. 
(A) Schematic diagram depicting the synthesis of NPs via AGET-ATRP inverse miniemulsion. SPANPs were prepared without any additives (Basic-NPs), or with 
dextran (Dex-NPs) or TRITC-dextran (TDex-NPs). (B) The solubility of the synthesized NPs was tested in cyclohexane, THF, and water. (C) Image of purified TDex-
NPs showing a stable pink dispersion (left). Fluorescence microscopy of TDex-NPs demonstrates a characteristic red optical fluorescence with excitation at 556 
nm and emission at 580 nm (right). (D) Particle size and size distribution of Dex-NPs and TDex-NPs measured by DLS. (E) Stability test results showing the size of 
NPs after 30 days.



1, and 10 µg/ml) and measuring RIG-I expression. Regardless of the storage period, all TDex-
NPs increased RIG-I levels in a dose-dependent manner (Fig. 2D).

Viral dsRNA binding to RIG-I stimulates its increase (43). Therefore, we examined whether 
TDex-NPs taken up by macrophages directly bind to RIG-I. After the cells were treated with 
10 µg/ml of Basic-NPs, Dex-NPs, or TDex-NPs for 18 h, NPs were precipitated from the 
respective cell lysates via centrifugation, and their lysates were immunoblotted for RIG-I with 
or without trypsinization. Notably, RIG-I binding was only evident in untrypsinized TDex-
NPs, indicating that RIG-I is directly bound to the surface of TDex-NPs (Fig. 2E). To confirm 
the direct binding of RIG-I to TDex-NPs, the cells were treated with 1 or 10 µg/ml of TDex-
NPs for 24 h and immunostained for RIG-I. Clear RIG-I spots (green) were observed in the 
cytoplasm with 10 µg/ml of TDex-NPs (Fig. 2F). Thus, TDex-NPs could directly bind RIG-I.
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Figure 2. Cellular toxicity, PRR stimulation, and RIG-I binding of TDex-NPs. 
(A) RAW 264.7 cells were treated with 0.01, 0.1, 1, or 10 µg/ml of TDex-NPs for 18 h and their cell lysates were immunoblotted for TLR-2, TLR-3 or RIG-I. GAPDH 
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h) and analyzed by immunofluorescence microscopy. The red fluorescence of TDex-NPs indicated its uptake. (C) As in (A), but RAW 264.7 cells were treated with 
10 µg/ml of TDex-NPs for different time points (0, 2, 8, 24, 48, and 72 h) and their cell lysates were immunoblotted for RIG-I. (D) As in (C), but cells were treated 
with fresh, 1-, or 3-month-old TDex-NPs at doses of 0.1, 1, and 10 µg/ml for 18 h. (E) After treating RAW 264.7 cells with 10 µg/ml of Basic-NPs, Dex-NPs, or 
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were treated with 1 or 10 µg/ml of TDex-NPs for 24 h and subsequently immunostained for RIG-I (green). Distinct RIG-I spots were visible in the cytoplasm at the 
higher dose of 10 µg/ml.



TDex-NPs induce INF-α secretion through the ERK/NF-κB signaling pathway 
in RAW 264.7 cells
Upon ligand binding, RIG-I induces the expression of type I IFNs and proinflammatory 
cytokines, such as TNF-α and IL-6 (20,44). Therefore, we examined whether TDex-NP-
mediated RIG-I activation induced IFN-α and TNF-α. RAW 264.7 cells were treated with 
Basic-NPs, Dex-NPs, or TDex-NPs at varying doses (0.01, 0.1, and 1 µg/ml) for 24 h, and 
their supernatants were analyzed for IFN-α and TNF-α using ELISA. IFN-α secretion was 
significantly increased only with 0.1 and 1 µg/ml of TDex-NPs in a dose-dependent manner 
(up to 180 and up to 300 pg/ml, respectively) (Fig. 3A), whereas no such effect was observed 
for TNF-α. As a negative control, IL-10 was analyzed. Although 0.1 and 1 µg/ml of TDex-NPs 
resulted in an increase in IL-10 levels, the difference was not significant (Supplementary 
Fig. 2A). IFN/RIG-I-mediated innate responses are positively associated with the ERK/NF-κB 
signaling pathway (45). Therefore, we examined whether RIG-I-mediated IFN-α secretion 
was positively associated with the ERK/NF-κB signaling pathway. RAW 264.7 cells were 
treated with Basic-NPs, Dex-NPs, or TDex-NPs at various doses (0.01, 0.1, 1, and 10 µg/ml) 
for 24 h, and their whole-cell lysates were immunoblotted to analyze the presence of ERK, 
AKT, NF-κB, and their phosphorylated forms. Only TDex-NPs activated ERK and NF-κB at 
doses of 0.1 µg/ml and above, and the increase was in a dose-dependent manner (Fig. 3B). 
This trend matched the increase in RIG-I activation when cells were treated with 0.1 µg or 
higher amounts of TDex-NPs (Fig. 2B).

Footpad injection of TDex-NPs induces IFN-α secretion through RIG-I activation
We examined whether the injection of TDex-NPs activates RIG-I leading to IFN-α secretion in 
vivo. First, 200 µg/ml of TDex-NPs were injected into mice intravenously or intraperitoneally. 
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Mice were euthanized after 72 h, and the uptake of TDex-NPs was examined in cryosections 
of various tissues (spleen, liver, lung, mesenteric LNs, and thymus) using immunofluorescent 
microscopy. The TDex-NP signal was not detected in any tissues (Supplementary Fig. 3A). 
When immunoblotting was performed with the same tissues to analyze RIG-I, no changes 
were observed in the expression levels of RIG-I (Supplementary Fig. 3B). Mice were 
injected with 200 µg/ml of TDex-NPs, and their sera collected at 0, 1, 3, 5 and 7 days were 
analyzed for IFN-α, TNF-α, and IL-10 using ELISA. Consistent with the results presented 
in Supplementary Fig. 3A and B, there were no changes in the levels of IFN-α, TNF-α, and 
IL-10 (Supplementary Fig. 3C). Next, 150 µg of TDex-NPs was injected into both footpads of 
the mice for 24 h, and its uptake was examined in cryosections of popliteal, inguinal, and 
mesenteric LNs using immunofluorescence microscopy. TDex-NP uptake was evident in the 
medullary areas of all the LNs (Fig. 4A). Two popliteal, two inguinal, and a mesenteric LN 
were separately immunoblotted for RIG-I, and the increase was evident in all LNs (over 1.5-
fold higher than baseline) (Fig. 4B). As footpad injection of TDex-NPs showed their uptake 
and an increase in RIG-I levels in LNs, it was hypothesized that TDex-NPs could induce IFN-α 
secretion, similar to the results observed in in vitro experiments (Fig. 3A). After the injection 
of 150 µg/20 μl of TDex-NPs into both footpads of mice, sera were harvested at 0 and 24 h and 
analyzed for IFN-α, TNF-α, and IL-10. A significant increase was noted only for IFN-α at 24 h 
(up to 130 pg/mL) (Fig. 4C).
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Figure 4. In vivo evaluation of TDex-NP uptake, RIG-I activation, and IFN-α secretion. 
(A) Mice were injected with PBS or 150 µg/ml of TDex-NPs into both footpads of mice. After 24 h, cryosections of popliteal, inguinal, and mesenteric LNs were 
analyzed using immunofluorescent microscopy. Representative images are shown (n=3). (B) As in (A), but popliteal, inguinal, and mesenteric LNs from mice 
were analyzed by immunoblotting for RIG-I. Actin and GAPDH were used as a loading control for protein quantity normalization. (C) Mice were injected with 150 
µg/ml of TDex-NPs into both footpads, and sera were collected at 0 and 24 h post-injection. Sera were analyzed for IFN-α, TNF-α and IL-10 levels using ELISA 
(n=3, p<0.05 compared to control). Data shown represent mean ± SEM. Statistical significance was determined using ANOVA followed by Tukey’s post hoc test. 
p<0.05 was considered statistically significant.



DISCUSSION

As RIG-I is a cytosolic pathogen recognition receptor that binds to PAMP RNA (19), most 
RIG-I agonists are engineered into short nucleotides or RNA (18). To activate cytosolic 
RIG-I, RNA molecules must be first delivered to target tissue and then internalized by 
immune cells (18). However, due to the labile nature of RNA molecules, inhalation or direct 
IV injection of RNA results in poor therapeutic efficacy in vivo (46). The inherent negative 
charge and hydrophilicity of RNA molecules also limit their cellular uptake (47). Therefore, 
despite these RIG-I agonists being promising antiviral agents, vaccine adjuvants, and cancer 
immunotherapeutics (48), some oligoribonucleotides have shown limited clinical efficacy 
(49). There are several challenges associated with efficient delivery of ribonucleotides to 
achieve good therapeutic efficacy (50). Recently, integrating RIG-I agonists into NP-based 
vaccines has shown potential for creating broad-spectrum antiviral vaccines and cancer 
immunotherapy with enhanced safety and efficacy (24,51,52). Therefore, we constructed 
novel NPs with or without dextran (Dex-NPs) or TRITC-dextran (TDex-NPs) to mimic 
viral PAMPs (Fig. 1). TDex-NPs only activated RIG-I, followed by NF-κB/ERK activation 
and IFN-α production in vitro (Figs 2 and 3). Furthermore, foot-pad injection of TDex-
NPs into mice induced RIG-I activation and IFN-α production in vivo (Fig. 4), despite not 
being short nucleotides or RNA. It was reported that RIG-I stimulation by recognition 
of PAMP dsRNA activated the NF-κB pathway, which resulted in the production of IFNs 
(17,53,54). Furthermore, the treatment with dextran-coated NPs markedly enhanced the 
phosphorylation level of ERK on human primary monocyte cells (55,56). It was reported 
that ERK activation is required for double-stranded RNA- and virus-induced interleukin-1 
expression by macrophages, supporting a novel role for ERK in the regulation of the antiviral 
response of IL-1 expression and release by macrophages (57). Therefore, it is speculated that 
the direct binding of TDex-NPs to RIG-I activate the NF-κB signaling pathway followed by the 
production of IFNs, and parallelly, activate ERK in the regulation of the antiviral response of 
IL-1 expression and release by macrophages. Thus, our findings suggest that TDex-NPs are 
novel RIG-I agonists that can overcome the challenges associated with oligoribonucleotides 
and may be useful for developing antiviral or anticancer therapeutics.

Dextran is a complex branched polysaccharide–based neutral polymer chain unit varying in 
length from 1,000 to 2,000,000 Da. Dextran is a natural, biodegradable, and biocompatible 
nonionic polysaccharide and water-soluble material (58,59) that has wide applications in 
pharmaceutical, biomedical, and industrial fields (60-63). Surface functionalization with 
dextran is a useful and well-documented strategy that provides multiple advantages to 
nanocarriers (64), including stabilization to avoid self-agglomeration of neighboring NPs 
(65) and toxicity of magnetic particles (66,67), and antifouling properties against interference 
proteins (68). In particular, dextran-coated NPs exhibit bioadhesive properties (69) and 
enhanced uptake and intracellular delivery of small interfering RNAs in cultured cells (70). 
Therefore, it was expected that both Dex-NPs and TDex-NPs would be taken up by cells and 
activate the PRRs.

First, we examined whether dextran encapsulated NPs, such as Dex-NPs or TDex-NPs, could 
stimulate PRRs, such as RIG-I, TLR-2, and TLR-3. Notably, only TDex-NPs directly bound 
(Fig. 2E) and rapidly increased RIG-I from 8 h under in vitro conditions (over 4- and 17-fold 
higher than baseline) (Fig. 2A and C), and sequentially induced IFN-α secretion up to 300 
pg/ml through the ERK/NF-κB signaling pathway (Fig. 3). Furthermore, these results were 
repeated in the in vivo experiment using footpad injection, with RIG-I increase (over 1.5-fold 
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higher than baseline) (Fig. 4B) and IFN-α secretion (up to 130 pg/ml) (Fig. 4C). Although the 
antiviral therapeutic concentration of IFN-α may vary depending on the subtype of IFN-α, the 
virus to be treated, experimental conditions, and the pathophysiology of the specific disease, 
the IC50 values for IFN-α2a and IFN-α17 have been reported to be 14.6 pg/ml and 4.8 pg/ml 
against HCV-JFH1 in Huh7 cells, respectively (71). Therefore, it could be expected that the 
IFN-α concentration induced by the increase in RIG-I with TDex-NPs may exert a significant 
antiviral effect under in vitro or in vivo conditions, strongly suggesting that TDex-NPs could be 
developed as a novel RIG-I agonist.

RAW 264.7 murine macrophages express many PRRs on their cellular surface, such as 
TLR-1, TLR-2, and TLR-4 (72), and C-type lectin receptors such as Dectin-1, Dectin-2, and 
Mincle (52,73). However, these TLRs and CLRs are not dextran receptors. Furthermore, it 
was recently reported that non-targeted spherical NPs at a size of up to 100 nm were mainly 
internalized by clathrin-dependent endocytosis (74,75). Other reports have shown that 
dextran-coated NPs are mainly internalized by fluid phase endocytosis pathways without the 
mediation of a receptor (76,77). These results strongly suggest that TDex-NPs or Dex-NPs 
might be primarily taken up by phagocytosis of RAW 264.7 macrophages. Following which, 
only TDex-NPs can bind to RIG-I and activate its innate immune system. Besides the RIG-I 
pathway, there are other cytosolic PRRs that include nucleotide binding oligomerization 
domain-like receptors (NOD-like receptors) (78), AIM2-like receptors (79), cyclic GMP-AMP 
synthase (80), and nucleases and other DExD/H-box family helicases (81). Given that TDex-
NPs activated the RIG-I pathway despite not being short nucleotides or RNA, TDex-NP could 
directly increase other cytosolic PRRs. Collectively, these results indicate that constructing 
NPs with polysaccharide-repeated surface patterns to mimic PAMPs could be a novel method 
for developing RIG-I agonists against a wide class of pathogens, in addition to existing RNA-
based RIG-I agonists.

Varying the content of dextran can fine-tune or control the surface characteristics of NPs 
(82), and dextran encapsulation into NPs induces surface modification and thermal stability, 
implying utility for therapeutic purposes, including drug delivery (83). In addition, TRITC 
conjugation on dextran NPs increases the volume and compaction of associated complexes 
and induces the inverse proportion to molecular weight in intra-axonal mobility, probably 
due to an increase in intramolecular hydrophobic interactions (84). Also, it was recently 
found that KIN1148, a small molecule RIG-I agonist, directly binds to RIG-1 and thereby and 
serves to adjuvant broad multifaceted influenza virus vaccine immunity (22). These reports 
suggest that NPs encapsulated with TRITC-dextran might enhance the surface patterning 
and functionalization of NPs by the newly formed structural specificity on the surface of 
TDex-NPs induces direct binding to RIG-I. This leads to an earlier increase in RIG-I at 8 h of 
TDex-NP treatment (Fig. 2C) than at 12–16 h of treatment with other RIG-I agonists (85-87) 
and the activation of the RIG-I-mediated innate immune system (Fig. 2). Therefore, both 
previous reports and our results consistently demonstrated that TRITC conjugation on 
dextran NPs could affect the biological and physiological activity of TDex-NPs promoting the 
RIG-I-mediated innate immune system. These results suggest that fluorescent dyes could 
be utilized to improve the biological and physiological ability of various biomolecule carrier 
systems and to develop diagnostic and therapeutic tools other than as a fluorescent probe 
to study cell processes. Furthermore, conjugation with TRITC, which is an amine-reactive 
derivative of the hydrophobic fluorescent dye tetramethylrhodamine isothiocyanate (84,88), 
facilitates the live monitoring of the location of NPs and their movement using fluorescence 
microscopy (Fig. 1C). Using these properties of TDex-NPs, we showed that they are taken up 
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by cells to activate RIG-I-mediated innate immune systems both in vitro and in vivo (Figs. 2-4). 
Furthermore, as expected, and in agreement with previous results (89), TDex-NPs showed 
improved stability, with their RIG-I-activation properties being retained for up to 3 months 
(Figs. 1D, E, and 2D), which are beneficial features of this strategy for the development of 
RIG-I agonists.

Importantly, footpad injection led to the uptake of TDex-NPs in LNs (Fig. 4A) and 
induced RIG-I activation and IFN-α secretion in vivo (Fig. 4B and C). However, neither 
IV nor IP injections of TDex-NPs elicited any response in the examined tissues and sera 
(Supplementary Fig. 3). Optimizing the administration route of a therapeutic agent can 
improve biodistribution and alter its fate and efficacy in vivo (90). The immune activation 
resulting from different injection routes of NPs, such as IV, IP, and footpad injections, varies 
significantly based on how each route influences NP distribution, immune cell interactions, 
and inflammatory responses (91,92). Compared with IV and IP injections, footpad injection 
is highly localized, especially to regional LNs. Owing to the high density of Ag-presenting 
cells such as dendritic cells and macrophages in the footpad area, this route can induce a 
robust localized immune response with minimal and sustained systemic activation (93,94). 
Additionally, the lymphatic system plays a key role in the maintenance of an effective immune 
system and provides a unidirectional pathway from the peripheral tissues to the systemic 
circulation, which could be beneficial in certain immunotherapeutic applications (95). 
Therefore, the properties of TDex-NPs seem to require their localization to areas of high 
density for Ag-presenting cells in regional LNs to induce the RIG-I-mediated innate immune 
system. This means that administration via the lymphatic circulation is the optimal route 
for inducing the immunostimulatory properties of TDex-NPs in vivo rather than IV or IP 
injection, which lead to rapid systemic distribution.

In conclusion, we present a novel approach for developing efficient RIG-I agonists using 
TDex-NPs independent of RNA. The TDex-NPs construction method demonstrated here 
provides a versatile platform for developing RIG-I agonists with potential applications as 
antiviral or anticancer agents and vaccine adjuvants. The unique ability of TDex-NPs to 
bind directly to RIG-I and activate its innate immune response without relying on short 
nucleotides or RNA may help overcome challenges associated with existing RIG-I agonists, 
such as the manufacturing complexity and controlled release requirements of RNA. Further 
research is needed to enhance TDex-NP applications, including detailed mechanistic studies 
of their biological interactions, assessment of potential off-target effects, and antiviral 
efficacy testing through viral challenge experiments.
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SUPPLEMENTARY MATERIALS

Supplementary Figure 1
Toxicity of Basic-NPs, Dex-NPs, and TDex-NPs in RAW 264.7 cells.

Supplementary Figure 2
IL-10 production by Basic-NPs, Dex-NPs, and TDex-NPs in RAW 264.7 cells.

Supplementary Figure 3
In vivo immune response after intravenous or intrapertoneal injection of TDex-NP into 
C57BL/6 mice.
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