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Kidney renal clear cell carcinoma (KIRC) is the most prevalent subtype of kidney cancer. Although 
multiple therapeutic agents have been proven effective in KIRC, their clinical application has been 
hindered by a lack of reliable biomarkers. This study focused on the prognostic value and function of 
drug absorption, distribution, metabolism, and excretion- (ADME-) related genes (ARGs) in KIRC to 
enhance personalized therapy. The critical role of ARGs in KIRC microenvironment was confirmed by 
single cell RNA-seq analysis and spatial transcriptome sequencing analysis for the first time. Then, an 
ADME-related prognostic signature (ARPS) was developed by the bulk RNA-seq analysis. The ARPS, 
created through Cox regression, LASSO, and stepAIC analyses, identified eight ARGs that stratified 
patients into high-risk and low-risk groups. High-risk patients had significantly poorer overall survival. 
Multivariate analysis confirmed the independent predictive ability of ARPS, and an ARPS-based 
nomogram was constructed for clinical application. Gene ontology and KEGG pathway analyses 
revealed immune-related functions and pathways enriched in these groups, with low-risk patients 
showing better responses to immunotherapy. Finally, the expression of ARGs was validated by qRT-
PCR and Western blotting experiments. These findings underscore the prognostic significance of ARPS 
in KIRC and its potential application in guiding personalized treatment strategies.
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LASSO	� The least absolute shrinkage and selection operator
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Kidney cancer, second only to bladder cancer with respect to incidence, represents one of the most prevalent 
cancer in genitourinary system, as revealed by epidemiological studies1. It is estimated that 90–95% of kidney 
cancers fall into the category of RCC, which mostly derive from the renal tubular epithelium2. KIRC represents 
the most prevalent histologic variant of RCC, accounting for over 75% of all renal tumors3. The incidence of 
RCC is on an upward trend4. KIRC patients’ survival rate can be significantly improved via early detection 
and intervention5. Patients with stage I metastatic diseases have a 5-year relative survival rate of 93%, whereas 
it drops to 72.5% for those with stage II/III diseases and dramatically decreases to 12% for stage IV diseases6. 
Despite advances in treatment and early detection, about 30% of these patients are already in the metastatic stage 
at diagnosis6, and approximately 20 − 50% of patients with localized KIRC still face the daunting prospect of 
recurrence or metastasis following surgical tumor resection1. Thus, it is essential to determine novel prognostic 
and diagnostic markers in order to enhance the clinical management of this disease.

ADME-related genes (ARGs) are the genes linked to drug absorption, distribution, metabolism, and 
elimination processes, which have a pivotal role in pharmacokinetics7. The PharmaADME consortium has 
revealed that ARGs encompass 266 extended genes and 32 core genes (http://www.pharmaadme.org), including 
phase I and II drug-metabolizing enzymes, modifiers, and transporters that affect drug clearance and metabolism 
by the liver8. ARGs are extensively utilized in cancer research to understand their expression profiles in different 
cancer types and their impact on patient outcomes. Researchers have identified differential expression of ARGs 
in tumors, with some genes related to favorable overall survival (OS) rates in certain cancers, while others linked 
to unfavorable outcomes9. Studies have shown that ARGs may affect the survival of cancer patients through 
various mechanisms related to drug metabolism and disposition10. Tang et al. developed a novel ADME-related 
14-gene prognosis model in HNSCC, the model assigned patients into two groups, i.e., the LR group or the HR 
group, and the results revealed that LR patients have significantly improved overall survival and disease free 
survival and benefit more from immunotherapy and chemotherapy11. In addition, ARGs are being explored as 
possible therapeutic targets and prognostic biomarkers in cancer treatment, highlighting their importance in 
personalized medication and patient management improvement12. Wang et al. established a risk score signature 
based on ARGs that distinguishes HR from LR sarcoma patients, demonstrating longer survival in the LR group 
and also offering a direction for future targeted therapies13. However, the biological roles and predictive value of 
ARGs in KIRC are still poorly understood.

In this study, We used single-cell sequencing and spatial transcriptome analysis for the first time, demonstrating 
the critical role of ARGs in the KIRC microenvironment (Fig. 1), followed by the analysis of bulk RNA-seq 
analysis. An 8-gene signature was defined for survival outcome prediction in TCGA training cohort via analyses 
of LASSO and stepAIC, and this method was verified using an external independent cohort. Then, analyses of 
functional enrichment, immune cell infiltration (ICI), drug sensitivity, and mutation were performed between 
the HR and LR groups. Finally, the PCR and Western experiment was conducted to validate the expression of 
the target genes. The results not only aim to improve the understanding of the genetic landscape of KIRC, but 
also to explore the impact of ARGs variations on patients’ prognosis, thereby contributing to the personalized 
management of KIRC.

Materials and methods
Preprocessing and dataset source
In this study, the training cohort consisted of currently accessible treatment and expression data of KIRC patients 
obtained from TCGA (610 samples)(https://portal.gdc.cancer.gov/)14. The “TCGAbiolinks” package15(version 
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2.32.0) in R was employed to download RNA-seq data, the mutation profiles, and relevant clinical information. 
Additionally, information from EMBL-EBI database (https://www.ebi.ac.uk/) had been utilized to obtain an 
independent validation cohort, i.e., the E-MTAB-1980 cohort (101 samples)16, . The human KIRC scRNA-seq 
dataset GSE139555 (32 samples) was obtained from TISCH (http://tisch.comp-genomics.org/)17. KIRC spatial 
transcriptome dataset GSE175540 (24 samples) was obtained from Gene Expression Omnibus ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​n​c​b​

Fig. 1.  Flowchart for comprehensive analysis of ADME-related gene signature for immune landscape and 
prognosis in patients with Kidney renal clear cell carcinoma (KIRC).
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i​.​n​l​m​.​n​i​h​.​g​o​v​/​g​e​o​/​​​​​)​. A group of ARGs (n = 298) was derived from PharmaADME consortium ​(​​​h​t​t​p​:​/​/​w​w​w​.​p​h​a​r​
m​a​a​d​m​e​.​o​r​g​​​​​)​​​7​​​. Regarding the handling of missing values, we remove the missing values directly.

Processing KIRC spatial transcriptome sequencing data
Spatial transcriptome data analysis was conducted using the R package Seurat18(version 5.1.0). This involved 
normalizing unique molecular identifier (UMI) counts, scaling the data, and identifying the most variable 
features using “SCTransform”19. Subsequently, downscaling and unsupervised cluster analysis were performed 
using “RunPCA”. For cluster analysis, default parameters were utilized, focusing on the 30 most significant 
principal components. Additionally, the “SpatialFeaturePlot” function was employed for subgroup and gene 
visualization. The “AUCell” R package20 (version 1.26.0) serves as a valuable tool for spatial transcriptome 
ADME related gene analysis. Its primary function is to quantify and visualize ADME related activities at spatial 
transcriptome resolution.

scRNA-seq data analysis
The 10× scRNA-seq data GSE139555 were converted to Seurat object using “Seurat” R package. The clusters with 
cells < 3, cells with < 50 genes, and cells with > 5% of mitochondrial genes were removed. Principal component 
analysis (PCA) was performed using the top 1500 most variable genes. The “FindNeighbors” and “FindClusters” 
functions were applied for cell clustering analysis based on the top 15 principal components (PCs). The 
“FindAllMarkers” function was utilized to identify marker genes in different cell clusters, with FDR < 0.01 
and |log2FC| > 1 as the threshold. Furthermore, clusters were annotated to recognize different cell types using 
“CellMarker 2.0” database21. The “ssGSEA” function in the Seurat package was utilized to quantify the activity 
of a specific gene set in each cell.

Calculation of ARS and definition of optimal cutoff
The GSVA package (version 1.52.3) was selected to conduct ssGSEA analysis so as to obtain the ARS. The “surv_
cutpoint” in the R package “survminer”10 (version 0.4.9) was employed to determine optimal ARS and cutoff for 
statistical analysis.

Identification of DEARGs and functional analysis
For KIRC cases and normal cases in TCGA datasets, DEARGs were discovered using the R package “limma”22 
(version 3.60.3). Notably, the cutoff was defined as FDR < 0.05 and log2|FC| > 1. ARGs were characterized by 
both KEGG pathway23–25 and GO pathway, which was identified using the clusterProfiler package26 (version 
4.12.6) in R to investigate their potential biological roles and signaling pathways. In case of FDR < 0.1, the result 
was determined to have statistical significance.

Identification of ADME-related subtypes
R package “ConsensusClusterPlus” (version 1.68.0) was utilized to identify ADME-related molecular clusters. 
Furthermore, the correlations of ADME-related clusters with clinicopathologic characteristics and survival of 
KIRC patients was explored. Respectively, using ESTIMATE method and CIBERSORT algorithm, the dissimilarity 
of immune microenvironment and immune infiltrating cells among different ADME-related molecular clusters 
were particularly revealed. Gene Set Variation Analysis (GSVA) was used to investigate the potential mechanism 
between ADME-related molecular clusters, with a significance threshold of value of FDR < 0.05.

Construction and validation of ARPS
The stepAIC analysis using MASS package (version 7.3–61) and the LASSO analysis using the glmnet package 
(version 4.1-8) were then performed to identify the most predictive ARGs for KIRC prognosis in line with 
DEARGs. We used the LASSO-Cox regression model to screen for the best prognostic biomarkers, determined 
lambda values by ten-fold cross-validation, and multivariate cox analyses to obtain regression coefficients for 
each gene and construct Cox regression risk scores. All patients were assigned into the LR and HR groups 
according to the median risk scores. In addition, analyses of time-dependent ROC and KM were implemented 
to evaluate the prognostic performance of ARPS. An external independent validation cohort used data from 
E-MTAB-1980 to determine the generalization degree of ARPS. Ultimately, the prognostic independence was 
estimated for clinical parameters such as ADME-related risk scores in KIRC patients via analyses of univariate 
and multivariate Cox regression. In order to create a nomogram that would predict the survival, important 
risk variables were incorporated. Calibration curves were plotted and a DCA was implemented to assess the 
nomogram’s precision.

Immunogenomic landscape assessment
Using marker genes for immune cells of 28 types27 as a reference gene set, the abundance was estimated for 
immune cells in each patient using the ssGSEA. In addition, the relative proportions for immune cells of 22 types 
were estimated via the CIBERSORT R package28(version 0.1.0). The R package “estimate” (version 1.0.13) was 
then chosen to compute the score of ESTIMATE, stroma, and immunity so as to evaluate the tumor purity. The 
tumor immune dysfunction and exclusion (TIDE) score was calculated using the online server ​(​​​h​t​t​p​:​/​/​t​i​d​e​.​d​f​c​
i​.​h​a​r​v​a​r​d​.​e​d​u​​​​​)​​​2​9​​ so as to evaluate possible clinical effect of immunotherapy in various risk groups. The hypoxia 
score of KIRC was acquired from cBioPortal (https://www.cbioportal.org/)30.
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Prediction of drug response to ARPS
Using pharmacogenomic information from the GDSC database, this study predicted drug sensitivity for the 
enrolled cases of KIRC. Using the pRRophetic package31(version 0.5), IC50 was calculated to reflect the drug 
response.

Stemness signatures analysis
First, StemChecker (http://stemchecker.sysbiolab.eu/)32 was used for the recruitment of 26 stemness gene sets 
in this study. The most extensive and most recent compilation of published stemness signatures, which were 
determined by computational summaries, literature transcription factor target gene sets, RNAi screens, and 
gene expression profiles, served as the foundation for this tool. Then, using the GSVA R package, the stemness 
enrichment scores were calculated for the 26 stemness gene sets in each KIRC sample via ssGSEA and the 
analysis of differential gene expression was performed in both groups.

Cell incubation
The human kidney cell lines, including Caki-1, 786-O, and HK-2, were purchased from Wuhan Pricella 
Biotechnology Co., Ltd. The 10% FBS-enriched minimum essential medium was utilized to sustain HK-2 cells. 
The 10% FBS-enriched RPMI-1640 medium was used to sustain 786-O cells. Caki-1 cells were also sustained in 
10% FBS-enriched McCoy’s 5 A medium. Each cell line was cultured in a 37 °C humidified environment with 
5% CO2. All cell lines underwent authentication via short tandem repeat DNA profiling and were confirmed to 
have no contamination of mycoplasma.

qRT-PCR and RNA extraction
Samples were subjected to total RNA extraction using the TRIzol reagent (Vazyme, China) based on the 
manufacturer’s instructions. The A260/A280 ratio was measured to assess the concentration of RNA using 
NanoDrop. The PrimeScript RT Reagent Kit (TransGen Biotech, China, AT341-02) was utilized for cDNA 
synthesis, and the SYBR Green PCR Reagent (ChamQ Universal, China, Q711-02) was adopted for qRT-PCR 
based on the protocol of the manufacturer. The reaction consisted of a 3-minute initial incubation and 40 cycles 
of 15-second denaturation, both at 95 °C, as well as 1-minute annealing/extension at 60 °C. The internal control 
was implemented with β-Actin. In Supplementary Table 1, primer sequences are provided. For data analysis for 
relative quantification, the 2−ΔΔCT method was employed.

Western blot assay
Proteins were isolated from Caki-1, 786-O, and HK-2 cell lines using RIPA buffer. A BCA protein assay kit was 
employed for quantifying protein concentrations. After electrophoresis on a 10% SDS-PAGE gel, the proteins 
were transferred to a PVDF membrane, which was blocked for an hour at room temperature using 5% BSA. 
Then, it was cultured overnight at 4  °C using primary antibodies against ABCB1, ALDH5A1, and β-actin 
(Proteintech Group, Inc.; dilutions of 1:500, 1:1000, and 1:5000, respectively). Secondary antibodies were applied 
at 1:5000 and cultured at room temperature for one hour. ImageJ software was employed to quantify relative 
protein expression levels.

Statistical analysis
This study applied R software (v4.3.1) for all statistical analyses. A pairwise comparison between the two groups 
was performed by the Wilcoxon test, and a multiple group comparison was implemented by the Kruskal-Wallis 
test (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). The log-rank test and the KM method were used for the 
survival analysis. In case of p < 0.05, the result was determined to have statistical significance.

Results
ADME-related characteristic in spatial transcriptome and scRNA-seq
We employed SCTransform’s approach to correct for spatial sequencing depth and conducted a series of 
normalization processes, resulting in the identification of 12 distinct cell types in space following dimensionality 
reduction clustering (Figure S1). To evaluate the importance of ADME related genes in each cell subset, we used 
the AUCell R package to determine the ADME related activity in each cell subgroup (Fig. 2A). We found that 
ADME related activity was predominantly enriched in tumor cells (Fig. 2B-C). Subsequently, we used spearman 
correlation analysis to calculate the correlation between cell content and cell content, as well as the correlation 
between cell content and ADME related activity in all spots (Fig. 2D). scRNA-seq data, comprising 49,899 cells, 
were obtained from three early KIRC patients. Using marker genes for different cell types, we annotated the cells 
into 11 major clusters, including B cell, CD4Tconv, CD8T, CD8Tex, dendritic cell, endothelial cell, mast cell, 
monocyte/macrophage, NK cell, Plasma cell, and Tprolif cell (Fig. 2E). To quantify the activity of the ADME 
in different cell types, we used the “ssGSEA” function in the Seurat package to calculate the expression levels of 
ADME-related genes across all cells (Fig. 2F). Of the 11 cell types, ADME related activity was notably higher in 
endothelial cell and monocyte/macrophage (Fig. 2G).

ARS estimation and stratification analysis in KIRC patients
The ARS was calculated using the ssGSEA algorithm for 522 patients with KIRC and 71 normal patients derived 
from the TCGA database. Compared to the control group, a significantly lower ARS was observed in the KIRC 
group, which evidenced the accuracy of the model (Fig. 3A). Then, the association between ARS and clinical 
parameters in KIRC patients were further investigated. A higher ARS was associated with a lower stage, T 
and M (Fig. 3B-D). The optimal cutoff for ARS was determined to be 0.1 using the “surv_cutpoint” function 
(Fig.  3E). Based on this cutoff, KIRC patients were arranged to two groups (high-ARS group and low-ARS 
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Fig. 2.  ADME-related characteristic in spatial transcriptome and scRNA-seq. (A) Spatial visualization 
of ADME intensity. (B-C) Differential anlysis of ADME related activity in mixed malignant, and normal 
regions. (D) Spearman correlation of ADME related activity with microenvironmental components at 
spatial transcriptome resolution. (E) Single cell types identified by marker genes. (F) The ADME enrichment 
score (activity) in each cell. (G) The distribution of ADME score in different cell types. *p < 0.05; **p < 0.01; 
***p < 0.001; ****p < 0.0001. ADME: Absorption, distribution, metabolism and excretion.
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group). Compared to the low-ARS group, the high-ARS group had a better OS (Fig. 3F). In addition, this study 
computed tumor mutation burden (TMB) for each KIRC patient. As predicted, the low-ARS group generally 
had lower TMB than the high-ARS group (Fig. 3G). Given the pivotal role that immune checkpoint inhibitors 
play in clinical treatment of KIRC, the differential expression of ICGs was analyzed, and the results revealed that 
CD28, CD44, CD88, PDCD1LG2, and CD276 increased significantly in the LR group, whereas CD70, HHLA2, 
TNFRSF14, and TNFSF9 increased in the HR group (Fig. 3H).

Fig. 3.  ARS estimation and stratification analysis in KIRC patients. (A) Box plot showing the differences in 
ssGSEA ARS between KIRC and normal samples by Wilcoxon test. Box plot comparing ssGSEA ARS between 
(B) Stage, (C) TNM.T, (D) TNM.M., (E) KIRC patients were divided into the low-ARS and high-ARS groups 
using the surv_cutpoint function. (F) KM survival curves of the OS for KIRC patients in the high-ARS and 
low-ARS groups. (G) Comparison of TMB between the high-ARS and low-ARS groups. (H) Comparison 
of the immune checkpoint between the high-ARS and low-ARS groups. *p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001. TMB: Tumor mutation burden. ADME: Absorption, distribution, metabolism and excretion.
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Variant landscape of ARGs in KIRC patients
This study screened 58 DEGs for KIRC and normal groups to investigate the distinct transcriptomic signatures 
(Fig. 4A-B). Subsequently, the intricate relevance of DEG-associated proteins was clarified by constructing a 
network of interactions between proteins (Fig. 4C). Additionally, the molecular alteration landscape of ADME-
related DEGs in KIRC was examined, and the most prevalent type of variant was the missense mutation (Fig. 4D). 
ABCB1, NOS1, ABCA1, SLC22A6, and SLC15A2 are the top five mutated genes. The top 20 mutated ADME-
related DEGs exhibited significant CNV alterations, based on the investigation of CNV mutation frequency 
(Fig. 4E). R software was employed for analyses of GO and KEGG enrichment so as to examine the regulatory 

Fig. 4.  Variant landscape of ARGs in KIRC patients. (A) Volcano plot of DEGs in KIRC (blue: downregulated 
DEGs; red: upregulated DEGs; gray: unchanged genes), FDR < 0.05 and |log2FC| > 1. (B) Venn diagram 
between KIRC DEGs and ARGs. (C) PPI network of ADME-related DEGs. (D) Oncoplot of the top 20 
ADME-related DEGs in the TCGA cohort. (E) Frequencies of CNV gain, loss, and non-CNV among the top 
20 ADME-related DEGs. (F) Bar plot of KEGG analysis of ADME-related in KIRC. (G) Dot plot of GO BP 
analysis of ADME-related in KIRC. GO, Gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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mechanism of DEGS. According to the KEGG enrichment analysis, most of the enriched pathways contained 
drug metabolism-CYP450, ABC transporters, xenobiotic metabolism by CYP450, arachidonic acid metabolism, 
and retinol metabolism (Fig.  4F). Most of these genes were found to be enriched in response to xenobiotic 
metabolism, cellular response to xenobiotic stimulus, olefinic compound metabolism, xenobiotic stimulus, and 
steroid metabolism in the biological process(BP) analysis (Fig. 4G).

Subtype identification, TME infiltration characteristics, and biological signal features of two 
distinct ADME related clusters in KIRC
Then, we performed the unsupervised clustering analysis of the expression of 58 ADME related DEGs in 522 
samples to explore the classification of KIRC by increasing the clustering matrix (k) from 2 to 10. As a result, 
consensus clustering was most suitable when k = 2, and three molecular subtypes were identified and named 
Cluster A-B (Fig. 5A-B). Cluster A contained 270 cases and Cluster B contained 252 cases. The relationship 
between the molecular subtypes and the clinical features, including the Grade, Stage, T, M, gender, survival status, 
and age was shown in the heatmap (Fig. 5C, E). Additionally, the two ADME molecular subtypes have different 
prognoses, as seen by the K-M curves, with the A cluster having a clear prognostic advantage (p < 0.0001, Fig. 5D). 
Furthermore, Cluster B displayed more immune cell infiltration than Cluster A (Fig. 5F). In particular, there was 
a significant increase in the immune infiltration level of T cells CD8, T cells regulatory Tregs, monocytes and 
Mast cells resting in Cluster A patients, while that of plasma cells and M1 macrophages increased in Cluster B 
patients (Fig. 5G). To explore potential differences in biological functions between ADME molecular subtypes, 
we performed Gene Set Variation Analysis (GSVA), several biology processes with differential expression were 
enriched, and they were shown in a heatmap. Compared with Cluster B, aldehyde catabolic process, xenobiotic 
export from cell, butanoate metabolism, fatty acid metabolism, citrate cycle (TCA cycle) were higher in Cluster 
A, while presynaptic cytoskeleton, collagen fibril organization, fibrillar collagen trimer and extracellular matrix 
structural constituent were higher in Cluster B (Fig. 5E). These findings suggest that ADME plays a crucial role 
in shaping the TME and that the two molecular subtypes exhibit distinct prognoses and molecular functions.

Construction of ARPS in KIRC
Univariate Cox regression analysis was conducted to screen ARGs with prognostic value so as to construct a 
prognostic gene model. As a result, 32 genes were found to have a significant prognostic value (p < 0.05). Analyses 
of LASSO and stepAIC were conducted to screen the target genes and simplify the model, producing an ultimate 
collection of 8 ARGs with coefficients to construct the prognosis model (Fig. 6A-C). The 8-gene prognosis model 
was defined in the following way: risk score = (-0.1467) * ABCB1 + (-0.2649) * ABCG1 + (0.3684) * ALDH5A1 
+ (-0.4660) * ALDH6A1 + (-0.1063) * DPEP1 + (-0.1780) * GSTM3 + (-0.1186) * SLC28A1 + (-0.2180) * UGT8. 
Patients with KIRC were stratified into the HR (n = 261) and the LR groups (n = 261) according to the median 
of signature. It was noteworthy that in the TCGA cohort, the LR group outperformed the HR group in terms of 
OS rate (median time = 47.0 months vs. 34.5 months, p < 0.0001, Fig. 6D). The independent validation cohort, 
E-MTAB-1980 cohort, was utilized to confirm the model’s robustness, and the results demonstrated that the LR 
group also outperformed the HR group in terms of OS (median time = 53.0 months vs. 49.5 months, P = 0.0098, 
Fig. 6G). Additionally, AUC was evaluated for E-MTAB-1980 and TCGA cohorts, respectively, and the results 
indicated that ARPS had a high degree of accuracy in forecasting the 1-, 3-, and 5-year survival in KIRC patients 
(Fig.  6E & H). The distribution of survival status and risk scores is presented in Fig.  6F & I for TCGA and 
E-MTAB-1980 cohorts, separately. These findings confirm the strong performance of ADME-related prognosis 
model for predicting KIRC patients’ outcome across various datasets.

Construction and assessment of nomogram
To assess the effect of ADME-related signatures in prognosis prediction, researchers in this study implemented 
univariate and multivariate Cox regression analyses. According to the results of univariate Cox regression 
analysis, age, T, stage, M, grade, neoplasm status, and risk score had a significant association with OS. According 
to the multivariate Cox regression analysis, M, age, risk score, and neoplasm status had an association with OS 
in KIRC patients (HR = 1.026, 95% CI [1.010–1.042], p < 0.001; HR = 1.767, 95% CI [1.142–2.732], p = 0.010; 
HR = 2.562, 95% CI [1.693–3.877], p < 0.001; HR = 1.974, 95% CI [1.524–2.558], p < 0.001) (Fig.  7A-B). This 
study also created a nomogram for the 1-, 3-, and 5-year survival prediction in KIRC patients based on the 
above correlation between clinicopathologic features and ADME-related signature (Fig. 7C). Using the same 
nomogram, the risk score was computed for all patients, and the patients were assigned in line with their 
risk scores. The prognosis for the LR and HR groups differs significantly (median time = 50.0 months vs. 35.4 
months, P < 0.001, Fig. 7D). Additionally, the combined model has AUCs for the 1-, 3-, and 5-year survival of 
0.831, 0.825, and 0.806, respectively (Fig. 7E). Moreover, the nomogram’s predictive accuracy was shown via 
the calibration curve (Fig.  7F). Furthermore, a DCA (Fig.  7G) was carried out to compare the nomogram’s 
clinical applicability with regard to the 1-, 3-, and 5-year survival. The results demonstrated that the 3- and 
5-year OS was better predicted by the nomogram, which provided more net clinical benefit than the 1-year OS. 
In general, when utilizing these essential clinical parameters to assess KIRC patients’ prognosis, the nomogram 
demonstrated solid prediction power and clinical applicability.

Immune characteristics of ADME-related prognostic subgroups
The TCGA KIRC cohort was employed to examine the association between ARPS and patients’ immune status. 
In addition to interfering with tumor signaling, the vast majority of normal cells found in tumor tissue are 
infiltrating immune and stromal cells that regulate cancer biology. Using ESTIMATE algorithm, the immune 
ME landscape was investigated so as to understand the correlation between the ADME-related risk score 
signature and the biological role in immune response better. This algorithm demonstrated that a high immune 

Scientific Reports |         (2025) 15:1294 9| https://doi.org/10.1038/s41598-024-84018-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fig. 5.  Subtype identification, TME infiltration characteristics, and biological signal features of two distinct 
ADME related clusters in KIRC. (A). Samples from the TCGA-KIRC cohort were divided into two clusters 
using a consensus clustering algorithm (k = 2). (B) Cumulative Distribution Function (CDF) from k = 2 to 10. 
(C) Principal Component Analysis (PCA) shows significant differences between the two ADME clusters. (D) 
Kaplan-Meier curve shows different overall survival (OS) between the two ADME clusters. (E) Heatmap shows 
differences in clinical characteristics and biological functions between two ADME clusters. (F) The violin plot 
shows higher immune infiltration, stromal, and ESTIMATE score and lower TumorPurity in ClusterB. (G) The 
boxplot of 28 infiltrated immune cell types was calculated by CIBERSORT between the two ADME clusters. 
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Fig. 6.  Construction of an ARPS for KIRC patients. (A-B). LASSO regression analysis of ADME-related DEGs. 
The coefficients changed with increasing lambda value. (C) Forest plot of the final eight prognostic genes in 
the risk model from the stepAIC regression analysis. (D) OS of patients in the LR and HR score groups in 
TCGA-KIRC. (E) ROC curve of the risk model in predicting survival in TCGA-KIRC. (F) Distribution of 
risk score by the survival status and time in TCGA-KIRC. (G) OS of patients in the LR and HR score group 
in E-MTAB-1980. (H) ROC curve of the risk model in predicting survival in E-MTAB-1980. (I) Distribution 
of risk score by the survival status and time in E-MTAB-1980. LASSO: Least absolute shrinkage and selection 
operator; stepAIC: Stepwise Akaike information criterion; ROC: Receiver operator characteristic.
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Fig. 7.  Establishment and assessment of the nomogram survival model. (A). Univariate analysis for the 
clinicopathologic properties and risk score in TCGA-KIRC. (B) Multivariate analysis for the clinicopathologic 
properties and risk score in TCGA-KIRC. (C) A nomogram for predicting the prognosis of KIRC patients. (D) 
Kaplan-Meier analysis for two KIRC groups according to the nomogram score. (E) ROC curve analysis of the 
nomogram in TCGA-KIRC. (F) Calibration plots showing the probability of 1-, 3-, and 5-year OS in TCGA-
KIRC. (G) Decision curve analysis (DCA) of the nomogram predicting 1-, 3-, and 5-year OS.
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score was more frequently noted in patients with higher risk scores (Fig. 8A). immune checkpoint inhibitors are 
anti-tumor immunotherapies. They are being increasingly used in clinical practice. The expression difference of 
ICGs between the HR and LR groups may result in varying susceptibilities to immune checkpoint inhibitors. 
According to Fig. 8B the expression level of ICGs differs between the LR group and HR group significantly. The 
results of immune infiltration analysis revealed that levels of 28 types of immune cells increased significantly in 
HR patients (Fig. 8C). In particular, there was a significant decrease in the immune infiltration level of resting 
mast cells, M2 macrophages, monocytes, resting NK cells, and CD8 T cells in HR patients, while that of plasma 
cells, CD4 memory T cell, and M1 macrophages increased (Fig. 8D). Moreover, 8 genes within the prognostic 
model were highly correlated with tumor-infiltrating immune cells (Figure S2). Taken together, the results show 
that ICI may be associated with the ARPS. Additionally, LR patients showed a significantly lower TIDE score 
compared to HR patients, indicating a better efficacy of immunotherapy (Fig. 8E).

Although the majority of KIRC patients respond very well to platinum-based therapy initially, tumors 
eventually become increasingly resistant to treatment. Cancer stem cells are extremely rare tumor cells with 
unique biological properties, such as the capacity of indefinite proliferation, self-renewal, and multiple-direction 
differentiation to form diverse cell populations within the tumor. As shown in Figure S3, a significantly higher 
enrichment score of stemness is observed in the HR group by 26 stemness gene sets. Moreover, HR patients had 
a higher hypoxia score (Fig. 8F) according to the hypoxia-responsive gene expression analysis, and the HR group 
also had a significantly higher fraction genome altered (Fig. 9A); the CNV analysis revealed that CNV patterns 
differed significantly between the LR and HR groups (Fig. 9B). As shown in Fig. 9C, when only 20 genes with 
maximum mutation frequency were contained in the waterfall plot, the distribution of somatic variation in each 
sample was different between the HR and LR groups. It is interesting to note that an opposite frequency was 
discovered for BAP1 (HR/LR, 17%/5%) and PBRM1 (HR/LR, 35%/47%) (Fig. 9D).

Drug sensitivity in LR and HR KIRC
Regarding the sensitivity prediction for a number of common drugs, a drug analysis was performed for the LR 
and HR KIRC. The landscape of the correlation and significance between drug sensitivity and model genes are 
shown in Fig. 10A. Sunitini (Fig. 10B) and rapamycin (Fig. 10D) exhibited higher sensitivity in the HR KIRC 
(p < 0.05, Wilcoxon rank-sum test). Moreover, Sorafenib (Fig. 10C), imatinib (Fig. 10E), erlotinib (Fig. 10F) and 
bleomycin (Fig. 10G) exhibited higher sensitivity in the LR KIRC (p < 0.05, Wilcoxon rank-sum test).

Identification of biological roles of arPS
Since ARPS had a high prognostic predictive value for KIRC patients, the biological properties were further 
investigated. The volcano plot visually represents 149 DEGs (Fig.  11A). The string database was applied for 
creating a PPI network of DEGs (Fig. 11B). GSEA analysis demonstrated that the LR group exhibited a significant 
enrichment of drug metabolism pathways-CYP450, fatty acid metabolism, fatty acid degradation, and RCC, 
while the HR group exhibited a significant enrichment of oxidative phosphorylation, p53 signaling pathway, and 
primary immunodeficiency (Fig. 11C-D). The results of GO analysis demonstrated that the above genes were 
closely involved in BP of organic anion transport, response to xenobiotic stimulus, renal system process, small 
molecule catabolic process, carboxylic acid transport, organic acid transport, and cellular response to xenobiotic 
stimulus (Fig. 11E-F).

Experimental validation for the expression of the key genes
To confirm the signature genes’ expression levels, this study examined the expression of SLC28A1, ABCB1, 
ALDH5A1, ALDH6A1, UGT8, and GSTM3 in human kidney cells. As shown in Fig. 12A, SLC28A1 mRNA 
in KIRC cell lines (Caki-1, 786-O) was significantly upregulated compared to the normal renal cell line (HK2), 
while ABCB1, ALDH5A1, ALDH6A1, UGT8, and GSTM3 levels were notably reduced in KIRC cell lines. 
Additionally, WB experiment also confirmed that in contrast with HK2 cell line, the expression of proteins 
ABCB1 and ALDH5A1 was downregulated considerably in KIRC cell lines (Fig. 12B). These two experiments 
also validated the results of the bioinformatics analysis.

Discussion
KIRC, the major pathologic subtype of RCC, represents a substantial global health threat due to its increasing 
prevalence and high mortality33. Although therapeutic strategies for KIRC have progressed significantly, the 
prognosis for patients with KIRC remains unfavorable, mainly because of resistance to conventional therapies 
and late diagnosis34. Several molecular markers for building predictive models in various cancers have been 
reported in recent studies. The integration of molecular biomarkers into prognosis models may offer a more 
comprehensive evaluation of the disease, improve the accuracy of predicting patient outcomes, and ultimately 
lead to better patient care and outcomes in the management of KIRC.

This study confirmed the critical role of ARGs in KIRC microenvironment, and then created a novel prognosis 
model on the basis of eight ARGs: ABCB1, ABCG1, ALDH5A1, ALDH6A1, DPEP1, GSTM3, SLC28A1, and 
UGT8. By spatial transcriptome analysis, we found that ADME related activities were mainly enriched in tumor 
cells. Besides tumor cells, the scRNA-seq analysis results demonstrated that the ADME related activities also 
notably enriched in endothelial cell and monocyte/macrophage. Besides tumor cells, tumor microenvironment 
includes various types of cells, such as tumor immune infiltrating cells and stromal cell. Among these cells, 
T cell, monocyte, M2-macrophage, endothelial cell and cancer-associated fibroblast are the primary effector 
tumor immune infiltrating cells and stromal immune cells in cancer immunity, which have close relationships 
with the start and development of tumor35. Among those target genes, ABCB1 gene encodes a permeability 
glycoprotein. The glycoprotein has expression in the apical membranes of a variety of tissues, including kidney, 
intestine, liver, blood-brain barrier, placenta, and testis, and is involved in the intracellular drug disposition36. 
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Fig. 8.  Immune characteristics of ADME-related prognostic subgroups. (A). Violin plot showing lower 
immune infiltration, stromal, and ESTIMATE scores, and higher tumor purity in HR patients. (B) Box plot of 
expression levels of immune checkpoint- associated genes. (C) Box plot of 28 infiltrating immune cell types 
was calculated by ssGSEA. (D) Box plot of 22 infiltrating immune cell types was calculated by CIBERSORT. (E) 
Proportion of response to immunotherapy in the HR and LR groups based on TIDE results. (F) Violin plot of 
significantly increased hypoxic score in HR patients *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Many studies have shown that the ABCB1 overexpression had an association with chemoresistance, reduced 
survival rates, and poor outcome in patients36. The ABC transporter family member ABCG1 is important in 
tumor immunity, which is found as an oncogene in lung cancer, affecting cell proliferation, migration, invasion, 
and apoptosis37. A study also shows that ABCG1 is linked to KIRC patients’ survival, highlighting the potential 

Fig. 9.  Mutation landscape between ADME-related prognostic subgroups. (A). Difference analysis of fraction 
genome altered in different risk score groups. (B) Patterns of copy number variation (CNV) in different 
risk cohorts. (C) Waterfall plot of somatic mutation characteristics in the HR and LR score groups. (D) 
Comparison of different mutation sites of BAP1 and PBRM1. *p < 0.05; ***p < 0.001; ****p < 0.0001.
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value of this gene in cancer diagnosis and prognosis38. ALDH5A1, which belongs to the aldehyde dehydrogenase 
superfamily and encodes succinic semialdehyde dehydrogenase involved in mitochondrial glutamate 
metabolism, plays critical roles in cell proliferation, differentiation, and survival, with its activation observed in 
various cancers39. It has been demonstrated that the invasion, migration, and proliferation of papillary thyroid 

Fig. 10.  Effectiveness of ADME-related signature in predicting drug sensitivity. (A). Bubble plot of the 
relationship between drugs and model genes. Boxplots of the comparison of IC50 of drugs between high- and 
low-risk groups, and correlation between the IC50 and risk score in TCGA-KIRC cohort: (B) Sunitinib; (C) 
Sorafenib; (D) Rapamycin; (E) Imatinib; (F) Erlotinib; (G) Bleomycin.
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carcinoma (PTC) cells may be inhibited by ALDH5A1 knockdown40. Similarly, the decreased expression of 
ALDH5A1 has been correlated with a positive prognosis in ovarian cancer39. ALDH6A1 is another member of 
the aldehyde dehydrogenase superfamily and has been shown to have a role in cancer41. Based on the analysis 
of the TCGA database, ALDH6A1 shows differential expression in KIRC compared to normal individuals. 

Fig. 11.  Biological functions underlying the ADME-related prognosis model. (A). Volcano plot for DEGs 
(FDR < 0.05 and |log2FC| > 0.5) between the HR and LR groups. (B) PPI network of Risk-related DEGs. GSEA 
analysis of KEGG pathways between (C) LR group; (D) HR group. (E) Dot plot of GO BP enrichment analysis. 
(F) GO circle plot of enriched GO BP terms.
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Moreover, overexpression of ALDH6A1 can inhibit renal cancer cells from growing and migrating42. DPEP1, 
a zinc-dependent metalloproteinase that plays a role in glutathione metabolism via dipeptide hydrolysis, 
has recently been implicated in human malignancies43. In particular, its dysregulation is common in several 
cancers, including hepatoblastoma, pancreatic ductal adenocarcinoma and KIRC. GSTM3, one of glutathione 
S-transferase Mu gene family members, plays a crucial role in detoxifying electrophilic compounds, including 
products of oxidative stress, anticarcinogens, and carcinogenic toxins, by conjugating with glutathione44. In 
ovarian cancer, GSTM3 expression has been correlated with immune evasion, chemoresistance, and poor 
prognosis45. In ESCC, a high GSTM3 expression is negatively linked to DFS46. Moreover, GSTM3 plays a pivotal 
role in KIRC by detoxifying and scavenging ROS47. SLC28A1, also referred to as concentrating nucleoside 
transporter 1, is a type of nucleoside transporter that is mainly responsible for cellular absorption of nucleosides 
and related compounds, including gemcitabine and 5-fluorouracil48. UGT8 exhibits elevated expression in 
various cancers, indicating the potential for intratumoral drug metabolism via the UGT conjugation pathway49. 
One study has demonstrated that UGT8 expression significantly increases in KIRC and correlates with decreased 
overall patient survival49.

Functional analyses were conducted to examine the biological roles of ARGs in KIRC in line with DEGs 
between HR and LR groups. GO and KEGG analyses demonstrated that the LR group exhibited an enrichment 
of pathways associated with metabolism, including fatty acid metabolism, xenobiotic metabolism by CYP450, 
PPAR signaling pathway, and drug metabolism-CYP450, while the HR group exhibited an enrichment of those 
related to primary immunodeficiency and NF-kappa B signaling pathway. Unfavorable prognosis of KIRC was 
linked to CYP450 dysregulation50. CYP3A subfamily of CYP450 enzymes plays an important role in clearance 
and metabolism of numerous anticancer medications. The presence and activity of these enzymes in KIRC 
tumor cells may affect drug PK and contribute to drug resistance51. Additionally, KIRC is characterized by 
the abnormal accumulation of lipid droplets in cells, a manifestation of dysregulated cellular metabolism52,53. 
Such metabolic dysregulation is central to the onset and advancement of a disease54. Studies have shown 
metabolic reprogramming in KIRC, including changes in lipid metabolism, some of which may be mediated 

Fig. 12.  Validation of ADME-related signature genes expression. (A) The mRNA levels of SLC28A1, ABCB1, 
ALDH5A1, ALDH6A1, UGT8, and GSTM3 were examined by qRT-PCR. (B) The protein levels of ABCB1 and 
ALDH5A1 were examined by WB. **p < 0.01; ***p < 0.001, ****p < 0.0001.
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by PPAR pathway dysregulation55. In contrast, HR KIRC patients exhibit features associated with primary 
immunodeficiency, such as decreased antigen presentation and T-cell co-stimulation, along with increased 
expression of immune checkpoint molecules including PDCD1 and CTLA456. These findings suggest an 
immunosuppressive TME in the HR KIRC group, which may contribute to their poorer prognosis. The NF-κB 
signaling pathway was discovered to be considerably enriched in HR KIRC patients and appeared to have a key 
role in the onset, advancement, and immune evasion of KIRC57.

A powerful tool for risk stratification of patients is the in-depth molecular characterization of tumor 
heterogeneity. The results of this study showed that HR patients have a higher level of CNV mutation, TIDE 
score or hypoxia score compared to LR patients. The results revealed that patients in HR group did not respond 
well to immunotherapy. Furthermore, mutations in tumor suppressor genes were more frequent in the HR group 
(such as BAP1 and SETD2). BAP1 mutations can also lead to a “cold” TME58. Patients with BAP1 mutations 
may be less responsive to immunotherapy because the “cold” TME created by these mutations may confer 
resistance58. SETD2 mutations are linked to an inflamed and immunogenic TME, which may contribute to an 
improved response to immunotherapy in KIRC59.

Additionally, the results demonstrated that the LR and HR groups differ significantly in the characteristics of 
ICI. HR patients had a significantly reduced immune infiltration level of M2 macrophages, resting NK cells, and 
CD8 T cells and an elevated level of CD4 memory T cells. The disease progression and patient prognosis were 
influenced by important factors such as the composition and dynamics of ICI in TME of KIRC, particularly the 
levels of CD8+ T cells60. A higher CD8+ T cell infiltration level in KIRC is generally correlated with a reduced 
possibility of metastatic disease and a better prognosis61. Conversely, patients with KIRC who develop metastatic 
disease typically have increased levels of exhausted or dysfunctional CD8+ T cells in TME61. Similar to the results 
in this study, studies reveal that a higher proportion of NK cells in tumor-infiltrating lymphocytes is correlated 
with a better prognosis in RCC62. Qin et al. found that the KIRC subtype B, which had the highest infiltration 
of M2 macrophages, had a better OS compared with the other KIRC subtypes, suggesting that a higher M2 
macrophage infiltration is correlated with a better prognosis in KIRC63. However, the complexity of TME in 
RCC tumors still exists. For example, Chen et al. found that a long OS was predicted by a high level of tumor-
infiltrating dendritic cells and CD4+ T cells in KIRC, whereas macrophages, monocytes, MDSCs, Tfhs, Tregs, 
and NK cells suggested shorter OS64.

Limitations
ARGs are promising as innovative diagnostic and therapeutic markers for KIRC. However, this study has 
several potential limitations. First, it does not describe the underlying biological mechanisms or interactions. 
In addition, the results, derived retrospectively from public databases, need to be further validated by extensive 
prospective studies before their clinical application. Finally, the statistical validity of the study’s findings may be 
jeopardized by the lack of comprehensive treatment data.

Conclusion
In summary, this study represents the first effort to confirm the key role of ARGs in KIRC microenvironment 
using scRNA-seq analysis and spatial transcriptome analysis, and then develop a prognosis model for KIRC 
based on ARGs, and then constructed a novel ARPS of KIRC using a TCGA cohort, which is validated in an 
external cohort, and qRT-PCR and western blot experiment. This risk model showed a good performance in 
predicting patient survival. In addition, it was found that there was an association between the ARS and ICI in 
KIRC. This study offers a promising ARPS to guide the personalized treatment for KIRC patients. Furthermore, 
it provides a new insight into possible immunotherapeutic and combined strategies for KIRC, as targeting ARGs 
may reverse ICI in KIRC.

Data availability
All the datasets presented in this study can be found in the article. Further inquiries can be directed to Dr. Jun 
Yuan at yjun_92@hbucm.edu.cn.
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