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SUMMARY

Cannabis sativa L., known for its medicinal and psychoactive properties, has recently experienced rapid mar-

ket expansion but remains understudied in terms of its fundamental biology due to historical prohibitions.

This pioneering study implements GS and ML to optimize cannabinoid profiles in cannabis breeding. We

analyzed a representative population of drug-type cannabis accessions, quantifying major cannabinoids and

utilizing high-density genotyping with 250K SNPs for GS. Our evaluations of various models—including ML

algorithms, statistical methods, and Bayesian approaches—highlighted Random Forest’s superior predictive

accuracy for single and multi-trait genomic predictions, particularly for THC, CBD, and their precursors.

Multi-trait analyses elucidated complex genetic interdependencies and identified key loci crucial to cannabi-

noid biosynthesis. These results demonstrate the efficacy of integrating GS and ML in developing cannabis

varieties with tailored cannabinoid profiles.

Keywords: breeding strategies, Cannabis sativa, cannabinoid biosynthesis, genomic selection, machine

learning, multi trait genome prediction.

INTRODUCTION

Cannabis sativa L., commonly known as marijuana,

hemp, or simply cannabis, is one of the earliest crops

cultivated by humans and is a member of the Cannaba-

ceae family (Lapierre, Monthony, & Torkamaneh, 2023).

This predominantly dioecious diploid species (2n= 20)

has been historically cultivated for its fibers, oils, seeds,

and notably for its medicinal and psychoactive properties

(Hillig, 2005). The pharmacologically active compounds,

cannabinoids, are synthesized mainly in the plant’s capi-

tate stalked glandular trichomes, primarily on female flo-

ral tissues (van Bakel et al., 2011). To date, around 177

cannabinoids have been identified, with D9THC and CBD

being the most abundant and extensively studied due to

their significant therapeutic potential (Hanuš & Hod, 2020;

Hurgobin et al., 2021). Despite the rapid expansion of the

global legal cannabis market—projected to reach $102 bil-

lion by 2028—the fundamental biology of cannabis

remains underexplored, largely due to historical prohibi-

tions (https://www.statista.com/outlook/hmo/cannabis/

worldwide).

Cannabinoid biosynthesis involves complex pathways

beginning with olivetolic acid, which is converted into

CBGA, the precursor to major cannabinoids such as THC,

CBD, and CBC (Taura et al., 2007). Understanding these

pathways is crucial for genetic selection aimed at enhanc-

ing specific cannabinoid profiles. The medicinal utility of

cannabis is influenced by the relative concentrations

of these secondary metabolites, categorized into three

types based on their THC/CBD ratio: Type I (high THC),

Type II (balanced THC and CBD), and Type III (high CBD)

(Hurgobin et al., 2021). However, it should be noted that

this is an oversimplification and that each cannabis plant

has a unique chemical fingerprint that may impact its bio-

logical activity.

Historically, cannabis breeding was conducted within

clandestine operations, focusing on high-THC plants using

undocumented methods and a limited genetic pool (Torka-

maneh & Jones, 2022). This approach often neglected the

potential of modern technologies in stabilizing desired

traits through conventional breeding. Cannabis’s dioecious

nature presents unique challenges, as unfertilized female
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plants, which produce the most cannabinoids, are pre-

ferred. This has led to a reliance on clonal propagation

from elite seedlings to maintain genetic consistency,

bypassing conventional breeding programs (Jones &

Monthony, 2022).

The introduction of GS—a method using molecular

marker data to predict the genetic potential of breeding

stock—represents a transformative advancement in plant

breeding. This technique enables the prediction of phe-

notypic performance based solely on genomic data

(Yoosefzadeh-Najafabadi, Rajcan, & Eskandari, 2022), cir-

cumventing the labor-intensive phenotypic evaluations

typically required (Montesinos-López et al., 2021;

Yoosefzadeh-Najafabadi, Rajcan, & Eskandari, 2022). Tra-

ditional methods for analyzing genomic data in plant

breeding are limited in their ability to fully capture and

interpret the vast amount of information contained in

molecular markers (i.e., SNPs) and most of the methods

suffer from “large p small n” problems specifically in

genomics datasets (Yoosefzadeh-Najafabadi, Eskandari,

et al., 2022). Therefore, in order to harness the full poten-

tial of GS and predict breeding stock’s genetic potential

accurately, the use of ML algorithms has become a

necessity (Yoosefzadeh-Najafabadi, Rajcan, & Eskan-

dari, 2022). The integration of ML algorithms with GS

has significantly enhanced the precision of these predic-

tions, enabling the analysis of complex interactions

within the genome that influence trait heritability

(Montesinos-López et al., 2021; Yoosefzadeh-Najafabadi,

Rajcan, & Eskandari, 2022). The recent implementation of

multi-trait genomic prediction, which leverages genetic

correlations between various traits, has enhanced predic-

tion accuracy (Sandhu et al., 2022). This method is partic-

ularly relevant for cannabis, where the interaction

between different cannabinoid profiles crucially impacts

plant value and efficacy. However, the efficiency of GS

for multi-trait analysis heavily depends on the ability to

effectively select, filter, and analyze genomic data (Wang

et al., 2020). Traditional methods used in GS are often

challenged by computational inefficiencies and significant

efforts to remove redundant SNPs and prepare them for

multi-trait GS analysis (Yoosefzadeh-Najafabadi, Rajcan,

& Eskandari, 2022).

As the first study to apply genomic selection to canna-

bis, this work not only fills a critical gap in genetic research

but also lays the groundwork for future studies. By harnes-

sing the potential of genomic tools and machine learning,

we can develop cannabis varieties with qualities optimized

for specific medical needs and environmental conditions.

The implications of this research extend beyond academia,

offering actionable insights that can drive innovation in

cultivation practices and product development, thereby

contributing to the sustainability and profitability of the

rapidly evolving cannabis industry.

RESULTS

Cannabinoid diversity and interrelationships

The analysis of different major cannabinoids, namely

CBGA, THCA, CBDA, 9THC, CBG, CBC, and CBD, revealed a

wide range of variations. The CBGA exhibited values rang-

ing from 0.02 to 11.6% D.W., with an average value of

0.843% D.W. The THCA showed a range of 36.64% D.W.,

with values spanning from 0.33 to 36.97% D.W. and an

average of 20.20% (Figure 1a). The CBDA showcased a

range of 0.02–20.42%, with an average value of 1.34% D.W.

The D9THC demonstrated a 0.78% D.W., with values vary-

ing from 0 to 0.78% D.W. and an average value of 0.21%

D.W. The CBG recorded maximum, minimum, and average

values of 0.24, 0, and 0.07% D.W., respectively. The CBC

showed a maximum value of 0.31% D.W., a minimum

value was 0% D.W., and an average value of 0.04% D.W.

Finally, CBD recorded maximum, minimum, and average

values of 0.20, 0, and 0.01% D.W., respectively (Figure 1a).

As illustrated in Figure 1(b), a strong positive correla-

tion was observed between CBD and CBDA (r= 0.96,

Figure 1. (a) Variations of cannabinoid profiles, and (b) the correlations between different cannabinoids in the tested population.
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P< 0.001), while a moderate correlation was found

between THCA and D9THC (r= 0.23, P< 0.01). Further-

more, a negative correlation was observed between THCA

and CBDA (r=�0.63, P< 0.001). Although D9THC demon-

strated a positive correlation with CBGA (r= 0.06), this rela-

tionship was not statistically significant. However, D9THC

showed negative correlations with both CBD (r=�0.65,

P< 0.001) and CBDA (r=�0.20, P< 0.01). Additionally,

CBC displayed strong positive correlations with CBDA and

CBD (r= 0.88, P< 0.001) and negative correlations with

THCA (r=�0.59, P< 0.001) and CBG (r=�0.15, P< 0.05).

We observed negative correlations between CBGA and

THCA (r=�0.01) and D9THC (r=�0.06), while it showed a

non-significant positive correlation with CBDA (r= 0.05).

Finally, CBGA also showed a positive correlation with CBG

(r= 0.41, P< 0.001) and a negative correlation with CBC

(r=�0.03).

Single cannabinoid genomic prediction

To assess the breeding potential of cannabis lines accu-

rately, based on their cannabinoid profiles, various learn-

ing algorithms were employed using full SNP input

variables. The effectiveness of these algorithms was evalu-

ated by examining the linear Pearson correlation coeffi-

cient (r), coefficient of determination [R (Hillig, 2005)],

mean squared error (MSE), and root mean squared error

(RMSE) between training and testing prediction results for

each dataset (Table 1). Overall, RF exhibited the highest

performance for the majority of tested cannabinoids, while,

SVR consistently demonstrated the lowest efficacy, except

for CBGA (Figure 2). In CBGA, SVR achieved the highest

r-value (0.15), followed by EN (0.10), BA (0.09), BB, and

GBLUP (0.09), indicating that all tested algorithms per-

formed less effectively for CBGA compared to other

Table 1 Performance metrics of machine learning algorithms for predicting cannabinoid compounds

ML algorithm CBGA CBDA THCA CBG CBD D9THC CBC

Coefficient of correlation (r)
BA 0.09 0.4 0.54 0.62 0.51 0.48 0.55
BB 0.05 0.38 0.56 0.62 0.47 0.47 0.56
BC 0.05 0.39 0.57 0.63 0.48 0.49 0.55
RF 0.04 0.34 0.69 0.73 0.59 0.58 0.64
GBLUP 0.09 0.4 0.57 0.66 0.5 0.49 0.59
EN 0.1 0.21 0.38 0.44 0.36 0.33 0.39
SVM 0.15 0.13 0.13 0.18 0.15 0.13 0.13

Coefficient of determination (R2)
BA 0.008 0.160 0.292 0.384 0.260 0.230 0.303
BB 0.003 0.144 0.314 0.384 0.221 0.221 0.314
BC 0.003 0.152 0.325 0.397 0.230 0.240 0.303
RF 0.002 0.116 0.476 0.533 0.348 0.336 0.410
GBLUP 0.008 0.160 0.325 0.436 0.250 0.240 0.348
EN 0.010 0.044 0.144 0.194 0.130 0.109 0.152
SVM 0.023 0.017 0.017 0.032 0.023 0.017 0.017

Mean squared error (MSE)
BA 0.021 0.013 0.593 0.003 0.001 0.672 0.002
BB 0.022 0.064 0.635 0.003 0.001 0.623 0.001
BC 0.011 0.076 0.731 0.003 0.001 0.796 0.002
RF 0.019 0.180 0.699 0.004 0.002 0.608 0.002
GBLUP 0.013 0.035 0.538 0.004 0.001 0.638 0.001
EN 0.013 0.065 0.869 0.004 0.002 0.861 0.001
SVM 0.011 0.096 0.666 0.003 0.002 0.582 0.003

Root mean squared error (RMSE)
BA 0.00044 0.00017 0.35165 0.00001 0.00000 0.45158 0.00000
BB 0.00048 0.00410 0.40323 0.00001 0.00000 0.38813 0.00000
BC 0.00012 0.00578 0.53436 0.00001 0.00000 0.63362 0.00000
RF 0.00036 0.03240 0.48860 0.00002 0.00000 0.36966 0.00000
GBLUP 0.00017 0.00123 0.28944 0.00002 0.00000 0.40704 0.00000
EN 0.00017 0.00423 0.75516 0.00002 0.00000 0.74132 0.00000
SVM 0.00012 0.00922 0.44356 0.00001 0.00000 0.33872 0.00001

BA, Bayesian Algorithm; BB, Bayesian Bootstrapping; BC, Bayesian Classification; CBC, Cannabichromene; CBD, Cannabidiol; CBDA, Canna-
bidiolic Acid; CBG, Cannabigerol; CBGA, Cannabigerolic Acid; D9THC, Delta-9-Tetrahydrocannabinol; EN, Elastic Net; GBLUP, Genomic Best
Linear Unbiased Prediction; ML Algorithm, Machine Learning Algorithm; RF, Random Forest; SVM, Support Vector Machine; THCA, Tetrahy-
drocannabinolic Acid.

� 2024 The Author(s).
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2025), 121, e17164

ML-enhanced genomic prediction for cannabinoids 3 of 12



cannabinoids. In terms of R (Hillig, 2005), the highest R2

(0.02) in CBGA was also found in SVM with the lowest

MSE (0.011) and RMSE (0.00012), accordingly (Table 1).

For THCA, RF recorded the highest r-value (0.69),

closely followed by BC (0.57) and GBLUP (0.57). In con-

trast, SVR had the lowest r-value (0.13). Similarly, in CBDA,

RF outperformed other algorithms with the highest accu-

racy (0.68), while SVR remained the least effective (0.12)

(Figure 2). Regarding the R (Hillig, 2005), MSE, and RMSE

values, RF had the highest R2 with a value of 0.47 while BA

had the lowest MSE (0.59) and RMSE (0.35) value among

all other tested methods (Table 1). In the case of CBG,

Bayesian algorithms (BA, BB, and BC) had the same perfor-

mance, each achieving an r-value of approximately 0.62

while SVR recorded the lowest at 0.18. The highest r and

R2 were obtained in RF with the values of 0.73 and 0.53,

respectively. Similarly, the highest MSE and RMSE value

was found in RF with the values of 0.004 and 0.00002.

For CBC, RF outperformed the other algorithms,

achieving the highest r-value at 0.64 and R2 of 0.410, indi-

cating a strong predictive capability and a significant por-

tion of explained variance (Table 1). GBLUP followed with

an r-value of 0.59 and an R2 of 0.348, providing solid per-

formance as well. The MSE and RMSE values were mini-

mal across these best-performing algorithms ranging from

0.001 to 0.003 for MSE and almost 0.00001 for RMSE

(Table 1). In terms of evaluating different algorithms for

predicting D9THC, RF demonstrated the highest accuracy

with a r-value of 0.58 and an R2 of 0.336 (Table 1). Close

contenders included GBLUP with an r-value of 0.49 and an

R2 of 0.240, and BC with an r of 0.49 and an R2 of 0.240.

MSE was minimized across algorithms, with BB achieving

Figure 2. Performance comparison of different methods for predicting breeding values of the tested cannabis panel for different cannabinoids including CBGA

(a), CBDA (b), THCA (c), CBG (d), CBD (e), D9THC (f), and CBC (g).
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the lowest MSE at 0.623. RF maintained competitive perfor-

mance with a low MSE of 0.608. The RMSE was also mini-

mal across all the tested algorithms (Table 1). Overall, RF

led in correlation and variance explanation, making it a

dependable algorithm for D9THC prediction.

In CBD prediction, the RF algorithm obtained the high-

est r-value at 0.59 and an impressive R2 of 0.348, signifying

strong capability in capturing variance (Table 1). Following

RF, the BA algorithm demonstrated an r-value of 0.51 and

an R2 of 0.260, while BB and BC showed r-values of 0.47

and R2 values of 0.221 and 0.230, respectively. BB demon-

strated the lowest MSE at 0.001, matched by other top

algorithms, including RF, which also showed an MSE of

0.002 (Table 1). In CBG prediction, the RF algorithm was

the top performer, showcasing the highest r-value of 0.73

and an R2 of 0.533. GBLUP followed with an r-value of 0.66

and an R2 of 0.436. BA and BB also showed r-values at

0.62, with R2 values of 0.384 each. In terms of MSE, all

these algorithms, including RF, recorded a low MSE of

0.003 or 0.004, demonstrating consistency in prediction

accuracy across different datasets (Table 1). The RMSE for

RF was recorded at 0.00002, and BA, BB, and BC algo-

rithms similarly achieved RMSE values near zero (Table 1).

For THCA predictions, RF led with a high r-value of

0.58 and an R2 of 0.336, followed by GBLUP and BC, each

with an r-value of 0.49, and an R2 of 0.240 (Table 1). In

terms of MSE, RF had an MSE value of 0.608, whereas the

lowest MSE value was found in GBLUP algorithms with a

value of 0.538 (Table 1). In summary, RF proved to be the

most effective algorithm for accurately predicting breeding

values of cannabis lines for the tested cannabinoids, fol-

lowed by GBLUP and BA (Table 1). Conversely, SVR con-

sistently showed the lowest efficacy among all tested

algorithms. Given these results, RF and GBLUP were pri-

marily used in subsequent analyses (Figure 2).

Multi-trait optimized genomic prediction analyses

The performance of multi-trait genomic selection using RF

is presented in Figure 3(a,b) and the tunning parameters of

each selected traits are shown in Figure 3(c–f). To further

understand variables significant in predicting different

levels of selected cannabinoids, a variable importance

analysis was conducted post-RF algorithm fitting for each

pathway (Figure 4). For this aim, MCFS-ID was able to

reduce the initial 250k input variables (SNPs) into 16.5k var-

iables which significantly increased the computational

efficiency.

D9THC pathway

The THCA and CBGA, as two of the most important

components in the D9THC pathway, were used along

with SNP data as input variables. The algorithm showed

a good fit to the data, evidenced by a coefficient of cor-

relation of 0.62 and a RMSE of 0.081 (Figure 3a,b).

THCA emerged as the most influential factor, accounting

for 43% of the D9THC level variance (Figure 4a). Among

the other variables, the locus SChr02_50420918 was

found to have the second-highest importance in

Figure 3. Multi-trait optimized genomic prediction analyses using RF algorithm for predicting selected cannabinoids. (a) Pearson correlation coefficient. (b) Root

mean square error. Tunning RF parameters for (c) D9THC, (d) CBG, (e) CBD, and (f) CBC pathways.

� 2024 The Author(s).
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explaining D9THC levels, with a contribution of 13%.

Additional significant loci included SChr02_4751194,

SChr07_4512355, SChr02_71181698, SChr02_55838122

and SChr02_24784292. Collectively, these seven variables

(THCA level and six genetic loci) accounted for 85% of

the variation in D9THC levels (Figure 4a).

CBG pathway

The CBGA and SNPs were used as input variables. After

tuning the RF parameters to their optimum, the algorithm

achieved a correlation coefficient of 0.57 and a RMSE of

0.036 (Figure 3a,b). Further analysis focused on the impor-

tance of variables in explaining CBG levels. The top five

variables—CBGA, SChr06_5256124, SChrX_94742788,

SChr02_53687706, and SChr05_30506769—accounted for

90.9% of the variation in CBG (Figure 4b). CBGA was the

most influential variable, contributing to 17.8% of the vari-

ation. Similarly, SChr06_5256124, located on chromosome

6, accounted for 16.9% of the variation. SChrX_94742788,

located on the X chromosome, was also significant,

explaining 16.6% of the variation. The loci

SChr02_53687706 and SChr05_30506769, were also key

contributors to the variation in CBG levels (Figure 4b).

CBD pathway

The prediction of CBD levels was performed using SNP

data, CBDA, and CBGA profiles as input variables. RF with

the optimal tunning parameters yielded a high correlation

coefficient of 0.98 and a low RMSE of 0.001, demonstrating

excellent algorithm fit using CBD pathways variables

(Figure 3a,b). Furthermore, variable importance analysis

revealed that CBDA and CBGA have the highest impor-

tance in explaining the CBD levels, contributing 78.2% and

16% to the variation, respectively (Figure 4c). Together,

these variables accounted for 94.2% of the variation in

CBD levels. Additionally, loci such as SChr07_1447998,

SChr07_28367453, and SChr08_35450202, also played

roles, though less significant, contributing 3, 1.4, and 1.2%

to the variation, respectively (Figure 4c).

CBC pathway

The performance of RF algorithm for predicting CBC levels

was assessed using a dataset consisting of CBGA and

SNPs as input variables. Optimal tuning of RF parameters

resulted in a high correlation coefficient of 0.98 and a low

RMSE of 0.001 (Figure 3a,b). Variable importance analysis

Figure 4. Importance of top input variables in predicting different levels of selected cannabinoids; (a) D9THC, (b) CBG, (c) CBD, and (d) CBC.

� 2024 The Author(s).
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indicated that the alleles at loci SChr03_62865639 and

SChr01_20791233 were the most significant, each explain-

ing 14 and 13% of the CBC variation, respectively

(Figure 4d). This was followed by contributions from

SChr03_60512963 and SChr03_25265222, which accounted

for 8 and 7% of the variation, respectively. Lesser, yet nota-

ble contributions were observed from SChr03_62773823,

SChr07_5701172, and CBGA contributing 5, 6, and 2% to

the CBC prediction, respectively. Collectively, these vari-

ables explained 55% of the variation in CBC levels

(Figure 4d).

Extracting candidate genes underlying detected SNPs

The flanking regions of the SNPs were analyzed 20-kbp

upstream and downstream of each significant SNP to iden-

tify potential candidate genes associated with the target

traits (Table S1). Our analysis highlights significant over-

laps in genetic components across cannabinoid biosynthe-

sis pathways. Notably, loci such as SChr02_4751194 and

SChr02_71181698 are involved in multiple pathways, linked

to genes Phosphoglycolate phosphatase 2 (LOC115707244)

and Enolase (LOC115707804), which play crucial roles in

metabolic processes and are associated with D9THC. Addi-

tionally, the recurrent appearance of loci on chromosome

6, such as SChr06_5256124, associated with genes

Glutamyl-tRNA(Gln) amidotransferase subunit C

(LOC115718643), suggests their broad impact on influenc-

ing traits across CBG and potentially other cannabinoids.

These overlaps highlight critical genetic intersections that

are paramount for breeding strategies aimed at optimizing

cannabinoid profiles, reflecting the genes’ widespread

influence on cannabis plant development and stress

response mechanisms.

DISCUSSION

The variations observed in cannabinoid content across dif-

ferent samples highlight the significant diversity in canna-

binoid profiles among cannabis genotypes. The wide

range of CBGA percentages (0.02–11.6% D.W.) suggests

diverse metabolic pathways leading to the synthesis of

other cannabinoids, given that CBGA is a common precur-

sor (Romero et al., 2020). Particularly noteworthy is the

high maximum value of THCA (36.97% D.W.), indicating

that the current cannabis panel is heavily selected for high

THC content, which aligns with the preferential selection of

genotypes for different purposes (Lapierre, de Ronne,

et al., 2023).

The correlations among cannabinoids reveal complex

biochemical relationships and competitive biosynthetic

pathways (Hesami, Pepe, de Ronne, et al., 2023). For exam-

ple, the robust positive correlation between CBD and CBDA

(r= 0.96) confirms the direct biosynthetic conversion from

CBDA to CBD, signifying that genotypes high in CBDA are

likely also rich in CBD. Conversely, the moderate positive

correlation between THCA and D9THC (r= 0.23) might indi-

cate a partial conversion of THCA to D9THC, although the

moderate strength of this correlation suggests that other

factors, potentially including genetic, environmental, or

post-harvest handling, may also influence this conversion

process (Hesami, Pepe, Baiton, & Jones, 2023). The nega-

tive correlation between THCA and CBDA (r=�0.63) sug-

gests a competitive biosynthesis pathway where the

metabolic energy is directed toward either THCA or CBDA

production, rather than both simultaneously. Moreover,

the non-significant positive correlation between D9THC

and CBGA (r= 0.06) implies that variations in CBGA do not

directly impact D9THC levels, possibly pointing to the

multi-step and multiple enzyme-involved process convert-

ing CBGA to other cannabinoids (Wang et al., 2023),

including THCA and ultimately D9THC. The negative corre-

lations of D9THC with both CBD (r=�0.65) and CBDA

(r=�0.20) highlight the polar biosynthetic orientation

toward THC production at the cost of CBD and its acidic

precursor, suggesting distinct genotype development

goals depending on intended use (Wang et al., 2023).

The accurate prediction of breeding values using

genetic information holds significant potential for the opti-

mization of cannabinoid profiles in cannabis breeding pro-

grams (Naim-Feil et al., 2021). The implementation of both

single and multi-trait genomic prediction strategies in this

study aimed at estimating cannabinoid levels in the tested

population has revealed significant variability in algorith-

mic performance. RF emerged as the most effective over-

all, showing superior performance across the majority of

tested cannabinoids with high correlation coefficients for

THCA (0.58), CBDA (0.68), CBC (0.64), CBD (0.73), and

D9THC (0.58). The strong predictive capability of RF could

be attributed to its ability to algorithm complex interac-

tions and non-linear relationships within genetic data,

which are likely prevalent in the expression of cannabinoid

biosynthesis pathways (Yoosefzadeh Najafabadi

et al., 2023).

On the contrary, SVR consistently underperformed,

except in the case of CBGA, where it recorded the highest

r-value (0.14). The poorer performance of SVR might be

due to its limitations in handling the high dimensionality

and complexity of the genomic data, which can hinder its

effectiveness in capturing the complex genetic architec-

tures underlying cannabinoid biosynthesis (Lawson

et al., 2021). Other algorithms such as BA, GBLUP, and BC

exhibited intermediate performance, with r-values ranging

from 0.55 to 0.65 for CBC and CBD, balancing between lin-

ear and non-linear modeling capabilities.

Multi-trait predictions, by incorporating additional

related traits and SNPs, significantly outperformed

single-trait predictions, especially in the CBD and CBC

pathways. This approach benefits from the interconnected-

ness of cannabinoid biosynthesis pathways, leading to
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higher accuracy and explanatory power. For instance, inte-

grating CBDA and CBGA into the CBD pathway model

highlighted their substantial roles, which might be over-

looked by single-trait models. Moreover, significant loci

identified in multi-trait models offer deeper genetic

insights and potential targets for the identification of

high-impact genetic markers and potentially key candidate

genes (Raj & Nadarajah, 2022). By analyzing the genetic

correlations and interactions across multiple traits, this

approach enhances the likelihood of detecting markers that

have significant impacts on multiple cannabinoid path-

ways. This capability is crucial for pinpointing candidate

genes that are central to cannabinoid biosynthesis and reg-

ulation and can lead to more precise breeding strategies

that are tailored to enhance specific desirable traits in

cannabis.

Despite the promising findings, this study has several

limitations that must be acknowledged. The genetic diver-

sity within the cannabis panel used was relatively low,

potentially limiting the generalizability of the results to

other cannabis populations with greater genetic variability.

Additionally, the study was conducted under controlled

greenhouse conditions, which, while beneficial for mini-

mizing environmental variability, also restricts the ability

to understand how these traits might express under natu-

ral, variable environmental conditions.

CONCLUSION

The findings of this study significantly advance the under-

standing and application of genomic selection for optimiz-

ing cannabinoid profiles in C. sativa. By leveraging

advanced machine learning algorithms such as RF and

SVR, we demonstrated that multi-trait genomic prediction

models markedly enhance the accuracy and efficiency of

breeding programs aiming to enhance cannabinoid con-

tent. RF consistently outperformed other algorithms, dem-

onstrating superior predictive capability by effectively

modeling complex genetic interactions and non-linear rela-

tionships inherent in cannabinoid biosynthetic pathways.

Moreover, multi-trait analysis provided deeper insights

into genetic interrelations, underscoring the importance of

incorporating multiple related traits to capture the holistic

biological context of cannabinoid biosynthesis. Significant

loci identified through this study present novel targets for

breeding programs, offering the potential for developing

cannabis strains optimized for specific therapeutic and

commercial needs. In conclusion, this pioneering work

bridges critical gaps in cannabis genetic research, provid-

ing a foundation for more sophisticated breeding strate-

gies and promising pathways for creating cannabis

varieties with enhanced, specific cannabinoid profiles. The

integration of genomic tools and ML in cannabis breeding

holds substantial promise for the future, enabling precise

genetic selection that could revolutionize the industry by

aligning cultivation practices with targeted product devel-

opment, ultimately contributing to the sustainability and

profitability of the burgeoning global cannabis market.

MATERIALS AND METHODS

Metabolomic data collection

All research activities, including the procurement and cultivation
of cannabis plants, were conducted in accordance with our canna-
bis research license (LIC-QX0ZJC7SIP-2021) and full compliance
with Health Canada’s regulations. In this study, we utilized 176
drug-type accessions, which were previously extensively pheno-
typed by Lapierre, de Ronne, et al. (2023). This population has
been developed from diverse genetic background cannabis varie-
ties to ensure representation of the broad spectrum of drug-type
cannabis varieties available in the legal Canadian market.

Biochemical analysis of trimmed and dried flowers was con-
ducted at the Metabolomics Platform in the Institute of Nutrition
and Functional Foods (INAF), Université Laval, Québec, QC, Can-
ada, following procedures outlined by Lapierre, de Ronne,
et al. (2023). This analysis facilitated the quantification of 11 dis-
tinct cannabinoids, with seven cannabinoids selected for this
study based on the availability of quantitative data across all sam-
ples. These include THCA, D9THC, CBDA, CBD, CBGA, CBG,
and CBC.

Genotyping

Prior to the genomics selection, all samples underwent genotyp-
ing by de Ronne et al. (2024) using the HD-GBS method (Torkama-
neh et al., 2021). 486M paired-end sequencing reads were
processed with Fast-GBS v2.0 (Torkamaneh et al., 2020) and
mapped against the C. sativa cs10 v2 reference genome (GenBank
acc. no. GCA_900626175.2). Quality control procedures, including
multiple filters, were applied, and missing data were imputed
using methods described by Torkamaneh and Belzile (Torkama-
neh & Belzile, 2021), resulting in 800K SNPs uniformly distributed
across the genome. Additionally, a further filtration step was con-
ducted to retain biallelic variants with heterozygosity lower than
50% and a Minor Allele Frequency (MAF) >0.06 located on assem-
bled chromosomes. Subsequently, a final catalog of approxi-
mately 250K SNPs was retained for genomic selection analysis.

Statistical analyses

To address potential errors in the phenotypic data, a wide
range of pre-processing procedures was implemented using the
AllInOne preprocessing R package version 1.9.5 (Najafabadi
et al., 2023). All assessed traits were centered and standardized
to ensure data accuracy. The average value of each trait was
estimated using a BLUP method, which accounted for multiple
sources of variables as random (Bauer et al., 2006). This
analysis was done using the following statistical equation
(Equation 1):

Y =Zg þ Xa þ ε (1)

where Y denotes the observed phenotypic trait, g is a vector of
random genotype effects which are normally distributed N(0, σ2g ).
The vector a, consisting of block effects, is also incorporated in
the overall mean. This is followed by ε, which is a vector of resid-
uals with a normal distribution when estimated as N(0, σ2ε ). Matri-
ces Z and X are used to represent the incidence of the g and a

effects.
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Genomic prediction algorithms

Genomic best linear unbiased prediction (GBLUP)

GBLUP is founded on the premise of discerning genetic relation-
ship to estimate the genetic breeding value of genotypes. It con-
ceptualizes the population as a stochastic process driven by a set
of underlying random effects (Clark & van der Werf, 2013). Subse-
quently, GBLUP uses mixed model analysis to estimate these ran-
dom effects, which are then used to predict trait values according
to the following equation (Equation 2):

y =X β þ Za þ ε (2)

where y is the observed outcome, β is the vector of fixed genetic
effects, X is a design matrix of fixed effects, Za is a design matrix
of random additive genetic effects, and ε is the vector of errors.
The estimation of breeding values is then derived from the predic-
tions of Za.

Elastic net (EN)

Elastic net regression constitutes a regularized regression method
that combines both L1 and L2 regularization techniques, with
greater emphasis on L2 regularization (Giglio & Brown, 2018). Its
primary purpose is to shrink or reduce the β-coefficients toward
zero, while avoiding the risk of overfitting the data. The overall
goal is to select a subset of features that maximizes model accu-
racy (Zou & Hastie, 2005). The EN algorithm attempts to solve the
following optimization objective (Equation 3):

minβ
1

2n
∑
n

i¼1

yi�xiβð Þ2 þ λ pα βð Þ
� �

(3)

where β is the vector of model coefficients, xi is a row of the fea-
ture matrix, yi is the corresponding target value, p is the EN pen-
alty where pα βð Þ= 1�αð Þ 12 β2λ2 þ αβλ1 , α stands as a constraint to the
interval, n is the total number of observations, λ is the regulariza-
tion parameter, and λ1 and λ2 are the coefficients for the L1 and L2

regularization terms, respectively (Giglio & Brown, 2018).

The objective function used in regularization includes a sum
of squared errors (first term) and a second term that penalizes
model complexity by decreasing the size of model coefficients
(Giglio & Brown, 2018; Zou & Hastie, 2005). The first term (L2 reg-
ularization) penalizes the size of the coefficients, while the second
term (L1 regularization) encourages sparsity (Zou & Hastie, 2003).
The elastic net algorithm can adjust the weights of these terms
through the constants λ, λ1, and λ2, allowing for more flexibility in
the model compared to traditional L1 and L2 regularized regres-
sions (Zou & Hastie, 2003, 2005).

Bayesian approach

Bayes’ Theorem encapsulates the probability of an event occur-
ring based on conditions related to the event (Joyce, 2003). It is
defined as follows (Equation 4):

P AjBð Þ= P BjAð Þ � P Að Þð Þ=P Bð Þ (4)

where P(A|B) is the probability of A occurring given B, P(B|A) is
the probability of B occurring given A, P(A) is the prior probability
of A occurring, and P(B) is the prior probability of B occurring.

In this study, three Bayes’ Theorem-based algorithms, namely
Bayes A, Bayes B, and Bayes C, were utilized. These algorithms are
variants of Bayesian regression models commonly employed in
genomic prediction and association studies. Bayes A assigns
non-zero prior probabilities to all markers (Knürr et al., 2011),

Bayes B assumes a mixture of null and non-null marker effects
(Wakefield et al., 2010), and Bayes C incorporates marker effects as
random variables following a distribution with shrinkage parame-
ters (Knürr et al., 2013). Each algorithm offers distinct advantages
and may be suitable for different genomic prediction scenarios.

For all the tested Bayesian algorithms, an internal number of
iterations (20 000) with a burn-in of 2000 and a thinning interval
of 100 were used to obtain the highest accuracy. In addition, in
order to reduce computing time, other iterations and burn-ins
were tested but found to have no impact on the prediction
accuracy.

Random Forest (RF)

Random Forests is an ensemble learning technique that uses multi-
ple decision trees to make predictions (Fawagreh et al., 2014;
Yoosefzadeh-Najafabadi et al., 2023). Each decision tree is trained
on a different subset of the data, and their predictions are aggre-
gated to produce a final estimate (Yoosefzadeh-Najafabadi
et al., 2023). The RF algorithm operates by training multiple deci-
sion trees on different randomly selected subsets of the data,
thereby, reducing the risk of overfitting associated with individual
decision tree. Additionally, the randomness helps improve accu-
racy by creating a more diverse set of decision trees. During the
prediction phase, each trained decision tree contributes a predic-
tion, which is then averaged to generate the final prediction. As
such, RF harnesses the collective strength of multiple decision trees
to yield a more robust and accurate model (Fawagreh et al., 2014).
The general equation for a RF is expressed as follows (Equation 5):

Y =
1

n
∑
n

t =1

t Xð Þ (5)

where Y is the predicted value based on the input features X, N is
the number of decision trees in the ensemble, t is a single deci-
sion tree in the ensemble, and t(X ) is the predicted output of the
decision tree t for input features X.

Support vector regression (SVR)

Support Vector Regression is a linear regression algorithm that
uses support vector machine (SVM) as the predictive model
(Yoosefzadeh-Najafabadi, Rajcan, & Eskandari, 2022). Unlike linear
regression, which simply fits a straight line through the data, SVR
can capture nonlinear relationships by mapping the dependent
variable into a higher-dimensional space (Yoosefzadeh-
Najafabadi, Rajcan, & Eskandari, 2022). In SVR, the goal is to find
a function that best fits the given data. This function is repre-
sented as a hyperplane within a higher-dimensional space, and
the model is trained by minimizing an objective function. This
function, known as the objective function, is typically a quadratic
programming problem, as shown in equation (Equation 6):

minf w ,bð Þ= 1

2
�w2 þ C þ∑ li�t ið Þ2 (6)

where w is a vector of parameters, b is the bias term, C is a regu-
larization parameter, l(i) is the predicted output (denoted as y(x)),
and t(i) is the target output. The objective function is minimized by
adjusting the parameters w and b to their optimal values, which
are found using gradient descent.

To determine the optimal values, the parameters must satisfy
certain constraints. As an example, parameter vectors are typically
constrained to reside within a certain margin from the data points,
thereby defining a tolerance margin. Once the parameters are
determined, the resulting hyperplane is used to predict data
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points. As such, the model is trained by minimizing the objective
function, where the output of the model’s output is a function of
both the input data points and the parameters w and b. The goal
is to find the parameters that yield the lowest error when predict-
ing future data points.

Quantification of model performance and error estimations

In order to thoroughly evaluate each tested GS method, the
results of error estimation metrics were computed using a fivefold
cross-validation (CV) technique (Schaffer, 1993) with 10 repeti-
tions. The root mean squared error (RMSE) was calculated from
the mean and standard deviation values using Equation (7).

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ Y0�Y
� �2

n

s
(7)

where Y represents the observed value, Y0 stands for the predicted
value, and n is the number of observations.

Furthermore, the coefficient of determination (R2) value of
each trait was averaged over the number of repetitions to obtain
an overall R2 value. R2 values range between 0 and 1, with values
approaching 1 indicating a more accurate model fit, considered a
perfect fit (Equation 8).

R2 =
SST�SSE

SST
(8)

where SSE and SST represents the sum of squares for error and
total, respectively.

Reduce dimensionality using Monte Carlo Feature

Selection and Interdependency Discovery (MCFS-ID)

Monte Carlo Feature Selection and Interdependency Discovery
(MCFS-ID) was used to reduce dimensionality in genomic data. It
utilizes Monte Carlo simulations and statistical testing to identify
important features and interdependencies among all SNP vari-
ables, facilitating targeted and efficient dimensionality reduction
(Dramiński et al., 2011). The first step involves inputting the geno-
mic data into the algorithm. MCFS-ID then estimates a relative
importance of each SNP marker by constructing a different set of

trees from randomly selecting a subset of input variables (Dra-
miński et al., 2010). These trees undergo training and evaluation
in an inner loop using different training and testing datasets cre-
ated based on a selected subset of input variables (Figure 5). This
process is repeated multiple times to create a distribution of
mutual information scores, enabling the determination of the sta-
tistical significance of each feature (Dramiński et al., 2010). After
selecting the relevant features, MCFS-ID then proceeds to identify
interdependencies among them. This is achieved through a series
of statistical tests, including Pearson correlation and mutual infor-
mation analysis (Dramiński et al., 2010, 2011). The results of these
tests are used to construct a dependency network, offering a
visual representation of the relationships between the selected
features. Features that are highly interconnected in the network
are considered to have strong interdependencies, indicating their
importance in understanding the underlying structure of the data.

Multi-trait genome prediction

To enhance the predictive accuracy and efficacy of our genomic
selection strategies, a multi-trait GS approach was implemented
following the identification of the most effective ML algorithm
from our single-trait GS analyses. This multi-trait approach
focused on four key cannabinoids (CBD, CBG, CBC, and D9THC)
which are all biosynthetically derived from the precursor CBGA.
Each of these cannabinoids, along with their respective precur-
sors, was included in the analysis to harness synergistic effects
that could potentially enhance the predictive modeling. The geno-
typic data for these traits were integrated using the MCFS-ID
approach to refine our dataset, effectively reducing noise and
focusing on genotypic information most relevant to cannabinoid
biosynthesis.

Extracting putative candidate genes underlying

detected SNPs

The genes that may have the potential to be candidate genes were
extracted from the reference genome of C. sativa (cs10;
https://www.ncbi.nlm.nih.gov/assembly/GCA_900626175.2, acces-
sed on 28 March 2024). The flanking regions, 20 kb [based on
decay distance of linkage disequilibrium (LD) to its half
(Figure S1)], of peak SNPs linked with the trait of interest were
used to extract genes residing within those regions (de Ronne
et al., 2024). Additionally, in order to identify and understand the
biological mechanisms of the genes associated with the desired
trait, biomart from Ensembl Plants (Bolser et al., 2016) and Uni-
prot (UniProt Consortium, 2014) were used accordingly.

Visualizing and statistical analysis

The results were visualized using ggplot2 (Wickham, 2011), and
ggvis packages (Dennis, 2016) in the R software version 4.3.1. All
pre-processing steps and all description statistical procedures
were conducted using AllInOne preprocessing R shiny package
version 1.0.5 (Najafabadi et al., 2023). Also, all ML algorithms were
implemented using BWGS R package version 0.2.1 (Charmet
et al., 2020) and tidymodels R package version 1.2.0 (Kuhn
et al., 2020).
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Dramiński, M., Kierczak, M., Koronacki, J. & Komorowski, J. (2010) Monte

Carlo feature selection and interdependency discovery in supervised

classification. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T. & Kacprzyk, J.
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Montesinos-López, O.A., Montesinos-López, A., Pérez-Rodrı́guez, P.,
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