Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Mar 15;18(6):1539–1548. doi: 10.1093/emboj/18.6.1539

Identification of heparin-binding EGF-like growth factor as a target in intercellular regulation of epidermal basal cell growth by suprabasal retinoic acid receptors.

J H Xiao 1, X Feng 1, W Di 1, Z H Peng 1, L A Li 1, P Chambon 1, J J Voorhees 1
PMCID: PMC1171242  PMID: 10075925

Abstract

The role of retinoic acid receptors (RARs) in intercellular regulation of cell growth was assessed by targeting a dominant-negative RARalpha mutant (dnRARalpha) to differentiated suprabasal cells of mouse epidermis. dnRARalpha lacks transcriptional activation but not DNA-binding and receptor dimerization functions. Analysis of transgenic mice revealed that dnRARalpha dose-dependently impaired induction of basal cell proliferation and epidermal hyperplasia by all-trans RA (tRA). dnRARalpha formed heterodimers with endogenous retinoid X receptor-alpha (RXRalpha) over RA response elements in competition with remaining endogenous RARgamma-RXRalpha heterodimers, and dose-dependently impaired retinoid-dependent gene transcription. To identify genes regulated by retinoid receptors and involved in cell growth control, we analyzed the retinoid effects on expression of the epidermal growth factor (EGF) receptor, EGF, transforming growth factor-alpha, heparin-binding EGF-like growth factor (HB-EGF) and amphiregulin genes. In normal epidermis, tRA rapidly and selectively induced expression of HB-EGF but not the others. This induction occurred exclusively in suprabasal cells. In transgenic epidermis, dnRARalpha dose-dependently inhibited tRA induction of suprabasal HB-EGF and subsequent basal cell hyperproliferation. Together, our observations suggest that retinoid receptor heterodimers located in differentiated suprabasal cells mediate retinoid induction of HB-EGF, which in turn stimulates basal cell growth via intercellular signaling. These events may underlie retinoid action in epidermal regeneration during wound healing.

Full Text

The Full Text of this article is available as a PDF (541.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amos B., Lotan R. Retinoid-sensitive cells and cell lines. Methods Enzymol. 1990;190:217–225. doi: 10.1016/0076-6879(90)90026-w. [DOI] [PubMed] [Google Scholar]
  2. Brandaleone H., Papper E. THE EFFECT OF THE LOCAL AND ORAL ADMINISTRATION OF COD LIVER OIL ON THE RATE OF WOUND HEALING IN VITAMIN A-DEFICIENT AND NORMAL RATS. Ann Surg. 1941 Oct;114(4):791–798. doi: 10.1097/00000658-194110000-00020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996 Jul;10(9):940–954. [PubMed] [Google Scholar]
  4. Chen J. D., Evans R. M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature. 1995 Oct 5;377(6548):454–457. doi: 10.1038/377454a0. [DOI] [PubMed] [Google Scholar]
  5. Chen X., Raab G., Deutsch U., Zhang J., Ezzell R. M., Klagsbrun M. Induction of heparin-binding EGF-like growth factor expression during myogenesis. Activation of the gene by MyoD and localization of the transmembrane form of the protein on the myotube surface. J Biol Chem. 1995 Aug 4;270(31):18285–18294. doi: 10.1074/jbc.270.31.18285. [DOI] [PubMed] [Google Scholar]
  6. Chiba H., Clifford J., Metzger D., Chambon P. Specific and redundant functions of retinoid X Receptor/Retinoic acid receptor heterodimers in differentiation, proliferation, and apoptosis of F9 embryonal carcinoma cells. J Cell Biol. 1997 Nov 3;139(3):735–747. doi: 10.1083/jcb.139.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clifford J., Chiba H., Sobieszczuk D., Metzger D., Chambon P. RXRalpha-null F9 embryonal carcinoma cells are resistant to the differentiation, anti-proliferative and apoptotic effects of retinoids. EMBO J. 1996 Aug 15;15(16):4142–4155. [PMC free article] [PubMed] [Google Scholar]
  8. Craven N. M., Griffiths C. E. Topical retinoids and cutaneous biology. Clin Exp Dermatol. 1996 Jan;21(1):1–10. [PubMed] [Google Scholar]
  9. Damm K., Heyman R. A., Umesono K., Evans R. M. Functional inhibition of retinoic acid response by dominant negative retinoic acid receptor mutants. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2989–2993. doi: 10.1073/pnas.90.7.2989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dominey A. M., Wang X. J., King L. E., Jr, Nanney L. B., Gagne T. A., Sellheyer K., Bundman D. S., Longley M. A., Rothnagel J. A., Greenhalgh D. A. Targeted overexpression of transforming growth factor alpha in the epidermis of transgenic mice elicits hyperplasia, hyperkeratosis, and spontaneous, squamous papillomas. Cell Growth Differ. 1993 Dec;4(12):1071–1082. [PubMed] [Google Scholar]
  11. Downing M. T., Brigstock D. R., Luquette M. H., Crissman-Combs M., Besner G. E. Immunohistochemical localization of heparin-binding epidermal growth factor-like growth factor in normal skin and skin cancers. Histochem J. 1997 Oct;29(10):735–744. doi: 10.1023/a:1026417202351. [DOI] [PubMed] [Google Scholar]
  12. Durand B., Saunders M., Gaudon C., Roy B., Losson R., Chambon P. Activation function 2 (AF-2) of retinoic acid receptor and 9-cis retinoic acid receptor: presence of a conserved autonomous constitutive activating domain and influence of the nature of the response element on AF-2 activity. EMBO J. 1994 Nov 15;13(22):5370–5382. doi: 10.1002/j.1460-2075.1994.tb06872.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Durand B., Saunders M., Leroy P., Leid M., Chambon P. All-trans and 9-cis retinoic acid induction of CRABPII transcription is mediated by RAR-RXR heterodimers bound to DR1 and DR2 repeated motifs. Cell. 1992 Oct 2;71(1):73–85. doi: 10.1016/0092-8674(92)90267-g. [DOI] [PubMed] [Google Scholar]
  14. Feng X., Peng Z. H., Di W., Li X. Y., Rochette-Egly C., Chambon P., Voorhees J. J., Xiao J. H. Suprabasal expression of a dominant-negative RXR alpha mutant in transgenic mouse epidermis impairs regulation of gene transcription and basal keratinocyte proliferation by RAR-selective retinoids. Genes Dev. 1997 Jan 1;11(1):59–71. doi: 10.1101/gad.11.1.59. [DOI] [PubMed] [Google Scholar]
  15. Fisher G. J., Talwar H. S., Lin J., Lin P., McPhillips F., Wang Z., Li X., Wan Y., Kang S., Voorhees J. J. Retinoic acid inhibits induction of c-Jun protein by ultraviolet radiation that occurs subsequent to activation of mitogen-activated protein kinase pathways in human skin in vivo. J Clin Invest. 1998 Mar 15;101(6):1432–1440. doi: 10.1172/JCI2153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fisher G. J., Voorhees J. J. Molecular mechanisms of retinoid actions in skin. FASEB J. 1996 Jul;10(9):1002–1013. doi: 10.1096/fasebj.10.9.8801161. [DOI] [PubMed] [Google Scholar]
  17. Frangioni J. V., Moghal N., Stuart-Tilley A., Neel B. G., Alper S. L. The DNA binding domain of retinoic acid receptor beta is required for ligand-dependent suppression of proliferation. Application of general purpose mammalian coexpression vectors. J Cell Sci. 1994 Apr;107(Pt 4):827–838. doi: 10.1242/jcs.107.4.827. [DOI] [PubMed] [Google Scholar]
  18. Hashimoto K., Higashiyama S., Asada H., Hashimura E., Kobayashi T., Sudo K., Nakagawa T., Damm D., Yoshikawa K., Taniguchi N. Heparin-binding epidermal growth factor-like growth factor is an autocrine growth factor for human keratinocytes. J Biol Chem. 1994 Aug 5;269(31):20060–20066. [PubMed] [Google Scholar]
  19. Hunt T. K. Vitamin A and wound healing. J Am Acad Dermatol. 1986 Oct;15(4 Pt 2):817–821. doi: 10.1016/s0190-9622(86)70238-7. [DOI] [PubMed] [Google Scholar]
  20. Imakado S., Bickenbach J. R., Bundman D. S., Rothnagel J. A., Attar P. S., Wang X. J., Walczak V. R., Wisniewski S., Pote J., Gordon J. S. Targeting expression of a dominant-negative retinoic acid receptor mutant in the epidermis of transgenic mice results in loss of barrier function. Genes Dev. 1995 Feb 1;9(3):317–329. doi: 10.1101/gad.9.3.317. [DOI] [PubMed] [Google Scholar]
  21. Isogai M., Chiantore M. V., Haque M., Scita G., De Luca L. M. Expression of a dominant-negative retinoic acid receptor construct reduces retinoic acid metabolism and retinoic acid-induced inhibition of NIH-3T3 cell growth. Cancer Res. 1997 Oct 15;57(20):4460–4464. [PubMed] [Google Scholar]
  22. Kang S., Duell E. A., Fisher G. J., Datta S. C., Wang Z. Q., Reddy A. P., Tavakkol A., Yi J. Y., Griffiths C. E., Elder J. T. Application of retinol to human skin in vivo induces epidermal hyperplasia and cellular retinoid binding proteins characteristic of retinoic acid but without measurable retinoic acid levels or irritation. J Invest Dermatol. 1995 Oct;105(4):549–556. doi: 10.1111/1523-1747.ep12323445. [DOI] [PubMed] [Google Scholar]
  23. Kastner P., Mark M., Chambon P. Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell. 1995 Dec 15;83(6):859–869. doi: 10.1016/0092-8674(95)90202-3. [DOI] [PubMed] [Google Scholar]
  24. King L. E., Jr, Gates R. E., Stoscheck C. M., Nanney L. B. The EGF/TGF alpha receptor in skin. J Invest Dermatol. 1990 Jun;94(6 Suppl):164S–170S. doi: 10.1111/1523-1747.ep12876141. [DOI] [PubMed] [Google Scholar]
  25. Klein E. S., Pino M. E., Johnson A. T., Davies P. J., Nagpal S., Thacher S. M., Krasinski G., Chandraratna R. A. Identification and functional separation of retinoic acid receptor neutral antagonists and inverse agonists. J Biol Chem. 1996 Sep 13;271(37):22692–22696. doi: 10.1074/jbc.271.37.22692. [DOI] [PubMed] [Google Scholar]
  26. McCarthy D. W., Downing M. T., Brigstock D. R., Luquette M. H., Brown K. D., Abad M. S., Besner G. E. Production of heparin-binding epidermal growth factor-like growth factor (HB-EGF) at sites of thermal injury in pediatric patients. J Invest Dermatol. 1996 Jan;106(1):49–56. doi: 10.1111/1523-1747.ep12327214. [DOI] [PubMed] [Google Scholar]
  27. Minucci S., Ozato K. Retinoid receptors in transcriptional regulation. Curr Opin Genet Dev. 1996 Oct;6(5):567–574. doi: 10.1016/s0959-437x(96)80085-2. [DOI] [PubMed] [Google Scholar]
  28. Nagy L., Thomazy V. A., Heyman R. A., Davies P. J. Retinoid-induced apoptosis in normal and neoplastic tissues. Cell Death Differ. 1998 Jan;5(1):11–19. doi: 10.1038/sj.cdd.4400337. [DOI] [PubMed] [Google Scholar]
  29. Perlmann T., Evans R. M. Nuclear receptors in Sicily: all in the famiglia. Cell. 1997 Aug 8;90(3):391–397. doi: 10.1016/s0092-8674(00)80498-5. [DOI] [PubMed] [Google Scholar]
  30. Pfahl M., Chytil F. Regulation of metabolism by retinoic acid and its nuclear receptors. Annu Rev Nutr. 1996;16:257–283. doi: 10.1146/annurev.nu.16.070196.001353. [DOI] [PubMed] [Google Scholar]
  31. Raab G., Klagsbrun M. Heparin-binding EGF-like growth factor. Biochim Biophys Acta. 1997 Dec 9;1333(3):F179–F199. doi: 10.1016/s0304-419x(97)00024-3. [DOI] [PubMed] [Google Scholar]
  32. Rogers M. B. Life-and-death decisions influenced by retinoids. Curr Top Dev Biol. 1997;35:1–46. doi: 10.1016/s0070-2153(08)60255-0. [DOI] [PubMed] [Google Scholar]
  33. Saitou M., Sugai S., Tanaka T., Shimouchi K., Fuchs E., Narumiya S., Kakizuka A. Inhibition of skin development by targeted expression of a dominant-negative retinoic acid receptor. Nature. 1995 Mar 9;374(6518):159–162. doi: 10.1038/374159a0. [DOI] [PubMed] [Google Scholar]
  34. Shibata H., Spencer T. E., Oñate S. A., Jenster G., Tsai S. Y., Tsai M. J., O'Malley B. W. Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Recent Prog Horm Res. 1997;52:141–165. [PubMed] [Google Scholar]
  35. Stoll S., Garner W., Elder J. Heparin-binding ligands mediate autocrine epidermal growth factor receptor activation In skin organ culture. J Clin Invest. 1997 Sep 1;100(5):1271–1281. doi: 10.1172/JCI119641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Strigini L., Ryan T. Wound healing in elderly human skin. Clin Dermatol. 1996 Mar-Apr;14(2):197–206. doi: 10.1016/0738-081x(95)00155-9. [DOI] [PubMed] [Google Scholar]
  37. Torchia J., Glass C., Rosenfeld M. G. Co-activators and co-repressors in the integration of transcriptional responses. Curr Opin Cell Biol. 1998 Jun;10(3):373–383. doi: 10.1016/s0955-0674(98)80014-8. [DOI] [PubMed] [Google Scholar]
  38. Vassar R., Fuchs E. Transgenic mice provide new insights into the role of TGF-alpha during epidermal development and differentiation. Genes Dev. 1991 May;5(5):714–727. doi: 10.1101/gad.5.5.714. [DOI] [PubMed] [Google Scholar]
  39. Wan H., Dawson M. I., Hong W. K., Lotan R. Overexpressed activated retinoid X receptors can mediate growth inhibitory effects of retinoids in human carcinoma cells. J Biol Chem. 1998 Oct 9;273(41):26915–26922. doi: 10.1074/jbc.273.41.26915. [DOI] [PubMed] [Google Scholar]
  40. Xiao J. H., Durand B., Chambon P., Voorhees J. J. Endogenous retinoic acid receptor (RAR)-retinoid X receptor (RXR) heterodimers are the major functional forms regulating retinoid-responsive elements in adult human keratinocytes. Binding of ligands to RAR only is sufficient for RAR-RXR heterodimers to confer ligand-dependent activation of hRAR beta 2/RARE (DR5). J Biol Chem. 1995 Feb 17;270(7):3001–3011. doi: 10.1074/jbc.270.7.3001. [DOI] [PubMed] [Google Scholar]
  41. Yao T. P., Oh S. P., Fuchs M., Zhou N. D., Ch'ng L. E., Newsome D., Bronson R. T., Li E., Livingston D. M., Eckner R. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell. 1998 May 1;93(3):361–372. doi: 10.1016/s0092-8674(00)81165-4. [DOI] [PubMed] [Google Scholar]
  42. de Thé H., Vivanco-Ruiz M. M., Tiollais P., Stunnenberg H., Dejean A. Identification of a retinoic acid responsive element in the retinoic acid receptor beta gene. Nature. 1990 Jan 11;343(6254):177–180. doi: 10.1038/343177a0. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES