Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1999 Jun 15;18(12):3241–3248. doi: 10.1093/emboj/18.12.3241

Protein tyrosine kinases in bacterial pathogens are associated with virulence and production of exopolysaccharide.

O Ilan 1, Y Bloch 1, G Frankel 1, H Ullrich 1, K Geider 1, I Rosenshine 1
PMCID: PMC1171405  PMID: 10369665

Abstract

In eukaryotes, tyrosine protein phosphorylation has been studied extensively, while in bacteria, it is considered rare and is poorly defined. We demonstrate that Escherichia coli possesses a gene, etk, encoding an inner membrane protein that catalyses tyrosine autophosphorylation and phosphorylation of a synthetic co-polymer poly(Glu:Tyr). This protein tyrosine kinase (PTK) was termed Ep85 or Etk. All the E.coli strains examined possessed etk; however, only a subset of pathogenic strains expressed it. Etk is homologous to several bacterial proteins including the Ptk protein of Acinetobacter johnsonii, which is the only other known prokaryotic PTK. Other Etk homologues are AmsA of the plant pathogen Erwinia amylovora and Orf6 of the human pathogen Klebsiella pneumoniae. These proteins are involved in the production of exopolysaccharide (EPS) required for virulence. We demonstrated that like Etk, AmsA and probably also Orf6 are PTKs. Taken together, these findings suggest that tyrosine protein phosphorylation in prokaryotes is more common than was appreciated previously, and that Etk and its homologues define a distinct protein family of prokaryotic membrane-associated PTKs involved in EPS production and virulence. These prokaryotic PTKs may serve as a new target for the development of new antibiotics.

Full Text

The Full Text of this article is available as a PDF (338.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arakawa Y., Wacharotayankun R., Nagatsuka T., Ito H., Kato N., Ohta M. Genomic organization of the Klebsiella pneumoniae cps region responsible for serotype K2 capsular polysaccharide synthesis in the virulent strain Chedid. J Bacteriol. 1995 Apr;177(7):1788–1796. doi: 10.1128/jb.177.7.1788-1796.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atkinson M., Allen C., Sequeira L. Tyrosine phosphorylation of a membrane protein from Pseudomonas solanacearum. J Bacteriol. 1992 Jul;174(13):4356–4360. doi: 10.1128/jb.174.13.4356-4360.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Becker A., Kleickmann A., Keller M., Arnold W., Pühler A. Identification and analysis of the Rhizobium meliloti exoAMONP genes involved in exopolysaccharide biosynthesis and mapping of promoters located on the exoHKLAMONP fragment. Mol Gen Genet. 1993 Nov;241(3-4):367–379. doi: 10.1007/BF00284690. [DOI] [PubMed] [Google Scholar]
  4. Bernhard F., Coplin D. L., Geider K. A gene cluster for amylovoran synthesis in Erwinia amylovora: characterization and relationship to cps genes in Erwinia stewartii. Mol Gen Genet. 1993 May;239(1-2):158–168. doi: 10.1007/BF00281614. [DOI] [PubMed] [Google Scholar]
  5. Blattner F. R., Plunkett G., 3rd, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K., Mayhew G. F. The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453–1462. doi: 10.1126/science.277.5331.1453. [DOI] [PubMed] [Google Scholar]
  6. Bugert P., Geider K. Characterization of the amsI gene product as a low molecular weight acid phosphatase controlling exopolysaccharide synthesis of Erwinia amylovora. FEBS Lett. 1997 Jan 3;400(2):252–256. doi: 10.1016/s0014-5793(96)01398-1. [DOI] [PubMed] [Google Scholar]
  7. Bugert P., Geider K. Molecular analysis of the ams operon required for exopolysaccharide synthesis of Erwinia amylovora. Mol Microbiol. 1995 Mar;15(5):917–933. doi: 10.1111/j.1365-2958.1995.tb02361.x. [DOI] [PubMed] [Google Scholar]
  8. Cook D., Sequeira L. Genetic and biochemical characterization of a Pseudomonas solanacearum gene cluster required for extracellular polysaccharide production and for virulence. J Bacteriol. 1991 Mar;173(5):1654–1662. doi: 10.1128/jb.173.5.1654-1662.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cozzone A. J. Post-translational modification of proteins by reversible phosphorylation in prokaryotes. Biochimie. 1998 Jan;80(1):43–48. doi: 10.1016/s0300-9084(98)80055-2. [DOI] [PubMed] [Google Scholar]
  10. Duclos B., Marcandier S., Cozzone A. J. Chemical properties and separation of phosphoamino acids by thin-layer chromatography and/or electrophoresis. Methods Enzymol. 1991;201:10–21. doi: 10.1016/0076-6879(91)01004-l. [DOI] [PubMed] [Google Scholar]
  11. Farris M., Grant A., Richardson T. B., O'Connor C. D. BipA: a tyrosine-phosphorylated GTPase that mediates interactions between enteropathogenic Escherichia coli (EPEC) and epithelial cells. Mol Microbiol. 1998 Apr;28(2):265–279. doi: 10.1046/j.1365-2958.1998.00793.x. [DOI] [PubMed] [Google Scholar]
  12. Frasch S. C., Dworkin M. Tyrosine phosphorylation in Myxococcus xanthus, a multicellular prokaryote. J Bacteriol. 1996 Jul;178(14):4084–4088. doi: 10.1128/jb.178.14.4084-4088.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Freestone P., Trinei M., Clarke S. C., Nyström T., Norris V. Tyrosine phosphorylation in Escherichia coli. J Mol Biol. 1998 Jun 26;279(5):1045–1051. doi: 10.1006/jmbi.1998.1836. [DOI] [PubMed] [Google Scholar]
  14. Grangeasse C., Doublet P., Vaganay E., Vincent C., Deléage G., Duclos B., Cozzone A. J. Characterization of a bacterial gene encoding an autophosphorylating protein tyrosine kinase. Gene. 1997 Dec 19;204(1-2):259–265. doi: 10.1016/s0378-1119(97)00554-4. [DOI] [PubMed] [Google Scholar]
  15. Grangeasse C., Doublet P., Vincent C., Vaganay E., Riberty M., Duclos B., Cozzone A. J. Functional characterization of the low-molecular-mass phosphotyrosine-protein phosphatase of Acinetobacter johnsonii. J Mol Biol. 1998 May 1;278(2):339–347. doi: 10.1006/jmbi.1998.1650. [DOI] [PubMed] [Google Scholar]
  16. Hanks S. K., Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 1995 May;9(8):576–596. [PubMed] [Google Scholar]
  17. Hubbard S. R., Mohammadi M., Schlessinger J. Autoregulatory mechanisms in protein-tyrosine kinases. J Biol Chem. 1998 May 15;273(20):11987–11990. doi: 10.1074/jbc.273.20.11987. [DOI] [PubMed] [Google Scholar]
  18. Kelly-Wintenberg K., South S. L., Montie T. C. Tyrosine phosphate in a- and b-type flagellins of Pseudomonas aeruginosa. J Bacteriol. 1993 Apr;175(8):2458–2461. doi: 10.1128/jb.175.8.2458-2461.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Leigh J. A., Walker G. C. Exopolysaccharides of Rhizobium: synthesis, regulation and symbiotic function. Trends Genet. 1994 Feb;10(2):63–67. doi: 10.1016/0168-9525(94)90151-1. [DOI] [PubMed] [Google Scholar]
  20. Nikaido H. Isolation of outer membranes. Methods Enzymol. 1994;235:225–234. doi: 10.1016/0076-6879(94)35143-0. [DOI] [PubMed] [Google Scholar]
  21. Ofek I., Kabha K., Athamna A., Frankel G., Wozniak D. J., Hasty D. L., Ohman D. E. Genetic exchange of determinants for capsular polysaccharide biosynthesis between Klebsiella pneumoniae strains expressing serotypes K2 and K21a. Infect Immun. 1993 Oct;61(10):4208–4216. doi: 10.1128/iai.61.10.4208-4216.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Reuber T. L., Walker G. C. Biosynthesis of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti. Cell. 1993 Jul 30;74(2):269–280. doi: 10.1016/0092-8674(93)90418-p. [DOI] [PubMed] [Google Scholar]
  23. Rosenshine I., Donnenberg M. S., Kaper J. B., Finlay B. B. Signal transduction between enteropathogenic Escherichia coli (EPEC) and epithelial cells: EPEC induces tyrosine phosphorylation of host cell proteins to initiate cytoskeletal rearrangement and bacterial uptake. EMBO J. 1992 Oct;11(10):3551–3560. doi: 10.1002/j.1460-2075.1992.tb05438.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schlaepfer D. D., Hunter T. Integrin signalling and tyrosine phosphorylation: just the FAKs? Trends Cell Biol. 1998 Apr;8(4):151–157. doi: 10.1016/s0962-8924(97)01172-0. [DOI] [PubMed] [Google Scholar]
  25. South S. L., Nichols R., Montie T. C. Tyrosine kinase activity in Pseudomonas aeruginosa. Mol Microbiol. 1994 Jun;12(6):903–910. doi: 10.1111/j.1365-2958.1994.tb01078.x. [DOI] [PubMed] [Google Scholar]
  26. Stevenson G., Andrianopoulos K., Hobbs M., Reeves P. R. Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol. 1996 Aug;178(16):4885–4893. doi: 10.1128/jb.178.16.4885-4893.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Su X. D., Taddei N., Stefani M., Ramponi G., Nordlund P. The crystal structure of a low-molecular-weight phosphotyrosine protein phosphatase. Nature. 1994 Aug 18;370(6490):575–578. doi: 10.1038/370575a0. [DOI] [PubMed] [Google Scholar]
  28. Tzahar E., Yarden Y. The ErbB-2/HER2 oncogenic receptor of adenocarcinomas: from orphanhood to multiple stromal ligands. Biochim Biophys Acta. 1998 Feb 20;1377(1):M25–M37. doi: 10.1016/s0304-419x(97)00032-2. [DOI] [PubMed] [Google Scholar]
  29. Williams J. C., Wierenga R. K., Saraste M. Insights into Src kinase functions: structural comparisons. Trends Biochem Sci. 1998 May;23(5):179–184. doi: 10.1016/s0968-0004(98)01202-x. [DOI] [PubMed] [Google Scholar]
  30. Zhang C. C. Bacterial signalling involving eukaryotic-type protein kinases. Mol Microbiol. 1996 Apr;20(1):9–15. doi: 10.1111/j.1365-2958.1996.tb02483.x. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES