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Abstract. Endometriosis (EM) is a chronic inflammatory 
disease that is one of the most common causes of gyne‑
cological systemic lesions in women before menopause. 
The most representative histological feature of EM is that 
the endometrium appears outside of the uterine cavity, 
often in the ovary. Although it is generally accepted that 
the epithelial and stromal cells of the ectopic endometrium 
are not malignant, they still have numerous similarities 
to malignant tumors, including considerable changes 
to the immune microenvironment (immune monitoring 
disorder), the creation of a specific hormone environment, 
high levels of oxidative stress, chronic inflammation and 
abnormal immune cell regulation. The pathogenesis of EM 
is not fully understood, which makes it difficult to identify 
specific biomarkers and potential therapeutic targets for 
early disease diagnosis and effective treatment. However, 
considerable progress has been made in this field over the 
past few decades. The purpose of the present review is to 
summarize the confirmed and potential biomarkers for 
EM, and to identify potential therapeutic targets based on 
changes in immunological factors (including natural killer 
cells, macrophages, the complement system, miRNA and 
P‑selectin) in the ectopic endometrial tissue. It is hoped that 
this work can be used as the basis for identifying accurate 
diagnostic markers for EM and developing personalized 
immune‑targeted therapy.

Contents

1. Introduction
2. NK cells
3. Macrophages
4. Complement system
5. Sex steroid hormones
6. P‑selectin
7. Future perspectives
8. Conclusion

1. Introduction

Endometriosis (EM) is a common disease of the female repro‑
ductive system in which endometrial tissue exists outside of 
the uterus. Current estimates suggest that the total number of 
women diagnosed with endometriosis worldwide is as high as 
190 million (1,2). These ectopic endometrial tissues are usually 
found in the ovary, ovarian fossa, uterosacral ligament, and both 
the anterior and posterior compartments of the pelvis (3‑5). 
Although EM is recognized as benign cell proliferation, it has 
characteristics similar to malignant tumors, such as progressive 
and invasive growth, genetic instability, excessive proliferation, 
estrogen‑dependent growth and a tendency to metastasize (6). 
Studies over the past few decades have shown that there is a 
correlation between EM and susceptibility to a variety of malig‑
nancies, including endometrioid carcinoma, clear cell carcinoma 
and low‑grade serous ovarian cancer (7,8). It has also been 
reported that multifocal EM often presents with clonal growth 
and an increased mutation load, which are similar characteris‑
tics to cancer (9). The ectopic epithelial cells of patients with 
advanced EM even show signs of atypical hyperplasia. Typical 
changes of EM, as reported in the studies by Czernobilsky and 
Morris (10), and LeGrenade and Silverberg (11), which are used 
as diagnostic criteria in most studies (6), include three features: 
i) Enlarged hyperchromatic or morbid nuclei with moderate to 
considerable pleomorphism; ii) increased nuclear:cytoplasmic 
ratio; and iii) crowding, stratification or tufting of cells. This 
indicates that EM may be a transitional form between a benign 
and malignant lesion.

A delayed clinical diagnosis of EM is common (12), 
which may lead to disease‑associated deterioration, a poor 
prognosis and an increased recurrence rate. Patients with at 
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least one of the following symptoms may be candidates for 
an EM diagnosis: i) Dysmenorrhea that affects daily activi‑
ties and life; ii) chronic pelvic pain and pain during or after 
intercourse; iii) gastrointestinal symptoms associated with 
the menstrual cycle (especially painful bowel movements); 
iv) urinary symptoms associated with the menstrual cycle 
(particularly hematuria or painful urination); and v) infertility 
in combination with at least one of the aforementioned 
symptoms. 

The actual prevalence of EM among adult women remains 
unknown (13). The prevalence of EM in infertile women is 
1.5‑5%, and the prevalence of EM in women who undergo 
sterilization can range from 2‑68% (14). For women who suffer 
from pelvic pain, the rate of identifying EM lesions during 
laparoscopy can range from 15 to 75% (15). EM invading 
other organs is often accompanied by specific symptoms, such 
as frequent bowel movements, constipation, hematochezia, 
painful bowel movements or bowel cramps, in the setting of 
intestinal EM (16). Other ancillary examinations, including 
ultrasound, MRI, cystoscopy, enteroscopy, transintestinal 
ultrasound and biopsy are frequently used in the clinical 
diagnosis of EM (16‑19). No specific biomarker is currently 
capable of diagnosing EM. 

The general purpose of EM therapy is to reduce and 
eliminate lesions and pain, improve and promote fertility, 
and reduce and avoid recurrence. Treatments should strictly 
follow the following principles: i) Clinical problem‑oriented, 
patient‑centered, comprehensive long‑term management 
according to different age stages; ii) empirical drug therapy 
should be started as early as possible based on the clinical 
diagnosis; iii) the timing of surgery should be standardized 
and attention should be paid to the protection of ovarian 
function and fertility to maximize the benefits of surgery; 
iv) after conservative surgery, long‑term drug management 
and comprehensive treatment should be used to prevent recur‑
rence; and v) regular review is recommended. Patients with 
considerable risk factors for malignant transformation should 
receive additional attention to avoid a missed or delayed 
diagnosis. 

Medical and surgical treatments are both common in the 
clinical management of EM (17). Long‑term management of EM 
should maximize the efficacy of drug therapies by suppressing 
the activity and differentiation of lymphocytes, forming an 
in vivo hypoestrogenic environment and relieving pain (17,20). 
Five main types of drugs are included in the common medical 
management of EM: Non‑steroidal anti‑inflammatory drugs, 
progestins, combined oral contraceptives (COCs), gonado‑
tropin‑releasing hormone agonists (GnRH‑a) and traditional 
Chinese medicine (21‑23). Surgical treatment is recommended 
for patients who are infertile, who have adnexal cysts with a 
diameter >4 cm and who are unresponsive to medical treat‑
ment (24). Different types of surgery are carried out according 
to the preoperative evaluation and personal needs of the 
patient. Lesion resection (or conservative surgery), which is 
mainly conducted laparoscopically, preserves reproductive 
function (17,25). Hysterectomy is suitable for patients with 
severe symptoms or those at a high risk of recurrence, who 
have no reproductive requirements but wish to preserve their 
ovarian endocrine function. Hysterectomy and bilateral adnex‑
ectomy are recommended for patients with severe symptoms, a 

high risk of recurrence, no reproductive requirements and who 
are unresponsive to drug therapies (25). Since EM is prone to 
relapse and has a considerable impact on female fertility (26), 
preserving the reproductive ability and endocrine function 
of the ovaries and uterus, and preventing disease recurrence 
should be the top priority of EM management. However, a 
more thorough understanding and interpretation of the patho‑
genesis and etiology of EM is required to make the most of 
current medical treatments and to innovate new techniques for 
achieving an improved outcome.

The origin and pathogenesis of EM remains unclear. At 
present, the most commonly accepted theory is Sampson's 
retrograde menstruation theory, in which menstrual debris 
may be transferred to the peritoneal cavity through the reverse 
peristalsis of the fallopian tube (27,28). However, it is argued 
that retrograde menstruation is widespread in healthy women, 
and that retrograde menstruation alone does not necessarily 
lead to EM (29). 

Etiological study of EM shows that it is a multifactorial 
disease. Pathological studies have shown that the immune 
microenvironment in the ectopic endometrium is consider‑
ably altered. Researchers found that there were considerable 
abnormalities in the immune surveillance system of ectopic 
endometrial tissue, which permits its implantation into the 
peritoneal cavity without clearance by immune tissue (30‑32). 
Ectopic endometrial tissue not only promotes an oxidative 
stress response and chronic inflammation in the ectopic 
areas, but also promotes the aggregation and activation of 
macrophages, thus inducing the production and release of 
the growth factors, angiogenic factors and inflammatory 
cytokines secreted by macrophages. This may also be the 
reason why EM effects fusion of the spermatocyte and oocyte, 
embryo implantation and embryo development, resulting in 
reproductive disorders (33‑35).

The ectopic endometrium also has an abnormal inflam‑
matory hormone environment that is characterized by local 
estrogen levels that are increased several‑fold when compared 
to that of the peripheral blood. This results in a series of 
cellular and cytokine responses that include cell proliferation 
and the release of various immune and inflammatory factors, 
such as tumor necrosis factor‑α (TNF‑α), transforming growth 
factor (TGF)‑β1, interleukin (IL)‑1, IL‑6, IL‑8 and IL‑10 (36). 
Possible subsequent clinical outcomes include an acute inflam‑
matory response, pain (including dysmenorrhea, chronic pelvic 
pain and dyspareunia), gastrointestinal symptoms (painful 
bowel movements) and urinary symptoms (hematuria) that are 
associated with the menstrual cycle, as well as EM‑associated 
infertility (35,37‑40) (Fig. 1).

Researchers therefore hypothesize that EM is not only 
a gynecological disease, but also a chronic inflammatory 
systemic disease that is associated with immunity. Findings 
that support this include increases in non‑specific inflamma‑
tory markers, such as CA‑125 and CRP, and the presence of 
antinuclear antibodies in the patient's peripheral blood (40‑43). 
Immune cells and their products are typically able to detect and 
eliminate abnormal cells (44). Considerable changes have been 
found in the regulation of various immune cells in patients 
with EM, including downregulation of the cytotoxicity of 
natural killer (NK) cells, infiltration and activation of macro‑
phages, infiltration and dysfunction of T and B lymphocytes, 
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activation of polyclonal B lymphocytes, impaired apoptosis, 
dysfunction of Th1 and B cells, and translocation of T regu‑
latory cells (45‑48). This abnormal immune cell regulation 
provides various targets for EM therapies. The inhibition of 
NK cells and the abnormal activation of macrophages are 
considered key factors in the progression of EM, and therefore 
potential targets for EM immunotherapy (49‑51). In addition 
to the requirement for a favorable immune environment for 
the survival of ectopic endometrial tissue, hypoxia stress and 
adhesiveness are two additional obstacles for the successful 
implantation of ectopic endometrial tissue. In a previous study, 
increased levels of hypoxia inducible factor‑1α (HIF‑1α) were 
observed in ectopic endometrial tissues compared with those 
in normal endometrium (52). HIF‑1α is considered the best 
biomarker for tissue hypoxia and has an important role in 
the hypoxic response to ectopic tissues, including cell adhe‑
sion, angiogenesis and cell proliferation (53). As predicted, 
the inhibition of HIF‑1α production in a mouse model of EM 
induced by suturing slices of uterus to intestinal mesenteric 
vessels could inhibit EM progression (54). HIF‑1α could there‑
fore function as the molecular target of EM therapy. Previous 
studies have shown that hypoxia promotes the release of 
angiogenic factors, such as vascular endothelial growth factor 
(VEGF‑A), and inflammatory cytokines, such as IL‑1β, TNF, 
TGF‑β and IL‑8 (55‑57). Some responses to hypoxia interact 
with and regulate the activity of certain types of immune cells. 
For example, hypoxia‑induced TGF‑β elevation in the perito‑
neal fluid of patients with EM was found to be associated with 
the suppression of NK cells (58). Activation of macrophages in 

the peritoneal fluid in response to hypoxia was also found to be 
associated with and possibly contributed to the reduced cyto‑
toxicity of NK cells in patients with EM (59). The programmed 
death‑1 (PD‑1)/programmed death‑ligand 1 (PD‑L1) pathway 
was also found to be involved in the immune tolerance that 
contributes to the pathogenesis of EM (60). These results 
suggest that not only are NK cells potential therapeutic targets 
for EM, but that immune checkpoint blocking to avoid NK 
cell immunosuppression can be used to investigate alternative 
methods for treating EM. 

The normal endometrium contains various immune 
cells that change in distribution and number throughout the 
menstrual cycle (61). The normal periodic changes in immune 
cells are dysregulated in EM, considerably impacting both the 
composition and function of immune cells. Lymphocytes and 
macrophages are the main components in the lesion micro‑
environment. Compared with healthy women, women with 
EM have a considerably increased proportion of peritoneal 
macrophages in the peritoneal fluid, which contributes to the 
proliferation and survival of ectopic endometrial cells (62). 
The levels of the main components of potential biomarkers in 
the peritoneal fluid are also increased in the setting of EM, 
including phosphatidylcholine, phenylalanine isoleucine, 
glycidyl deproteinization, placental protein 14, midkine, IL‑8 
and osteoprotegerin (59,60). Changes in the composition and 
proportion of certain molecules in the peritoneal fluid may 
lead to impaired T cell and NK cell cytotoxicity (47,63). The 
aforementioned changes in the immune environment help to 
establish an immunosuppressive microenvironment that is 

Figure 1. Changes in the microenvironment of EM. Alterations within the EM microenvironment can be categorized into two main classes. The first class 
pertains to the abnormal inflammatory environment, which encompasses immune cells, the complement system and P‑selectin. The second class involves the 
abnormal hormonal environment, with particular emphasis on estrogen and progestin. NK, natural killer.
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conducive to the proliferation and invasion of epithelial cells and 
stromal cells into the ectopic endometrial tissue, and supports 
angiogenesis in the ectopic microenvironment (64,65).

The treatment for EM includes surgical resection and 
hormone therapy, both of which have advantages and disad‑
vantages. Surgical treatment can remove the ectopic cyst and 
identify the location of the lesion. However, surgical resection 
without long‑term medical treatment has a high EM recur‑
rence rate and a decline in ovarian function. Medical therapy 
can slow the progression of EM to a certain extent, delay the 
need for surgery and avoid surgical complications. However, it 
cannot clarify the nature of the lesion or effectively reduce the 
lesion size. As specific targeted immunotherapy is usually not 
universal and there is not enough experimental validation, it 
may be potentially effective in this domain and deserves more 
attention (66,67).

2. NK cells

Function and regulation of NK cells. NK cells are large 
granular lymphocytes that are characterized by CD56+, CD16+/‑ 
and CD57+/‑ expression, and positivity for natural cytotoxicity 
trigger receptor 1 (NCR1) , otherwise known as CD335, but 
not CD3 or surface T cell receptor (68,69). 

NK cells can be divided by their expression level of 
CD56 into cd56bright and cd56dim, which have increased 
and reduced expression levels of CD56, respectively. 
Cd56bright NK cells produce more abundant cytokines, 
while cd56dim NK cells have increased cytotoxicity and 
increased expression levels of FC γ receptor III (fcgr3), 
also known as CD16 (70,71). NK cells spontaneously 
recognize and eliminate infected, ectopic, tumorigenic and 
stress responsive cells so as to automatically monitor for 
viral infections, ectopic tissue and malignant cells (72‑74). 
Repeated exposure to the same target results in increased 
accumulation of NK cells and the production of a specific 
recall response by NK cells that is characterized by the 
enhancement of the functional activity of NK cells against 
the target (75‑77). The binding of inhibitory killer cell 
immunoglobulin‑like receptor (KIR) on NK cells with MHC 
class 1 or human leukocyte antigen (HLA)‑1 (KIR/HLA‑1) 
inhibits the activation of NK cells and allow for further 
intrinsic interactions. KIR therefore has an important role 
in distinguishing autologous cells from diseased and foreign 
cells to avoid non‑selective killing of autologous healthy 
cells (78,79). The maturation and cytotoxic function of NK 
cells is based on the interactions between KIR and autolo‑
gous MHC molecules, which is called licensing (80). Once 
licensed and functionally mature, NK cells are inhibited 
by inhibitory receptors that bind to the autologous MHC. 
Cells without MHC class 1 expression will be eliminated 
by activated NK cells (81). If NK cells are not stimulated 
by interaction with autologous MHC they may lose their 
normal function (82). However, the inhibition of KIRs and 
MHC is not absolute in mature NK cells and can also be 
eliminated or offset by a much stronger active stimulator. 
Other MHC receptors are also involved in NK cell cyto‑
toxicity regulation against target cells, such as leukocyte 
immunoglobulin‑like receptor subfamily B (LILRB) and 
natural killer group protein 2 (NKG2) (83‑85).

Among the receptors that activate NK cells, FCGR3, 
which is expressed in almost all NK cells, is key for antibody 
dependent cytotoxicity. FCGR3 expression levels alone are 
sufficient to induce interferon γ and TNF, making it is one 
of the most effective activating receptors of NK cells. Other 
receptors that can activate NK cell cytotoxicity include NCRs, 
which are divided into NCR1, NCR2 and NCR3 (or NKp46, 
NKp44 and NKp30, respectively) (86).

In addition to licensing through the interaction between 
receptors on the surface of NK cells and the autoantibodies 
of the body, exposure to cytokines is also essential to activate 
the cytotoxicity of immature NK cells and promote cytokine 
secretion (87). IL‑2 and IL‑15 secretion by macrophages can 
activate and trigger the maturation of NK cells and promote 
their proliferation (88‑90). Simultaneous exposure to IL‑12 
and IL‑18 is not only able to activate NK cells, but can promote 
IFN‑γ secretion (91,92). Conversely, increased interferon 
secretion can also enhance the cytotoxicity of NK cells, such 
as the anti‑tumor response of NK cells that is mediated by the 
cyclic GMP‑AMP synthase (cGAS)‑stimulator of interferon 
genes (STING) pathway activation (93). Activated NK cells 
can induce apoptosis by releasing cytolytic particles against 
target cells. They can also by cytotoxic to target cells through 
a Fas L‑mediated mechanism with the help of the CD95 
receptors on the surface of target cells (94,95). 

NK cells in EM. Several reports have shown that NK cells 
in patients with EM have reduced abilities both in clearing 
out of ectopic endometrium and in participating in local and 
systemic immunity, which creates a favorable environment for 
the survival and growth of ectopic endometrial tissue (96‑98). 
NK cytotoxicity decreases not only in ectopic endometrial 
tissue, but also in the peripheral blood and peritoneal fluid (99). 

Decreased NK cytotoxicity is currently debated, as to 
date, studies on this topic have not adequately shown this 
cytotoxicity to occur (48,100,101). It has been speculated that 
the upregulation of NK cell inhibitory receptors and the down‑
regulation of stimulatory receptors in ectopic endometrium 
may be caused by cytokines such as IL‑2, IFNs and TGF‑β. 
This indicates that cytokine therapy targeting NK cell inhibi‑
tory or stimulatory receptors is feasible (102,103). Most studies 
show that the proportion of NK cells decreases in patients with 
EM. However, there are also studies showing that the propor‑
tion of NK cells in patients with EM increases when compared 
with that in healthy controls (104,105). These results suggest 
that the decreased NK cytotoxicity in patients with EM is 
not the result of decreased NK cell infiltration, but rather 
the abnormal expression level of NK cell activation receptor 
and/or inhibition receptor. However, only the upregulation of 
NK cell inhibitory receptors is supported by current research, 
while the regulation of stimulatory receptors remains unclear 
due to the lack of studies and considerable results.

Overexpression of inhibitory receptors is considered vital 
for modulating immune evasion and maintaining immune 
tolerance in EM. Increased levels of HLA‑1 in the glandular 
and stromal cells of endometrial tissue was observed in the 
study by Vernet‑Tomas Mdel et al (106), which may result 
in increased resistance to NK cytolysis in patients with 
EM (106). The case‑control study by Wu et al (107) finds that 
the levels of KIR in the peritoneal NK cells of patients with 
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EM also increased (including NKB1 and EB6), thus further 
reducing the cytotoxicity of NK cells (107). Overexpression 
of other inhibitory receptors and their ligands were observed 
in patients with EM, including the inhibitory receptors 
KIR2DL1, CD94/NKG2a and LILRB1 on peritoneal NK cells, 
and their separate endogenous ligands HLA‑C, HLA‑E and 
HLA‑G (108‑110). The altered presence and distinct combined 
presence of different KIR genes contributes to a unique genetic 
background of patients with EM. It should be noted that not 
all KIR/HLA binding promotes the development of EM. For 
example, receptor KIR2DS5 in combination with its ligand 
HLA‑C C2 has a protective effect against EM (111). 

Decreased expression levels of NKG2D, a stimulatory 
receptor of NK cells, was also reported in patients with 
EM (112). It is plausible that the downregulation of NKG2D 
is the result of increased levels of TGF‑β and ectopic endo‑
metrial tissue‑derived IL‑15 (113,114). However, the ligands 
for NKG2D, including MHC class‑I chain‑associated proteins 
(MIC)A and B that were upregulated in the peritoneal fluid 
of patients with EM (115), paradoxically exert an inhibitory 
effect on NK cells (116,117). The precise mechanism behind 
how the regulation of NK cell stimulatory receptors influ‑
ences the pathogenesis of EM requires further verification and 
examination.

IL‑12 can regulate the immune recognition of NK cells 
in the endometrium. IL‑12 is composed of two heterologous 
polypeptide chains, p40 and p35. A study found that the 
concentration of IL‑12 in patients with EM is similar compared 
with that of healthy controls. However, increased levels of free 
p40 in the peritoneal fluid of these patients indicated that 
overexpression of the p40 subunit alone could reduce the cyto‑
toxicity induced by IL‑12 (118). The ratio of FCGR3‑negative 
NK cells to FCGR3‑positive NK cells in the peritoneal cavity 
of patients with EM was increased (119). Based on these find‑
ings, the increased expression levels of inhibitory receptors 
and ligands has a key role in the decline of NK cytotoxicity. 

Platelets also regulate the function of NK cells (111). 
Platelets release TGF‑β during retrograde menstruation in 
patients with EM, thereby suppressing the expression level of 
a stimulatory receptor of NK cells, NKG2D and reducing their 
cytotoxicity (Fig. 2) (120‑123). 

NK cell‑associated therapeutic targets for EM. Studies on 
the changes and mechanisms of NK cells in patients with EM 
provide a solid experimental basis for the targeted treatment 
of EM. The present focus of immunotherapy targeting NK 
cells is to restore their cytotoxicity. To reach this goal, three 
possible aspects should be considered: i) Blocking inhibitory 
receptors; ii) anti‑inhibitory or stimulatory cytokine therapy; 
and iii) immune checkpoint therapy.

KIR2DL1, LILRB1/2 and CD94/NKG2a are inhibitory 
receptors that are overexpressed in the NK cells of women 
with EM. The ability to interfere with the binding of the 
inhibitory receptors and their ligands to improve the cytotox‑
icity of NK cells has been tested by multiple studies (124,125). 
Disruption of the inhibitory receptors on NK cells contrib‑
uting to enhanced cytotoxicity was found in a human cell 
model treated with 5‑aza‑2'‑deoxycytidine reported by 
Binyamin et al (124) in 2008. The study observed increased 
NK cell cytotoxicity when the inhibitor KIR2DL1 was applied 

to the NK cells of a healthy woman. It was also observed that 
blocking KIR2DL1 can enhance the effects of rituximab (an 
anti‑CD20 monoclonal antibody known to recruit the immune 
system to attack and kill B cells) by increasing the cytotoxicity 
of NK cells (124,126). The study by Andre et al (125) targeted 
NKG2A on NK cells with monalizumab combined with 
cetuximab (an EGFR inhibitor) in patients with head and neck 
carcinoma, resulting in increased NK cell cytotoxicity (125). 
Whilst neither of these studies were based on EM, this 
blocking of inhibitory receptors therapy may be a promising 
treatment for EM and has been shown to be effective against 
some malignancies (125,127); however, further studies on their 
role in EM are required to make conclusive statements.

Previous studies tried to identify cytokines that affect the 
regulation of NK cell activity as new targets for immunotherapy. 
Some ILs (such as IL‑2 and IL‑12) and IFNs are NK cell stimu‑
lative cytokines. Intraperitoneal injection of IL‑2 in surgically 
implanted EM rat models was found to be capable of recruiting 
leukocytes into EM lesions and reducing lesion size (128,129). 
However, existing studies on the therapeutic effects of IL‑2 on 
EM are based in animal models, therefore, further studies and 
analysis are needed on the applicability to human patients. IL‑12 
is another important NK cell stimulative cytokine. Researchers 
pretreated NK cells with an IL‑12 heterodimer to reduce the 
ratio of free p40 to IL‑12 and enhance the cytotoxicity of NK 
cells in ectopic endometrial tissue, resulting in suppressed 
development of ectopic endometrial tissue. IL‑12 is therefore 
considered a potential specific target for correcting the increase 
in free p40 levels in patients with EM (118). Type I IFNs, which 
include IFN‑α2b, IFN‑β1a and type II IFN (IFN‑γ), can acti‑
vate NK cells and enhance their cytotoxicity. However, to the 
best of our knowledge, no work has studied the feasibility of 
using the NK cell activating effects of IFNs to treat EM. The 
study by Dicitore et al (130) showed that IFN‑β1a is superior to 
IFN‑α2b at inhibiting the proliferation and migratory activities 
of endometrial stromal cells.

A case‑control study by Wu et al (131) found that treat‑
ment with GnRH‑a could restore the damaged immune 
function of the peritoneal fluid in patients with EM, and 
proposed their hypothesis according to their findings (131). 
In this study, women with EM who used GnRH‑a long‑term 
were found to have increased levels of the CD3‑CD69+ 
subpopulation of peripheral blood mononuclear cells and the 
CD3+CD69+/CD3+CD24+ subpopulation of activated T cells. 
It was suggested that the increased level of activated T cells 
induced by GnRH‑a secreted increased levels of IL‑2 and 
IFN‑γ, which led to restoration of NK cell activity in the 
peritoneal fluid.

TGF‑β suppresses the cytotoxicity of NK cells and the 
function of other immune cells (132,133). TGF‑β secretion is 
upregulated in women with EM and is considered important 
to EM pathogenesis (134,135). Anti‑TGF‑β therapies are 
currently being evaluated clinically as treatments for malig‑
nancies and other diseases, such as diabetes. However, the 
results are generally unsatisfactory, reporting non‑respon‑
siveness and potential systematic side effects (136,137). 
There are also concerns that anti‑TGF‑β therapies would 
cause systematic suppression and result in severe systematic 
side effects due to the important role that TGF‑β has in 
multiple vital signaling pathways, such as cell proliferation 
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and differentiation. In vitro and in vivo studies are needed to 
further study anti‑TGF‑β therapy for EM.

Other immunotherapies may restore NK cell function in 
EM, most of which are based on immunotherapy models of 
other diseases. In 2004, the study by Clayton et al (138) first 
proposed the possibility of using Mycobacterium to restore 
NK cell activity in EM (138). However, the hypothesis was 
only supported by in vitro studies and further verification is 
required. 

Immune checkpoint blocks (ICBs) are also new immu‑
notherapies that researchers are currently evaluating. 
PD‑1/PD‑L1 pathway‑associated inhibitors are a type of 
checkpoint blocking therapy. Previous studies have reported 
increased PD‑1 expression levels in the peripheral blood cells 
of patients with EM, and increased PD‑L1 expression levels 
in both the ectopic and non‑ectopic endometrial tissues of 
patients with EM (139,140). This indicates that the peripheral 
tolerance caused by PD‑1/PD‑L1‑induced T cell suppression 
may contribute to the immune abnormalities noted in EM. ICB 
therapy using PD‑1/PD‑L1 inhibitors is a promising treatment 
for preventing immune tolerance to EM (141‑143). However, 
studies have reported that PD‑1/PD‑L1 inhibitor treatment 
can lead to adverse reactions in a variety of tissues and organs 

throughout the body. The use of ICBs in the treatment of EM 
should therefore be carefully selected, and inhibitors with the 
strongest specificity for EM should be utilized (144,145). In 
addition to ICB therapy, the use of genetically modified NK 
cells, such as chimeric antigen receptor (CAR)‑NK cells, in 
tumor immunotherapy has also attracted increased atten‑
tion (146‑148). However, engineering a CAR‑NK structure 
requires a biomarker specifically expressed on the surface of 
ectopic endometrial cells, which, to the best of our knowledge, 
has not yet been discovered.

Although the aforementioned targets for the treatment of 
EM have been supported in theory by in vitro and animal 
experiments, limited clinical trials have been reported. 

Obstacles and future prospects. The exact mechanism behind 
how immunosuppression in ectopic endometrial tissue and its 
environment damages the cytotoxicity of NK cells is unclear, 
which makes it difficult to identify an appropriate immuno‑
therapy target. Three main specific inhibitory NK cell receptor 
families have been identified: KIR, LILRB and NKG2. To the 
best of our knowledge, there are no reports on the inhibition 
of these receptor/ligand interactions. Cytokine therapy and the 
upregulation of associated activated receptors also requires 

Figure 2. Regulation of NK cells in the EM environment. In patients with EM, the expression of HLA‑1 in the stromal cells and glandular cells of eutopic endo‑
metrium is elevated. After binding with NK cells, it produces an inhibitory effect, which may lead to an enhanced tolerance of EM to NK cells. Meanwhile, 
the levels of inhibitory receptors (LILRB1, KIR2DL1 and Cd94/Nkg2a) on peritoneal NK cells and their endogenous ligands (HLA‑G, HLA‑C and HLA‑E) 
are increased in patients with EM. During the retrograde menstruation of patients with EM, platelets release TGF‑β, inhibiting the expression of the NK 
cell‑stimulating receptor NKG2D and reducing its cytotoxicity. In addition, the expression of PD‑L1 in ectopic endometrial cells is increased, which inhibits 
NK cells through the PD‑1/PD‑L1 axis. HLA, human leukocyte antigen; NK, natural killer; NKG2a, immune inhibitory receptor natural killer group 2 member 
A; LILRB1, leukocyte immunoglobulin‑like receptor subfamily B member 1; PD‑1, programmed death 1; PD‑L1, programmed death‑ligand 1; KIR2DL1, 
killer cell immunoglobulin like receptor, two Ig domains and long cytoplasmic tail 1; EM, endometriosis. 
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further research. The possibility of utilizing immunotherapy 
in the treatment of EM needs further analysis due to the lack of 
tissue/cell specificity, which results in systemic side effects. It 
requires investigation on the epigenic differences between the 
ectopic and eutopic cells to develop treatments with increased 
specificity. 

It should be noted that whether enhanced NK cell cyto‑
toxicity is associated with abortion is debatable (149,150). 
Further examinations and analyses are needed before NK cell 
treatment can enter clinical research. 

3. Macrophages

Phenotypes and function. Macrophages are a late differen‑
tiation cell type of the mononuclear‑phagocyte system, which 
have an important role in both the non‑specific and specific 
immune response. Macrophages were previously considered 
to be solely derived from blood monocytes, which are widely 
distributed and participate in the innate immunity of the 
body (151). This notion has changed due to the discovery of 
macrophages derived from and residing in specific tissues 
without the participation of circulating monocytes (152). 
Macrophages can be polarized into different directions based 
on the effects of different microenvironments and stimulating 
factors. Based on the surface markers of polarized macro‑
phages and their functions, polarized macrophages can be 
categorized into two types: Classically activated macrophages 
(M1) and alternatively activated macrophages (M2) (153,154). 
M1 has a pro‑inflammatory effect on the early stages of inflam‑
mation, phagocytizes and digests foreign pathogens, secretes 
pro‑inflammatory factors, activates the T cell‑dependent 
immune response and promotes the Th1 immune response. 
M2 can promote tissue repair and wound healing, regulates 
the Th2 immune response and contributes to disease recovery 
during the later stage of inflammation, which results in an 
anti‑inflammatory effect (153,154).

There are two types of macrophages in the female pelvis: 
Endometrial and peritoneal. Endometrial macrophages 
(eMs) are involved in triggering and regulating the process 
of endometrial breakdown, and the subsequent repair of the 
endometrial functional layer by facilitating cell proliferation 
and angiogenesis (155,156). eMs function in the following 
three ways: i) Production and release of VEGF to promote 
angiogenesis; ii) participation in triggering and controlling 
the shedding process; and iii) facilitating and rebuilding 
the functional layer (157). Peritoneal macrophages (pMs) 
are distributed in ectopic endometrial tissues outside of the 
reproductive tract. The increased macrophages in patients 
with EM are mainly pMs. pMs have an immune monitoring 
role on the peritoneal surface. pMs can be classified into 
resident pMs and monocyte‑derived pMs of bone marrow 
origin (158,159).

Based on the differences in MHCII and F4/80 expres‑
sion levels, pMs can be divided into two phenotypes: Big, 
tissue‑resident pMs and small, monocyte‑derived pMs. Both 
types of macrophages can be either polarized into M1, which 
is pro‑inflammatory, or M2, which is anti‑inflammatory, 
depending on the stimulation of pathogen‑associated molecular 
patterns (51). The pro‑inflammatory M1 phenotype of pMs, 
similar to the classification of helper T cells, is activated mainly 

through the activation of IFN‑γ, LPS, TNF‑α or a combination 
of the three. The anti‑inflammatory M2 phenotype of pM is 
mainly activated by IL‑1, IL‑10 and IL‑13. The polarization of 
pMs produces corresponding molecular markers, which allows 
researchers to detect the regulation of macrophages (160‑162). 
Another type of macrophage, tumor‑associated macrophage, 
has a role in the nutrition and angiogenesis of patients with EM 
and endometrial cancer (Fig. 3) (64). 

Macrophages in EM. Although the number and activation 
of pMs in patients with EM are increased, the phagocytic 
capacity of these pMs is still unable to remove the ectopic 
endometrial tissue debris. pMs obtained from women with EM 
show a reduced capacity for phagocytosis due to the decreased 
expression level and activity of matrix metalloproteinase‑9, 
which is regulated by prostaglandin E2 (PGE2) and is the 
enzyme that is necessary in the degradation of the extracellular 
matrix (163‑165). 

Ectopic endometrial tissue is in a hormonal environment 
that contains abnormal concentrations of estrogen and andro‑
gens. The secretion of C‑C motif chemokine ligand 2 (CCL2) by 
endometrial stromal cells is upregulated in the ectopic milieu, 
which has been confirmed to be mediated by estrogen (166). 
CCL2 mediates the polarization of macrophages to M2 instead 
of M1 (167). The abnormal EM environment also promotes 
the elevation of distinct anti‑inflammatory phenotypes of 
macrophages, forming an immunosuppressive microenviron‑
ment by stimulating the proliferation of epithelial and stromal 
cells in endometriotic foci, and promoting angiogenesis (168). 
However, chronic inflammation is still observed in the lesion 
microenvironment. It could be possible that the upregulation 
of M2 is compensatory, induced by persistent inflammation 
and tissue repair. According to the macrophage depletion 
study by Bacci et al (169), anti‑inflammatory M2 induced by 
macrophage colony‑stimulating factor and IL‑10 is considered 
to be of importance to the growth and development of ectopic 
EM tissue, while pro‑inflammatory M1 induced by IFN‑γ is 
capable of eliminating the ectopic tissue (169). The phenotypic 
plasticity of pMs makes it possible to investigate potential 
therapeutic targets for EM based on the suppression of the M2 
phenotype in pMs or the activation of the M1 phenotype. The 
suppression of M2 polarization has already been proposed as 
chemical therapy for colon tumors, such as by using ovato‑
diolide to prevent the polarization of M2 tumor‑associated 
macrophages (170).

Estrogen receptors on macrophages can be classified into 
surface receptors and nuclear receptors. Estrogen nuclear 
receptors can be divided into ER‑α (ER1) and ER‑β (ER2). ER2 
promotes inflammation and disease progression by increasing 
the production of inflammatory cytokines, including IL‑1β and 
IL‑6 (171,172). IL‑6 mediates the recruitment of monocytes 
and their differentiation into macrophages, which contributes 
to the increased macrophage infiltration into the EM lesions. 
ER2 also inhibits apoptosis by interacting with the NLRP3 
sensor, caspase 1 and apoptosis signal regulated kinase‑1 (173). 
However, chloroindazole, an ER2 ligand developed in 2015, can 
suppress inflammation and angiogenesis within the EM lesion, 
thereby suppressing EM progression (174). These data indicate 
that the activation of ER2 can also be anti‑inflammatory and 
can serve as a possible target for EM treatment.

https://www.spandidos-publications.com/10.3892/mmr.2024.13422
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ER1 has two main roles. Firstly, ER1 promotes the secretion 
of pro‑inflammatory cytokines, such as IFN‑1, contributing to 
the inflammatory response (175,176). Secondly, ER1 activation 
also inhibits the NF‑κB pathway, which limits the extent of the 
inflammation (177,178).

Upregulation of ER2 expression levels and downregulation 
of ER1 expression levels in macrophages and endometrial 
stromal cells will result in an extremely low ratio of ER1:ER2. 
There are controversies on whether the influence the ER1 
deficiency and ER2 overexpression have an inflammatory 
or anti‑inflammatory effect on the EM environment due to 
the opposing findings of previous studies (172,179). Despite 
these controversies, the consensus is that the dysregulation 
of estrogen and ERs contributes to inflammation in EM. The 
regulation of inflammatory pathways and immune cells by ERs 
and estrogen in endometriotic stromal cells will be discussed 
in further detail below.

Estrogen receptors on the cell surface are G protein‑coupled 
ERs (GPERs), which are expressed on the surface of macro‑
phages in this hormonal environment (180). GPERs are seven 
transmembrane‑spanning receptors that bind to estrogen and 
mediate rapid non‑genomic signaling pathways, such as the 
mitogen‑activated protein kinases (MAPK) pathway and the 
phosphatidylinositide‑3‑kinases/Akt (PI3K/Akt) pathways, 
which can be initiated within seconds and rapidly induce a 
physiological response in target cells (181). GPER expres‑
sion levels in macrophages within ectopic endometrium are 

increased, suggesting that this abnormality may be important 
to the regulation of the macrophage immune response (182). 
The roles of GPERs in EM have been gradually discovered 
and reported, making them a promising target for EM 
therapy. Activation of GPERs by their agonist G‑1 can inhibit 
the secretion of TNF‑α and IL‑6 that was induced by LPS, 
resulting in an anti‑inflammatory effect on GPER‑expressing 
macrophages (183). 

Continuously elevated estrogen levels also lead to the 
synthesis and secretion of inflammatory cytokines by macro‑
phages, such as IL‑1, IL‑6 and TNF‑α, which trigger a series 
of pro‑inflammatory responses (173,184). Macrophages 
have a two‑way response to estrogen: Upregulation of 
pro‑inflammatory cytokines is induced by comparatively 
low concentrations of estrogen and inhibited by increased 
concentrations of estrogen (185). It has been hypothesized 
that the function of macrophages in ectopic endometrial 
tissue may be estrogen‑dependent, and that estrogen may 
regulate the immune response through the GPERs and ERs 
of macrophages in ectopic endometrial tissue (182,186). These 
observations indicate that whether these estrogen‑dependent 
events have a pro‑ or anti‑inflammatory role on macrophages 
in EM depends on the types of ERs and the local concentration 
of estrogen within the lesion.

The chronic inf lammatory environment in ectopic 
endometrial tissue triggers the secretion of inflammatory 
cytokines, such as IL‑1β, IL‑17A and TNF‑α (187). Increased 

Figure 3. Phenotypes and functions of macrophages. In the female pelvis, two distinct types of macrophages exist: eMs and pMs. eMs possess the capacity to 
generate VEGF, which is instrumental in promoting angiogenesis. Additionally, eMs are implicated in the menstrual breakdown and recovery of functional 
layer. pMs are distributed within ectopic endometrial tissues outside the reproductive tract and fulfill an immune monitoring function on the peritoneal surface. 
pMs can be further categorized into rpMs and mpMs of bone marrow origin. Tumor‑associated macrophages represent another macrophage phenotype, 
which are involved in nourishment and angiogenesis not only in patients with EM but also in endometrial cancer. eMs, endometrial macrophages; pMs 
peritoneal macrophages; VEGF, vascular endothelial growth factor; rpMs, resident macrophages; mpMs, monocyte‑derived macrophages; EM, endometriosis; 
Mφ, macrophages. 
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inflammatory cytokines can lead to the abnormal activation of 
the mTOR/PI3K signaling pathway, and the abnormal activa‑
tion and proliferation of keratinocytes (188). Whether the same 
inference can be made on macrophages in EM requires further 
study. In addition, inflammatory cytokine IL‑6 in inflamed 
tissue acts as a superior coordinator of protein synthesis 
capacity and cell growth rate by stimulating the translation of 
c‑Myc mRNA, an oncogenic transcription factor that activates 
transcription via all three nuclear RNA polymerases. RNA 
polymerase I‑associated transcription factors are recruited 
to rDNA by IL‑6 when quiescent cells are stimulated to 
re‑enter the cell cycle. Stimulated c‑Myc mRNA will therefore 
eventually lead to an upregulation of rRNA transcription and 
enhanced proliferation of macrophages (189). 

Macrophages are also involved in the induction of the 
immunosuppressive peritoneal environment in EM. IL‑8 
secreted by macrophages increases the expression level of Fas 
ligand (FasL) in endometrial cells, and the binding of FasL to 
Fas on T cells triggers apoptosis (190). It has been reported 
that the mRNA level of IL‑8 in the peripheral blood and peri‑
toneal fluid of patients with EM is considerably increased. 
The expression level of FasL on endometrial cells is also 

increased, which contributes to the formation of the immu‑
nosuppressed and immune tolerant microenvironment that is 
conducive to the adhesion of ectopic cells (191). Serum IL‑8 
levels have the potential to be an early indicator of EM (192). 
However, there seems to be little research assessing relevant 
immunotherapeutic targeting of Fas/FasL for EM. Other 
immunosuppressive cytokines are also secreted by macro‑
phages in ectopic endometrial tissues, including IL‑10 and 
TGF‑β, leading to the inhibition of NK cells in the peritoneal 
cavity (Fig. 4) (59).

Similar to malignant tumors, the expression level of 
oncogenes and tumor suppressor genes in EM is considerably 
altered. Studies have shown that c‑Myc, a recognized onco‑
gene, is overexpressed in most patients with EM. It has been 
proposed that c‑Myc also participates in the pathogenesis of 
EM (189,193).

In addition to the aforementioned inflammatory cyto‑
kines that have important roles in the pathogenesis of EM, 
Tie2‑expressing macrophages in ectopic endometrial tissue 
inhibit endothelial cell apoptosis by preventing the caspase‑3 
activation of neovascular endothelial cells. This may also be 
used as a potential therapeutic target for EM (194). 

Figure 4. Polarization of macrophages and the response of estrogen. In EM, M0 macrophages transform into M1 macrophages under the action of IFN‑γ, LPS 
and TNF‑α. M1 macrophages have a pro‑inflammatory response and can inhibit lesion development. M0 macrophages can transform into M2 macrophages 
under the action of IL‑1, IL‑10, IL‑13 and estrogen‑dependent CCL2. M2 macrophages have an anti‑inflammatory effect and enhance lesion development. 
There are two estrogen nuclear receptors, ER‑α and ER‑β, in M2 macrophages. Activation of ER‑α promotes the secretion of pro‑inflammatory cytokines 
and promotes the inflammatory response. Meanwhile, the NF‑κB pathway is also inhibited by the activation of ER‑α, limiting the degree of inflammation. 
Activation of ER‑β can lead to PM proliferation, low IL‑12, high IL‑10 and TGF‑β, and active phagocytosis. EM, endometriosis; LPS, lipopolysaccharide; 
ER, estrogen receptor; IL, interleukin; TNF‑α, tumor necrosis factor‑α; CCL2, C‑C motif chemokine ligand 2; M1φ, classically activated macrophages; 
M2φ, alternatively activated macrophages.

https://www.spandidos-publications.com/10.3892/mmr.2024.13422


ZHANG et al:  IMMUNE‑RELATED FACTORS IN ENDOMETRIOSIS10

EM is characterized by considerably increased levels of 
macrophage migration inhibitory factor (MIF), a multipotent 
protein that has a range of immune regulatory functions and is 
a key upstream regulator of both the non‑specific and specific 
immune responses. During the onset of premenstrual syndrome, 
patients with EM have elevated MIF levels in the normal 
endometrium, early ectopic endometrium, peritoneal fluid and 
systemic circulation (195‑198). Studies have shown that MIF 
and its specific inhibitors can be used not only to improve the 
accuracy of EM diagnosis, but also to develop new therapeutic 
strategies against EM. The study by Seeber et al (199) found 
that the combined use of MIF and factors such as CA‑125, 
monocyte chemoattractant protein 1 and leptin, can improve 
the accuracy of EM diagnosis to 93% (199). The concentra‑
tion of macrophages in the normal endometrium of patients 
with EM is considerably reduced when compared with that 
of healthy controls, which predisposes patients to a poor 
prognosis (200).

It has been suggested that abnormal macrophage regula‑
tion may also be associated with the various clinical features 
of EM. For example, the increased concentration of pMs may 
disturb normal fertilization and lead to infertility in women 
with EM (201). Decreased insulin‑like growth factor‑1 (IGF‑1) 
production by macrophages may also be associated with pelvic 
pain associated with EM (202).  

In conclusion, patients with EM have increased macrophage 
levels and activation mediated by the mTOR/PI3K signaling 
pathway, c‑Myc oncogene expression levels, and its resulting 
ribosome biogenesis in EM lesions and peritoneal fluid. 
Macrophages that co‑exist with ectopic EM cells in vitro are 
immunosuppressive and macrophages in the peritoneal fluid 
of women with EM exist as a mix of both pro‑inflammatory 
and anti‑inflammatory cells. Anti‑inflammatory macrophages 
in peritoneal fluid, which are M2, promote the development 
of EM lesions, while pro‑inflammatory macrophages, which 
are M1, are antagonistic. Increased concentrations of estrogen 
in the ectopic EM microenvironment promote re‑polarization 
from M1 to M2, which further contributes to the growth of 
the lesion.

Macrophage‑associated therapeutic targets. Several theories 
for immune‑associated therapies targeting the upregulation 
of pMs in EM have been proposed. The main hypotheses 
regarding the upregulation of pMs in the peritoneal fluid of 
patients with EM include the estrogen dependency theory, the 
mTOR/PI3K signaling pathway theory, overexpression of the 
oncogene c‑Myc, ribosome biogenesis and the overexpression 
of MIF. Several potential medication therapies for managing 
these etiologies have been proposed. 

Regarding the estrogen dependency theory, estrogen 
replacement and other associated therapies are being 
investigated and introduced into clinical management. The 
estrogen replacement therapy is currently the most commonly 
used method for treating EM that can achieve complete 
ovarian suppression, and has been in use since it was first 
reported in 1948 (203). Low‑doses of combined estrogen 
and progestin or progestin alone can effectively relieve the 
clinical symptoms of pelvic pain caused by EM, and can also 
reduce the adverse effects of low estrogen that are induced 
by GnRH agonists (204). However, GnRH therapy can lead 

to several clinical side effects, including increased follicular 
development (205). 

In addition to the estrogen‑dependent theory, the 
mTOR/PI3K signaling pathway theory is also important, where 
mTOR/PI3K functions as the upstream regulator of ribosome 
biogenesis and plays a key role in protein synthesis (206). The 
mTOR/PI3K inhibitor GSK2126458 and the RNA polymerase 
1 inhibitors CX5461 and BMH21 have been developed, all of 
which have shown very good therapeutic effects in a mouse 
model of human EM (206). 

In  ter ms of  the  MI F theor y,  the  study by 
Khoufache et al (207) showed that the specific antagonist of 
MIF (ISO‑1) can effectively reduce the growth and progres‑
sion of ectopic endometrium, indicating that this agent has 
good clinical potential (207). The research and development 
of other associated drugs is still in the experimental stage and 
requires additional attention.

4. Complement system

Complement system in EM. The complement system is an 
indispensable part of the innate immune response and is 
involved in the identification and elimination of pathogens and 
abnormal cells, such as apoptotic and necrotic cells (208‑210). 
The complement system recognizes and tags pathogens 
and altered or transformed self‑cells, thereby activating the 
inflammatory response and modulating the adaptive immune 
response, and ultimately leading to the lysis of target cells or 
pathogens (211). The complement system is a functionally 
complex system that can trigger a severe immune response 
or inflammatory process (211). This system may be harmful 
to the body when it is excessively or abnormally activated in 
conditions such as inflammation or tissue damage (212‑215). 
The complement system has a considerable role in peritoneal 
inflammation, which is associated with the early stages of 
EM (216). 

The complement system is formed from a group of small 
proteins that demonstrate enzymatic activity after activation 
and exist in the serum and tissue fluid of healthy individuals 
and animals. The components of the complement system are 
extremely complex and variable. The study by Aslan et al (217) 
reported that 23 out of 84 immune response genes were 
upregulated in patients with EM, two of them considerably so. 
Some of these differentiating molecules were later confirmed 
to be members of the complement system (217).

Upregulated members of complement system in patients with 
EM. In a previous study, most components of the comple‑
ment system that are associated with EM were found to be 
upregulated in patients with EM (218). To the best of our 
knowledge, a limited number of complement components were 
found to be decreased. Such decreased components included 
mannose/mannan binding lectin‑associated serine protease‑1 
(MASP‑1), and several remain controversial (219). 

In a previous study, the quantities of C1q and C1INH in 
the peritoneal fluid of patients with EM at various stages 
were considerably increased compared with those in normal 
controls (220). Moreover, increased levels of C1q and C1INH 
were found in the peritoneal fluid of early stage EM (220). 
These results suggest that immunoglobulins participate in 
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the initiation of the classical pathway in ectopic endome‑
trial tissue, especially during early EM (220). Furthermore, 
C1‑associated genes (including C1QA, C1QB, C1R and C1S) 
and C2 genes were increased in ectopic endometrial tissues 
compared with those in healthy controls (221). C3 is usually 
expressed in the ectopic tissue of patients with EM despite its 
regular expression levels in the glandular epithelium of normal 
endometrium (222,223). The overall C3 levels in the peritoneal 
fluid and peripheral blood of patients with EM were increased 
compared with those of normal controls, especially C3c and 
C3b (219,224‑227). 

A growing body of evidence has reported that the C3 
levels in the serum of patients with EM were considerably 
upregulated, in particular among patients with mild EM, 
when compared with that in healthy subjects and patients with 
severe EM (228‑231). Other studies found that the C3 levels 
in the eutopic endometrium of patients with EM were also 
considerably increased under the influence of ectopic endome‑
trial tissue (228,232). Elevated iC3b in the peritoneal fluid of 
patients with EM may negatively regulate NK cell activity via 

the iC3b/CR3 signaling pathway, thereby downregulating NK 
cell cytotoxicity (219,233).

The levels of other members of the complement system, 
such as C5, C6, C7 and C8A, were also upregulated in the 
ectopic endometrial tissue of patients with EM (217,221). C6 
levels were considerably increased in patients with early stage 
EM compared with those in their healthy counterparts (234). 
C7 was also upregulated in ectopic endometrial tissue (221).

The expression levels of complement factor (CF)B, CFD, 
CFH and CFI in the complement system are upregulated in 
ectopic EM tissue, while the expression level of MASP‑1 is 
downregulated (Fig. 5). 

Controversies. There are controversial theories about the 
relationship between C4 and EM. Studies have shown that 
the concentration of C4 in the peripheral blood and peritoneal 
secretions of women with EM are increased compared with 
those of normal controls (219,224,225). C4a was considerably 
decreased in the peritoneal fluid of patients with peritoneal 
and ovarian EM (218,235). The C4A/B gene expression level 

Figure 5. Regulation of the completement system in EM. ↑ and ↓ represent upregulation and downregulation, respectively, in the ectopic tissue and peritoneal 
fluid of patients with EM. In the ectopic tissue, the upregulated complement components include cFB, cFD, cFH, and cFI, while the downregulated components 
include c4a, c4BPA and MASP‑1. In the peritoneal fluid, C1a, C1INH, C2‑C4, C4A1B, C5‑C7, C8A, MAC and MBL are all upregulated. cFB, complement 
factor B; cFD, complement factor D; cFH, complement factor H; cFI, complement factor I; C4BPA, complement component 4 binding protein α; MASP‑1, 
mannose/mannan binding lectin‑associated serine protease‑1; C1a, activated first component of complement; C1INH, C1‑esterase inhibitor; C, complement; 
MAC, membrane attack complex; MBL, mannose‑binding lectin.
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was upregulated in ectopic endometrial tissues, while comple‑
ment component 4 binding protein α (C4BPA) expression level 
was reduced (221).

Two studies have examined the membrane attack complex 
(MAC; also known as SC5b‑9) in patients with EM. One 
study found that the MAC levels in the peritoneal fluid and 
peripheral blood of patients with EM were increased. The 
concentrations of terminal complex were also increased in 
patients with advanced EM (219). However, another study 
found no considerable difference in the MAC level in the peri‑
toneal fluid in patients with EM compared with that in normal 
controls (236,237).

The relationship between mannose‑binding lectin (MBL) 
and EM is also controversial. Some studies have shown that 
equivalent MBL levels exist between normal controls and 
patients with EM (238,239), while the study by Sikora et al (220) 
observed an increased level of MBL in the peritoneal fluid of 
patients with EM. Furthermore, the concentration of MBL in 
patients with early EM was increased compared with that in 
patients with late EM (218,220,236,237,240).

Potential therapeutic targets associated with the complement 
system. Complement C3 inhibitors can interrupt the inflam‑
matory cascade at its earliest stage and reduce the production 
of iC3b, which weakens NK cytotoxicity. The blockade of 
C5a and C3a to induce macrophage activation, C1q inducing 
the transformation of macrophages to the M2 phenotype and 
angiogenesis in EM lesions via complement immune therapy 
could all be promising targets for EM treatment (241,220).

5. Sex steroid hormones

Sex steroid hormone regulation and immune alteration in 
EM. Estrogen and progesterone are two key sex hormones that 
are closely associated with the occurrence and progression 
of EM. As previously discussed, estrogen mainly exerts its 
functions by interacting with ER and inducing an inflamma‑
tory environment. ER2 is associated with the inhibition of the 
inflammatory response. Increased ER2 activity can promote 
cell survival by inhibiting TNF1‑mediated apoptosis, partici‑
pating in growth factor signaling and promoting epithelial 
mesenchymal transition (242).

The close relationship between sex hormones such as 
estrogen and progesterone and the immune system has been 
frequently demonstrated. Estrogen can induce the activation 
of the immune response and immune cells through nuclear 
receptors. The dysregulation of estrogen and progesterone 
signaling in EM are termed estrogen dominance and proges‑
terone resistance (243,244). 

The binding of progesterone to progesterone receptor (PR) in 
epithelial and stromal cells inhibits epithelial cell proliferation 
and promotes decidualization (245). These effects of proges‑
terone are achieved by the integration of the response through 
two functionally different subtypes of PR: PR‑A and PR‑B. These 
two subtypes share the same gene but have separate promoters, 
which makes their structure and function distinct from one 
another (246). PR‑A is recognized as the initial driver of uterine 
PR function, while PR‑B is key to progesterone‑induced morpho‑
genesis during pregnancy, and mainly improves progesterone 
reactivity by maintaining an appropriate ratio to PR‑A (247). 

Estrogen and its two nuclear receptor subtypes have already 
been briefly introduced in the preceding sections. Estrogen 
promotion of epithelial cell proliferation and endometrial 
stromal decidualization is also mediated by the binding of 
estrogen and its receptors. The two receptor subtypes, ER1 and 
ER2, are transcribed by different genes (248).

ER1 is expressed in most cells of the immune system, 
while ER2 is limited to certain cell types of some immune 
organs, such as lymphocytes in human lymph nodes, bone 
marrow and thymus. Therefore, ER1 has a stronger impact 
on the immune system than ER2 (220). Both ER subtypes are 
expressed in the endometrium, with the expression levels of 
ER1 outnumbering those of ER2 (249). ER1 also has a more 
important role in promoting the proliferation of endometrial 
epithelial cells, implantation and fertilization than ER2 (221). 
The response induced by estrogen binding to ER1 may be 
mediated by slower genomic signaling pathways such as the 
IGF‑1‑PI3K/AKT pathway (250). As aforementioned, ER2 is 
associated with the inhibition of the inflammatory response. 
Increased ER2 activity can promote cell survival by inhib‑
iting TNF1‑mediated apoptosis, participating in growth 
factor signaling and promoting epithelial mesenchymal 
transition (242).

In addition to the two aforementioned types of sex steroid 
hormones, the abnormal elevation of prostaglandins (another 
hormone that induces an inflammatory response) is also 
involved in the pathophysiological changes of EM. Increased 
PGE2 is detected in both the eutopic and ectopic endometrial 
tissues of patients with EM. PGE2 participates in the direct 
and indirect induction of pain through positive feedback with 
estradiol (E2). In this positive feedback loop, E2 activates cyclo‑
oxygenase II (COX2) to promote the production of PGE2, and 
the upregulation of PGE2 level in turn promotes the expression 
of steroidogenesis‑associated genes and aromatase, thereby 
increasing E2 production (251). Sensitivity to IL‑1β is important 
in the regulation of COX2, which contributes to the maintenance 
of sex hormone‑associated inflammation in EM lesions (165).

Endometriotic changes of sex steroid hormone. Abnormal 
regulation of sex hormone nuclear receptors in patients with 
EM has been reported (252). The main dysregulations of sex 
steroid hormones in EM can be classified into two types: 
Estrogen dominance and progesterone resistance. 

Estrogen dominance refers to estrogen‑induced cell prolif‑
eration and inflammation. The estrogen response is primarily 
triggered by ER1 and ER2. These two receptors have different 
behaviors, and thus the expression level and ratio of these two 
receptors are important to determine effects of estrogen on EM. 
The ratio of ER1:ER2 is decreased in ectopic endometrial tissue 
of the ovary. This decreased ratio is caused by the upregulation 
of ER2 and the downregulation of ER1 due to changes in the 
methylation level of their promoters (249). Decreased methyla‑
tion of the ER2 promoter leads to increased expression levels of 
ER2, while increased methylation of the ER1 promoter leads to 
decreased ER1 expression levels (251,253). In addition to epigen‑
etic changes, crosstalk between ER1, ER2 and PRs has also been 
found to be important. ER2 directly downregulates the expres‑
sion of ER1 by binding to the promotor region of ER1 (254). The 
downregulation of ER1 contributes to the reduction of PR and 
further promotes the development of EM and infertility (255).
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ER2 upregulation in EM can activate a variety of prolifera‑
tion‑ and inflammation‑associated signaling pathways, such 
as the COX2‑PGE2 feedback loop, which may be the main 
reason for increased lesion survival, cell proliferation and 
inflammation (249). Other research has found that ER2 can 
interact with inflammatory factors to regulate apoptosis and 
the inflammatory response, which is also associated with the 
pathogenesis of EM (172).

The other sex steroid hormone dysregulation in EM 
is progesterone resistance, in which normal and ectopic 
endometrial tissues in patients with EM do not respond to 
progesterone (256). Little is known about the mechanism 
behind progesterone resistance. Several studies have suggested 
that the downregulation of progesterone receptors may be a 
potential contributor to progesterone resistance, but this 
remains controversial (257,258).

Hormone therapies and therapeutic targets. Studies have 
shown that the hormonal treatment of EM is feasible (249,259). 
Current hormone therapies include GnRH agonists, aroma‑
tase inhibitors, COCs containing progesterone and E2, 
progestin‑based therapies and androgen therapy (25,260,261). 
Hormone therapy aims to inhibit lesion growth or control 
pelvic pain by reducing the estrogen response and promoting 
the progesterone response (25,262). However, hormone 
therapy interferes with ovarian function, homeostasis and 
individual immunity, resulting in numerous side effects that 
include weight gain, androgen effects, reduced bone density, 
infertility and other adverse effects (262). Clinically, hormonal 
therapies are currently the most effective drugs for the treat‑
ment of EM (1,260). COCs are generally composed of a 
specific proportion of estrogens and progestogens that can 
inhibit steroid production in the ovary to treat chronic pelvic 
pain caused by ectopic endometrium (263). Although COCs 
are effective against the post‑operative recurrence of EM, the 
estrogen contained in COCs still carries a risk of aggravating 
progestin resistance. Progestogen‑based hormone therapy is 
another ideal treatment for EM. Medroxyprogesterone acetate 
(MPA) has been effective at reducing the pain caused by EM 
and reversing the decreased bone mineral density caused by 
low estrogen levels (264). A decrease in ER and an increase 
in PR in endometrial tissue can be found in patients with EM 
using MPA and other progestin‑based drugs (265,266). GnRH 
agonists are second‑line drugs after hormone therapy, which 
can reduce the production of estrogen, weaken E2 domi‑
nance and downregulate pituitary function through negative 
feedback (261). Although GnRH agonists are effective at alle‑
viating the pain caused by EM, their side effects, such as bone 
loss, greatly limit their clinical use. As aforementioned, there 
are still several obstacles that block the treatment of EM with 
hormone therapy, including unresponsiveness to progesterone 
caused by progesterone resistance and the adverse effects of 
hypoestrogenemia.

6. P‑selectin

The inflammatory and coagulation systems are the two main 
host defense systems. The coagulation system can be triggered 
by the inflammatory system (267,268). Inflammation is regu‑
lated by coagulation. P‑selectin is a platelet adhesion molecule, 

whose expression levels are regulated by protein kinase C. 
Studies have found that its expression level is abnormal in 
patients with EM (269‑271). The study by Guo et al (272) 
reported that platelet aggregation was induced by P‑selectin 
in ectopic endometrium, which promoted the proliferation 
and progression of the cell cycle for endometriotic stromal 
cells (272). Studies have found that P‑selectin is also involved 
in leukocyte adhesion and inflammation (273,274). P‑selectin 
is therefore considered a potential immune‑associated 
therapeutic target. P‑selectin can be targeted and blocked in 
several ways. For example, inclucumab is a highly specific 
recombinant human monoclonal antibody against P‑selectin, 
and has been in clinical trials for the treatment of myocardial 
injury (275). The Fc fragment of recombinant P‑selectin has 
also been tested in a mouse model of human EM, where it 
was effective without signs of bleeding complications (272). 
However, to the best of our knowledge, there are no reports of 
the clinical use of P‑selectin antagonists or antibodies to treat 
EM. 

7. Future perspectives

The treatment of EM still primarily uses hormone‑regulating 
drugs, such as progesterone‑based therapy, GnRH agonists, 
aromatase and COX inhibitors, and COC. Although clinical 
trials have shown the effectiveness of hormone therapy, 
patients still focus on its moderate or severe adverse effects, 
such as osteoporosis and sexual function inhibition. Studies 
have tested the effects of various compounds on EM, hoping 
that these compounds have therapeutic effects on EM without 
side effects. In the present review, several compounds are 
discussed that have been shown to be capable of improving 
symptoms of EM in animal experiments, clinical trials or both. 
Dienogest is a derivative of 19‑nortestosterone, which serves 
the dual roles of anti‑ovulation and anti‑proliferation against 
endometrial cells, which can effectively relieve EM symptoms 
without the side effects of estrogen and androgens (276). 
Clinical randomized controlled trials at different stages have 
been carried out in Europe and Japan, whose results show that 
Dienogest is superior to other progesterone drugs in terms 
of efficacy, safety, receptor selectivity and tolerance in the 
treatment of EM (277,278). Although Dienogest has numerous 
advantages over other hormone drugs, severe bleeding seems 
to be a potential serious side effect.

Beyond hormone‑associated therapy, researchers are also 
committed to studying and developing drugs targeting other 
immune‑associated factors to treat of EM. Since the first 
anti‑complement drug eculizumab (anti‑C5 antibody) was 
approved by the US Food and Drug Administration for the 
treatment of paroxysmal nocturnal hemoglobinuria in 2007, 
more complement pathway blocking drugs have been fully 
developed (279).

In addition to studying drugs targeting immune system 
factors, researchers are also studying the utility of ribosome 
biosynthesis (associated with macrophage proliferation) in 
the treatment of EM. Chang et al (206) tested the potential of 
using ribosome biogenesis inhibitors targeting mTOR/PI3K 
and RNA polymerase I as an alternative to the treatment of 
EM in an animal study in 2022. The results showed that the 
ribosome biogenesis inhibitor could inhibit inflammation, 
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reduce neutrophils in the peritoneal fluid and relieve pain in 
the treatment of an EM mouse model, which confirmed its 
therapeutic potential (206). 

In previous decades, there has been a push towards efforts 
to find other potential targets for the treatment of EM. It has 
become a consensus that local and systemic changes to immune 
cells and immune‑associated factors are important to the patho‑
genesis and development of EM. More attention should be paid 
to the development of drugs that target the components of the 
immune system. To the best of our knowledge, numerous side 
effects can be avoided by immunotherapy, which should be the 
direction of future research on EM treatment. Immunotherapy 
targeting NK cells and macrophages is in the preclinical trial 
stage, which may inspire other researchers to seek improved 
immune‑associated solutions.

8. Conclusion

Ectopic endometrial tissue in patients with EM is a clone of 
ectopic proliferating endometrial cells in the immune microen‑
vironment of the inflammatory response, which is characterized 
by increased estrogen pro‑inflammatory cytokine levels and 
alterations to the immune cell infiltration spectrum. The patho‑
genesis of EM remains unclear, and it is relatively difficult 
to find and select a satisfactory treatment for this disease. To 
the best of our knowledge, there is no treatment plan that can 
completely cure EM. At present, the treatment of EM is mainly 
symptomatic, and includes reducing pain, avoiding infertility 
and delaying recurrence as much as possible. Compared with 
the inefficiency of medical symptomatic treatment, laparo‑
scopic surgery is still the first choice for patients with EM of 
childbearing age due to its high postoperative pregnancy rate. 
However, as with all surgeries, conservative surgery in patients 
with EM may only require partial ovariectomy. Hysterectomy 
is occasionally required, but there is a risk of over‑operation or 
premature ovarian failure. Hormone therapy for EM is not ideal 
and is usually accompanied by side effects. Thus, although there 
are limited studies on the clinical application and evaluation of 
immune targeted therapy and personalized therapy for EM, it is 
still necessary to further investigate this area. 

The present review discussed the role of five major factors 
(NK cells, macrophages, the complement system, sex steroid 
hormones and P‑selectin), and summarized their functions, 
regulation and association with EM. Several potential thera‑
peutic targets for EM have also been summarized, whether 
they are in the hypothetical stage or established by animal 
experiments. It is hoped that through the present review, more 
attention can be given to EM and its potential therapeutic 
targets, further advancing EM treatment methods.
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