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Abstract

Background: Deep learning models based on convolutional neural networks (CNNs)

have been used to classify Alzheimer’s disease or infer dementia severity from T1-

weighted brain MRI. Here we tested the added value of incorporating information

from 3D diffusion-weightedMRI - a technique sensitive tomicrostructural differences

- alongside traditional 3D T1-weighted images. We evaluated our classifier’s

performance on cohorts from India and North America.We also tested if classification

accuracy improved after applying 3D CycleGAN approach to harmonize the imaging

datasets prior to training theCNNmodels.Our experiments reveal that, in themajority

of cases, classification performance sees improvement following harmonization,

particularly when utilizing dMRI as input.

Method:Weanalyzeddata from1,195participants (age: 74.36±7.74 years; 600F/595
M; 633 CN/421MCI/141 dementia), who had both structural T1w and dMRI, from the

Alzheimer’s DiseaseNeuroimaging Initiative (ADNI) dataset. The second dataset came

froman Indian population assessed atNIMHANS inBangalore, India – a population not

typically well represented in neuroimaging studies. It had 301 participants (age: 67.23

±7.86 years; 169 F/132 M) with a distribution of (123 CN/88 MCI/90 dementia). We

used theT1wsanddMRI-derivedmapsofmicrostructural parameters - FA,MD,RDand

AxD as inputs to our model. Initially, a 3D CycleGAN (Figure 1) was used to harmonize

the two datasets. Then, both a 3D CNN architecture (Figure 2a) and a Y-shaped 3D

CNN architecture (Figure 2b) were used for the classification task. The latter can take

dual modalities as input simultaneously. Performance was assessed using Balanced

Accuracy and F1 Score.
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Result: Table 1 shows the performance of themodels. The best performances are seen

for the Y-shapedmodel, andwhen harmonization is used before training.

Conclusion: In general, performance improved after harmonizing the datasets using

the unsupervised 3D CycleGAN architecture. Training the model on the merged

dataset incorporating diverse cohorts made the classifier more robust. When smaller

datasets are available for training, AD classification was more accurate when based

on DWI-derivedmaps, compared to T1w images. A concatenatedmodel incorporating

multiple imagemodalities outperformed amodel using only T1wMRIs as input.
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