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complex signal transduction activity in vivo
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Basal and stress-induced synthesis of the components
of the highly conserved heat shock protein Hsp90
chaperone complex require the heat shock transcrip-
tion factor (HSF); Saccharomyces cerevisiaecells
expressing the HSF allele HSF(1-583) reversibly arrest
growth at 37°C in the G2/M phase of the cell cycle
due to diminished expression of these components. A
suppressor mutant capable of restoring high-
temperature growth to HSF(1-583) cells was identified,
harboring a disruption of the SCH9 protein kinase
gene, homologous to the protein kinase A and protein
kinase B/Akt families of mammalian growth control
kinases. Loss of Sch9 in HSF(1-583) cells derepresses
Hsp90 signal transduction functions as demonstrated
by restoration of transcriptional activity by the
mammalian glucocorticoid receptor and the heme-
dependent transcription factor Hap1, and by enhanced
pheromone-dependent signaling through the Ste11
mitogen-activated protein kinase (MAPK). Moreover,
Sch9-deficient cells with normal levels of Hsp90
chaperone complex components display hyperactiv-
ation of the pheromone response MAPK pathway in
the absence of pheromone. These results demonstrate
that the evolutionarily conserved function of the Hsp90
chaperone complex as a signal transduction facilitator
is modulated by a growth regulatory kinase.
Keywords: chaperone/heat shock/Hsp90/protein kinase/
signal transduction

Introduction

All cells counter the potentially deleterious effects of
environmental stress via the coordinated synthesis of a
battery of proteins called heat shock proteins (Hsps),
which both protect the cell and facilitate rapid recovery
from stress-induced cellular damage (Parsell and
Lindquist, 1993). Many Hsps are also maintained at high
levels in unstressed cells and are required for a number
of cellular processes from protein biosynthesis, processing
and transport to signal transduction (Craiget al., 1994;
Pratt, 1998). Hsp90, a ubiquitous and abundant Hsp
essential for viability in eukaryotic cells (Borkovichet al.,
1989; Cutforth and Rubin, 1994), is an essential component
of steroid hormone receptor heterocomplexes, where it
plays both negative and positive roles: restraining tran-
scriptional activation by the receptor in the absence of
ligand, and potentiating receptor function upon hormone
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binding (for review, see Smith and Toft, 1993; Pratt and
Toft, 1997). Hsp90 chaperone complex client proteins
include transcription factors, protein kinases, reverse tran-
scriptases and signaling enzymes (reviewed in Csermely
et al., 1998; Caplan, 1999). A key feature of many of
these client proteins is the capacity to switch between on
and off states depending on cellular input; Hsp90 is thought
to stabilize these conformationally flexible molecules and
poise them for subsequent activation (Toft, 1998). For
example, the activity and levels of two cell cycle regulatory
kinases, mammalian v-src expressed in yeast (Xu and
Lindquist, 1993) and endogenous Wee1 in the yeast
Schizosaccharomyces pombe(Aligue et al., 1994), are
strictly dependent on Hsp90 function. Given the emerging
role of Hsp90 as a critical component of cell cycle
regulation and signal transduction pathways, it would be
surprising if the function of this central protein-folding
machine was not itself regulated.

Hsp90 is found associated with a number of partner
proteins in dynamic complexes, with distinct subunits
binding to Hsp90–substrate heterocomplexes at various
stages of the chaperoning/folding cycle (Chang and
Lindquist, 1994; Pratt and Toft, 1997). Nearly all of the
Hsp90-associated proteins are conserved in the yeast
Saccharomyces cerevisiae, including the DnaK/DnaJ pro-
tein chaperone pair encoded by theSSA/SSB(Chang and
Lindquist, 1994; Bohen, 1998) andYDJ1 (Kimura et al.,
1995) genes, the p60 (Hop) orthologSTI1 (Changet al.,
1997), the Cyp-40 cyclophilin orthologsCPR6andCPR7
(Duina et al., 1996), CDC37 (Kimura et al., 1997) and
the p23 orthologSBA1(Bohen, 1998; Fanget al., 1998).
In addition, genetic and biochemical studies in yeast have
led to the identification of new Hsp90 co-chaperones, such
as Cns1, a protein with strong homology to Hop/Sti1
(Dolinski et al., 1998; Marshet al., 1998; Nathanet al.,
1999), and Sse1, a member of the Hsp110 protein
chaperone family (Liuet al., 1999). The basal and stress-
induced expression of Hsp90 and many of its partner
proteins in eukaryotes is coordinated by the heat shock
transcription factor (HSF). Yeast HSF has both N- and
C-terminal transcriptional activation domains (Wu, 1995;
Morano and Thiele, 1999), and deletion of either domain
alone has little effect on cell growth at normal temperature
but truncation of the C-terminal domain renders cells
temperature-sensitive for growth at 37°C (Sorger, 1990;
Moranoet al., 1999). This phenotype was recently charac-
terized as a reversible arrest in the G2/M phase of the cell
cycle using the C-terminal truncation allele HSF(1-583)
(Moranoet al., 1999). We have recently demonstrated that
the temperature-sensitive phenotype of the HSF(1-583)
mutant is due to deficient expression of Hsp90 and most
of the heat-inducible Hsp90 chaperone complex genes
(Liu et al., 1999; Moranoet al., 1999). These findings are
corroborated by another recently characterized HSF mutant
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allelehsf1-82, which is specifically defective in expression
of the two yeast Hsp90 genesHSC82and HSP82, and
also exhibits cell cycle arrest at elevated temperatures
(Zarzovet al., 1997).

To uncover regulators of Hsp90 complex function in
yeast, we took advantage of the temperature-sensitive
phenotype of HSF(1-583) cells to select for mutants
capable of restoring high-temperature growth. Inactivation
of the SCH9gene, encoding a putative growth regulatory
serine/threonine protein kinase, derepresses Hsp90
chaperone function as indicated by increased tolerance
to the Hsp90 inhibitors geldanamycin and macbecin in
HSF(1-583) cells, restoration of transcriptional activity by
the mammalian glucocorticoid receptor and the heme-
dependent transcription factor Hap1, and pheromone-
dependent signaling through the Ste11 mitogen-activated
protein kinase (MAPK). Moreover, Sch9 is required to
restrain MAPK pathway activity in the absence of inducer
in wild-type cells. These results demonstrate that the
evolutionarily conserved function of the Hsp90 chaperone
complex as a signal transduction facilitator is modulated
by a growth regulatory kinase.

Results

Inactivation of the SCH9 protein kinase gene
suppresses HSF(1-583) G2/M cell cycle arrest
A genetic selection was undertaken to isolate mutants
capable of reversing the temperature sensitivity of the
HSF(1-583) strain to identify genes involved in regulation
of Hsp90 function. One isolate identified by transposon
mutagenesis, designated Tn3-13, was capable of growth
at 37°C and exhibited a growth rate at 30°C approximately
half that of both wild-type and HSF(1-583) cells (~108
versus 225 min per doubling) (Figure 1A).

HSF(1-583) cells grown at 37°C undergo cell cycle
arrest in the G2/M transition phase of the cell cycle. This
arrest is manifested by the appearance of large-budded
cells with a single nucleus (Moranoet al., 1999). Two
models could be envisaged to explain the growth of strain
Tn3-13 at 37°C: rapid recovery from cell cycle arrest or
bypass of the G2/M block altogether. To differentiate
between these mechanisms, wild-type HSF, HSF(1-583)
and suppressor Tn3-13 strains were grown to mid-
logarithmic phase at 30°C and then shifted to 37°C for
6 h. As shown in Figure 1B, DAPI-stained HSF wild-type
cells retained their ability to grow and segregate nuclei to
daughter buds, while, as reported previously, HSF(1-583)
cells exhibited a large-budded morphology and failed to
properly orient or segregate nuclei. In contrast, strain
Tn3-13 cells more closely resembled wild type, as shown
by the presence of small buds with segregated nuclei.
Microscopic analysis of Tn3-13 cells from earlier or later
time points failed to detect G2/M-arrested cells (data not
shown). These data suggest that the Tn-13 suppressor
mutant overcame the Hsp expression defect in HSF(1-583)
cells leading to cell cycle arrest at 37°C.

Mating the Tn3-13 strain to an otherwise isogenic
MATα HSF(1-583) strain demonstrated that the
HSF(1-583)/Tn3-13 diploid was unable to grow at 37°C,
indicating that the mutation was recessive (data not
shown). The diploid was sporulated and five representative
four-spore tetrads were tested for growth at 30 and 37°C
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Fig. 1. The transposon-mutagenized suppressor strain Tn3-13
suppresses cell cycle arrest of HSF(1-583) cells at 37°C. The strains
indicated were grown at 30°C to logarithmic phase and plated on solid
media at both 30 and 37°C for 3 days in a dilution series as described
in Materials and methods (A), or shifted to growth at 37°C for 6 h and
stained with the nuclear stain DAPI (B). Bar, 10µM.

(Figure 2A). In all five cases, growth at 37°C segregated
in a 2:2 fashion, indicative of a mutation in a single
nuclear locus. Additionally, all spore-derived colonies that
grew at 37°C exhibited a slight slow-growth phenotype
characteristic of suppressor strain Tn3-13 at 30°C. Genetic
linkage between the suppressor locus and the transposon
insertion was verified using PCR analysis with transposon
cassette-specific primers (Figure 2A). The suppressor locus
was isolated and identified, and the transposon was found
to have integrated within the open reading frame (ORF)
of theSCH9gene on chromosome VIII through sequence
analysis using theSaccharomycesgenome database
(Cherryet al., 1997).

SCH9was first isolated as a multicopy suppressor of a
temperature-sensitive allele ofCDC25, encoding a guanine
nucleotide exchange factor for yeast Ras proteins (Toda
et al., 1988). TheSCH9gene is predicted to encode an
824 amino acid protein with significant homology in the
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Fig. 2. Temperature-sensitive growth suppression in strain Tn3-13 is
due to inactivation of the Sch9 protein kinase. (A) Five four-spore
tetrads were isolated by tetrad dissection of an HSF(1-583)/Tn3-13
[HSF(1-583)sch9::mTn] diploid and spotted onto YPD plates for
growth at the temperatures indicated for 3 days. PCR analysis of
genomic DNA from each spore verified co-segregation of Tn3 with
growth suppression. (B) A diagram illustrating the nature ofSCH9
gene inactivation by the transposon cassette. (C) The indicated strains
were transformed with low-copySCH9-expressing plasmids or the
corresponding empty vectors alone, plated in a dilution series, and
incubated at 30 and 37°C for 3 days. (D) HSF(1-583) cells
transformed with the indicated plasmids (CEN, low-copy; 2µ, high-
copy) were grown in plasmid-selective medium to logarithmic phase
and plated in a dilution series at 30°C for 3 days.

C-terminal half of the protein to the serine/threonine class
of protein kinases, specifically the AGC family whose
members include protein kinases A, C and the recently
characterized protein kinase B/Akt group (Coffer and
Woodgett, 1991; Hunter, 1991; Joneset al., 1991). The
Sch9 N-terminus also contains a C2 phospholipid and
calcium binding motif found in a number of signal
transduction proteins (Nalefski and Falke, 1996). The
transposon integration resulted in disruption of the locus
after amino acid residue 359, which, if expressed, would
be expected to generate a truncated form of Sch9 con-
taining the putative C2 motif but entirely lacking the
protein kinase domain (Figure 2B). Because genetic ana-
lysis of the diploid test cross demonstrated that the
suppressor allele was recessive, and because the slow
growth of the strain was consistent with growth of an
sch9::ADE8null mutant generated in a previous report
(Toda et al., 1988), we reasoned that introduction of the
wild-type locus on an episomal plasmid should reverse
the high-temperature, growth-suppressor phenotype. A
genomic fragment encompassing theSCH9 gene was
subcloned into a low-copy vector and transformed into
HSF(1-583) cells. Whereas suppressor strain Tn3-13 carry-
ing an empty vector allowed growth at 37°C, the same
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strain expressingSCH9 (Tn3-13/p413SCH9) was unable
to grow at the same temperature, effectively demonstrating
that loss ofSCH9 gene expression was responsible for
suppression (Figure 2C). This was further established by
generating a traditionalSCH9 gene knockout mutant in
the HSF(1-583) background, replacing residues 150–629
with the HIS3 cassette (sch9∆::HIS3). This strain also
exhibited a slightly reduced growth rate at 30°C, which
was reversed by ectopic expression ofSCH9 (data not
shown), as well assch9∆-dependent suppression of
HSF(1-583) temperature sensitivity, as shown in
Figure 2C.

Because loss-of-function of the Sch9 protein kinase
through gene inactivation suppressed the temperature-
sensitive phenotype of HSF(1-583) cells, overexpression
of the SCH9gene in the same genetic background might
produce the opposite effect and debilitate cell growth under
non-stress conditions. HSF(1-583) cells were transformed
with low- (CEN) or high-copy (2µ) plasmids expressing
a functionalSCH9 gene containing three copies of the
hemagglutinin (HA) epitope immediately after the initiator
ATG codon (HA3-Sch9), or an empty vector alone, and
were grown under plasmid-selective conditions, as shown
in Figure 2D. Overexpression ofSCH9 has previously
been demonstrated to cause heat shock sensitivity in wild-
type cells, with no detectable effects at normal growth
temperatures (Todaet al., 1988; data not shown). In
contrast, the growth of HSF(1-583) cells, as measured by
colony-forming units on solid medium, was markedly
reduced in the presence of high-copy versus single-
copy HA3-Sch9 (Figure 2D). Moreover, this effect was
recapitulated in liquid culture as a slower growth rate
coupled with growth cessation at approximately half the
culture density of HSF(1-583) cells bearing low-copy
HA3-Sch9 (data not shown). Taken together, the findings
that loss of Sch9 kinase restores high-temperature growth
to HSF(1-583) cells and that Sch9 overproduction restricts
viability of HSF(1-583) even under non-stress growth
conditions support a role for Sch9 in negative regulation
of HSF or an HSF-dependent function.

Point mutations predicted to abolish activity of
the Sch9 protein kinase suppress HSF(1-583)
growth arrest
Overexpressed Sch9 functionally substitutes for loss of
all three of the catalytic subunits of protein kinase A
(Toda et al., 1988) and coupled with the resemblance of
the carboxyl half of the Sch9 protein to serine/threonine
protein kinases this strongly suggests that Sch9 functions
as a protein kinasein vivo. To assess the potential role
of Sch9 kinase activity in suppression of HSF(1-583)
temperature sensitivity, point mutations predicted to in-
activate the kinase were introduced within the putative
kinase domain. Two specific residues critical for catalytic
function and strictly conserved in other protein kinases
were altered: the lysine residue at position 441 was
substituted with alanine, and aspartic acid at position 556
was substituted with arginine as illustrated in Figure 3A.
Mutations in these residues have been demonstrated to
eliminate protein kinase function completely in other
protein kinases without substantially altering the stability
or expression of the proteins (Bryant and Parsons, 1984).
Both mutations were introduced in the HA-epitope-tagged
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Fig. 3. Kinase-inactivating mutations inSCH9suppress the cell cycle
block in HSF(1-583) cells. (A) Diagram depicting the domain
architecture of functional HA-tagged Sch9 kinase and kinase-
inactivating mutations. The putative C2 lipid/calcium binding domain
stretches from position 182 to 356, and the serine/threonine protein
kinase catalytic domain encompasses the C-terminal half of the
protein, from residues 400 to 824. The conserved kinase subdomains
mutagenized are shown above the protein and the specific alterations
are shown below. (B) Strain KMY6 [HSF(1-583)sch9∆::HIS3] was
transformed with the indicated low-copy plasmids or the vector alone,
and plated in a dilution series at 30 and 37°C for 3 days of growth.
(C) Transformed strains shown in (B) were grown to logarithmic
phase in plasmid-selective medium, and protein extracts were
generated and subjected to immunoprecipitation. Immune complexes
were resolved by SDS–PAGE and immunoblotted using 12CA5
antibody. The band labeled IgG HC is the mouse monoclonal heavy-
chain immunoglobulin detected by the secondary antibody. We note
that the tagged kinase migrates at ~125 kDa, despite a predicted
mol. wt of 91 kDa.

SCH9 allele and expressed from a low-copy vector in
strain KMY6, [HSF(1-583)sch9∆::HIS3]. As shown in
Figure 3B, KMY6 cells bearing the vector alone exhibited
suppression of HSF(1-583) temperature-sensitive growth
at 37°C. Introduction of wild-type HA3-Sch9 into this
strain reversed thesch9∆ slow-growth phenotype at 30°C,
as demonstrated by small colony size and growth rates
observed from liquid cultures (data not shown) and
abrogated growth at 37°C. In contrast, expression of
HA3-Sch9K441A or HA3-Sch9D556R resulted in slow-grow-
ing cells at 30°C and failed to reversesch9∆ suppression of
HSF(1-583) temperature sensitivity. The proteins produced
from the mutantSCH9 alleles were not compromised
for stability at either growth temperature, as shown in
Figure 3C. These data strongly support a protein kinase
function for Sch9, and directly implicate this activity in
genetic interactions with HSF or downstream targets
of HSF.

Loss of Sch9 does not hyperactivate the HSF or
Msn2/Msn4 stress response pathways
Given the genetic interactions between HSF(1-583) and
SCH9 observed, we tested whether Sch9 modulates the
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activity of HSF itself, first by examining whether the
reduced levels of Hsp90 chaperone complex subunits
caused by the HSF(1-583) mutation were elevated in the
Tn3-13 suppressor strain. Wild-type HSF, HSF(1-583) and
Tn3-13 cells were held at the control temperature (30°C)
or incubated at 39°C for 1 h to induce the heat shock
response. Protein extracts were immunoblotted with anti-
serum against the Hsp90 chaperone complex components
Hsp90, Sti1 and Cpr6, all dependent on HSF for basal
and heat-induced expression, and phosphoglycerate kinase
(PGK) as a control, as shown in Figure 4A. As previously
demonstrated (Liuet al., 1999; Moranoet al., 1999), the
HSF(1-583) strain exhibited diminished levels of all three
Hsps, as quantitated for heat shock expression relative to
wild-type cells in Figure 4B. These protein levels remained
essentially unchanged in the Tn3-13 strain, suggesting
that suppression of HSF(1-583) by loss of theSCH9
kinase was not via restoration of chaperone complex
synthesis in response to heat shock. Furthermore, we
observed no changes in either the transient or sustained
transcriptional activities previously ascribed to yeast HSF
(data not shown) (Sorger, 1990). Together, these data
argue against a direct effect of Sch9 on HSF function in
activating the heat shock response. Consistent with these
findings, we examined the effect of thesch9∆ mutation
on wild-type HSF function, and again found no alteration
in the transcriptional response (data not shown).

In yeast, a second transcriptional response system
governed by the Msn2/4 proteins is responsive to a variety
of stress signals including heat, oxidative stress, nutrient
depletion and osmotic imbalance (Ruis and Schuller,
1995). This system has also been shown to contribute to
the heat-induced expression of a number of Hsp genes
also activated by HSF, includingHSP104, HSP26, HSP12
and SSA3(Treger et al., 1998). To test whethersch9∆
suppression of HSF(1-583) temperature sensitivity might
operate through this pathway,MSN2 and MSN4 were
deleted in the Tn3-13 suppressor background. An analysis
of the four possible allele combinations generated from a
cross between strain Tn3-13 [HSF(1-583)sch9∆] and an
otherwise isogenicmsn2∆ msn4∆ strain is shown in
Figure 5A. Strains carrying either a singlemsnmutation
or deletions in bothMSN2and MSN4 in addition to the
HSF(1-583) andsch9∆ alleles grew as well at 37°C
as the MSN2/4 wild-type strain, indicating thatsch9∆
suppression does not require an intact general stress
response pathway. The loss of the respective Msn proteins
was verified by immunoblot analysis, as shown in
Figure 5B. Furthermore, no changes in HSF(1-583) levels
were observed in these strains. Inactivation of the general
stress response pathway was verified by RNA blot analysis
of transcripts derived from the Msn-dependent catalase
gene,CTT1, in response to a 30 min heat shock treatment
as shown quantitatively in Figure 5C. Heat stress resulted
in robust activation ofCTT1 transcription in theMSN2
MSN4background and also in the strain carrying a deletion
in MSN4only, consistent with previous reports (Martinez-
Pastoret al., 1996; Schmitt and McEntee, 1996). Loss of
Msn2 alone or in combination with Msn4 drastically
reducedCTT1 gene activation, confirming disruption of
this stress response mechanism. Additionally, all four
strains were defective in heat-shock-inducibleCUP1gene
expression, as expected for the HSF(1-583) mutation.
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Fig. 4. The sch9∆ mutation does not restore the heat shock transcriptional response to HSF(1-583) cells. (A) The strains indicated were grown at
30°C to logarithmic phase, and the cultures were divided in half and heat shocked for 1 h at39°C or maintained at 30°C. Protein extracts were made
from these cells and resolved by SDS–PAGE, followed by immunoblotting to detect cellular levels of Hsp90, Sti1 and Cpr6, with PGK as a load
control. (B) Quantitation of Hsp levels after heat shock shown in (A) via densitometric analysis of multiple scanned exposures.

Together, these experiments demonstrate that although
HSF(1-583) cells are defective in certain aspects of the
heat shock response, inactivation of theSCH9locus does
not restore full transcriptional competency to HSF nor
does this mutation override HSF regulation of chaperone
synthesis by hyperactivation and recruitment of a parallel
stress response pathway.

Sch9 modulates Hsp90 chaperone activity in
HSF(1-583) cells
A major cellular defect observed in the HSF(1-583) mutant
is impaired transcription of Hsps, resulting in lower steady-
state- and heat-stress-induced levels of key components
of the Hsp90 chaperone system such as Hsp90 itself,
Sti1/Hop and the cyclophilin Cpr6. Consistent with the
temperature-sensitive nature of the HSF(1-583) allele, it
has been established that cells have a greater demand for
Hsp90 chaperone complex activity at higher temperatures,
where conformationally flexible proteins are likely to
require stabilization (Borkovichet al., 1989; Nathanet al.,
1997). Our results suggest that sufficient Hsp90 chaperone
activity has been restored to allow growth at elevated
temperatures despite no increase in the levels of Hsp90
chaperone complex components in HSF(1-583)sch9∆
cells. These data support a model whereby inactivation of
Sch9 suppresses the temperature-sensitive phenotype of
HSF(1-583) cells by enhancing Hsp90 chaperone complex
activity. To test this hypothesis, we ascertained whether
deletion of SCH9 would ameliorate the demonstrated
sensitivity of HSF(1-583) cells to geldanamycin and
macbecin, two compounds that selectively bind to and
inhibit the chaperone activity and signal transduction
functions of Hsp90 (Whitesellet al., 1994; Prodromou
et al., 1997; Stebbinset al., 1997; Bohen, 1998). These
compounds are cytotoxic to cells compromised for Hsp90
expression or function, such as the HSF(1-583) mutant
(Morano et al., 1999), or strains carrying deletions of
Hsp90-associated co-chaperones such as Sti1, Sse1 (Liu
et al., 1999), Cns1 and Cpr6/7 (Dolinskiet al., 1998).
HSF, HSF(1-583) and Tn3-13 cells were serially diluted
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and grown on rich medium containing 35µM macbecin
or geldanamycin, or no applied drug. As shown in Figure 6,
the growth of wild-type cells was unaffected by the
compounds, while HSF(1-583) cell growth was drastically
inhibited by geldanamycin and to a lesser extent macbecin.
Deletion of the SCH9 gene in the Tn3-13 strain, in
contrast, provided a significant level of tolerance to both
drugs, relative to HSF(1-583). These data support a model
where loss of Sch9 function leads to ‘derepression’ of
Hsp90 chaperone complex activity, thereby countering the
inhibitory effects of the drugs.

To test further the hypothesis that Sch9 functions as a
regulator of Hsp90 activity, we assayed the activities of
three known Hsp90 chaperone complex-dependent pro-
teins in vivo, chosen to illustrate the broad spectrum of
Hsp90 signal transduction function in yeast: mammalian
glucocorticoid receptor (GR) (Picardet al., 1990), the
yeast heme-responsive Hap1 transcription factor (Zhang
et al., 1998), and the yeast MEK kinase Ste11 (Louvion
et al., 1998). The activity of all three proteins has been
demonstrated to require the Hsp90 chaperone system in
yeast through the use of Hsp90-deficient mutants harboring
mutations in Hsp90 or some of its associated co-
chaperones. In addition, we have demonstrated that
HSF(1-583) cells display reduced GR activity consistent
with the marked reduction in chaperone protein expression
in this strain (Liuet al., 1999; Moranoet al., 1999). Wild-
type HSF, HSF(1-583) and Tn3-13 cells were treated
with the synthetic hormone deoxycorticosterone (DOC)
in ethanol, or ethanol alone (Figure 7A). An ~7-fold
hormone-dependent activation of GR was obtained in
wild-type cells, which was reduced by.70% in
HSF(1-583) cells. Remarkably, DOC-induced GR function
in strain Tn3-13 was increased 5-fold relative to
HSF(1-583) cells and 1.5-fold relative to wild-type cells.
Additionally, DOC-independent basal GR activity was
also restored to wild-type levels in strain Tn3-13.

The Hap1 heme-responsive transcription factor was
recently found to exist in a multiprotein complexin vivo
containing Hsp90 and the co-chaperone Ydj1 (Zhang
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Fig. 5. The sch9∆ mutation does not deregulate the general stress
response. (A) Haploid HSF(1-583)sch9∆::mTn strains carrying all
four allele combinations ofMSN2andMSN4were generated using
standard genetic techniques. These strains were grown at 30°C to
logarithmic phase and plated on solid media at both 30 and 37°C for
3 days in a dilution series, demonstrating no loss of suppression
ability. (B) Protein extracts from the strains indicated were resolved by
SDS–PAGE and immunoblotted using polyclonal antisera recognizing
Msn2, Msn4 or HSF. Numbered lanes correspond to strains in (A).
(C) Heat shock gene expression from the HSF pathway (CUP1) or the
general stress response pathway (CTT1) was measured using Northern
blot analysis. Band intensities were obtained, normalized toACT1 for
load control, and are presented relative to non-shocked cells as fold
heat shock induction. Numbered lanes correspond to strains in (A).

et al., 1998). Strains expressing low levels of Hsp90
exhibit dramatically impaired transcription from a Hap1-
dependentCYC1-lacZ reporter gene, establishing the
dependence of Hap1 on Hsp90 chaperone complex activity.
The CYC1-lacZreporter was transformed into wild-type
HSF, HSF(1-583) and Tn3-13 cells, andβ-galactosidase
activity was measured from exponentially growing cul-
tures. As shown in Figure 7B, this reporter system mirrored
the results obtained with GR; HSF(1-583) cells displayed
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Fig. 6. Inactivation of Sch9 kinase restores resistance of HSF(1-583)
to the Hsp90 inhibitors macbecin and geldanamycin. The strains
indicated were grown at 30°C to logarithmic phase and plated in a
dilution series on solid media containing no added drug, 35µM
macbecin or 35µM geldanamycin, and grown at 30°C for 4 days.

an ~80% reduction in Hap1 activity, which was completely
reversed in suppressor strain Tn3-13. Hap1 was in fact
hyperactivated in this strain, producingβ-galactosidase
levels 3-fold greater than in wild-type cells.

It was recently demonstrated that Hsp90 is also required
for full stability and function of the yeast Raf homolog
Ste11 (Louvionet al., 1998), which plays crucial roles in
signal transduction MAPK cascades controlling cellular
responses to pheromone and nutrient depletion (reviewed
in Gustin et al., 1998). Cells expressing low (~10% of
wild type) Hsp90 levels or mutant yeast Hsp90 proteins
exhibit many of the defects associated with Ste11-deficient
cells, such as failure to arrest the cell cycle in G1
phase in response toα-factor, and reduced transcriptional
activation of a synthetic pheromone-responsive reporter
gene by the transcription factor Ste12, which is down-
stream of Ste11 (Louvionet al., 1998). To ascertain
the status of Ste11-dependent pheromone signaling in
HSF(1-583) and Tn3-13 cells, a synthetic reporter chimera
consisting oflacZdriven by a minimal promoter containing
three repeats of the pheromone response element was
utilized (PRE-lacZ), as shown in Figure 7C (Hagenet al.,
1991). Wild-type cells exhibited robustα-factor-dependent
induction of this reporter that was reduced by ~80%
in the HSF(1-583) background. Analysis of pheromone
induction in strain Tn3-13 revealed complete restoration
of pheromone-dependent activation.

To investigate this role of Sch9 in Hsp90 regulation in
wild-type cells,HSF1 SCH9and HSF1 sch9∆ cells (see
Materials and methods) were transformed with the PRE-
lacZ reporter plasmid and assayed for pheromone respons-
iveness. No reproducible increase in pheromone-dependent
signaling was observed insch9∆ cells compared with the
wild type (~1000 U ofβ-galactosidase activity). However,
as shown in Figure 7D, a dramatic 5-fold increase in
activity of the reporter in the absence of exogenous
pheromone was detected, similar to that observed for the
Hsp90-compromised strain Tn3-13 in Figure 7C. The
MAPK module governing pheromone response is known
to exhibit a low degree of basal activity, thought to keep
the system primed for rapid induction upon exposure to
pheromone, and prevent inappropriate G1 phase arrest that
is known to be triggered by mating pheromone and
required for mating to occur (Hagenet al., 1991). This
low basal activity has recently been demonstrated to rely
upon Hsp90 as well (Louvionet al., 1998). Taken together,
these assays unambiguously demonstrate that inactivation
of Sch9 in the HSF(1-583) strain restores Hsp90 chaperone
function in diverse signal transduction pathways.
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Fig. 7. Loss of Sch9 kinase restores Hsp90 chaperone function. (A) Glucocorticoid receptor. The strains indicated were grown to logarithmic phase
at 30°C, treated with the synthetic hormone analog DOC (10µM) in ethanol or ethanol alone for 1 h, and harvested forβ-galactosidase assay.
(B) Hap1 transcription factor. The strains indicated were grown to logarithmic phase at 30°C and harvested forβ-galactosidase assay. (C) Ste11
kinase. The strains indicated were grown to logarithmic phase at 30°C, treated with 5µM α-factor or not for 3 h, and harvested forβ-galactosidase
assay. (D) The strains indicated were grown to logarithmic phase in the absence of pheromone at 30°C and harvested forβ-galactosidase assay. All
reporter gene activities were calculated in Miller units as described in Materials and methods and represent three independent experiments.

Discussion

Modulation of Hsp90 chaperone complex function
by a growth control kinase
In this report we present evidence for cellular regulation
of the Hsp90 chaperone complex by a protein kinase
previously implicated in cellular growth control. Given
the powerful activation potential of the Hsp90 chaperone
machine on cellular targets that regulate gene expression
and cell proliferation, a mechanism for modulating this
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activity is not unexpected. The need for regulation is made
more apparent by the fact that Hsp90 is one of the most
abundant proteins in eukaryotic cells (Borkovichet al.,
1989). Association with Hsp90 restrains the activation of
many client proteins until the appropriate conditions arise
requiring their action. One example is HSF, which can
acquire DNA binding or transcriptional activation potential
in the absence of stress induction if Hsp90 is dissociated
or inactivated via drug inhibition or if Hsp90 co-
chaperones are absent (Aliet al., 1998; Duinaet al., 1998;
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Zou et al., 1998). Additionally, removal of the Hsp90
binding domain from steroid receptor family members
renders them constitutively active, and insensitive to both
Hsp90 repression and ligand stimulation (Picardet al.,
1990). The role of Hsp90 in Ste11 signaling operates in
a similar manner: the chaperone complex is required both
for low basal activity of the pheromone pathway and for
pheromone induction (Louvionet al., 1998). The elevated
basal activity of the MAPK pathway in the absence of
pheromone, which we observed insch9∆ cells, is an
important demonstration of inappropriate activation of an
Hsp90 client protein resulting from an increase in specific
activity of the chaperone complex, a potential consequence
of recruiting a powerful protein chaperone to facilitate
signal transduction.

A common feature of many Hsp90 client proteins is the
capacity to switch reversibly between distinct functional
modes (on/off) in response to cellular input. Overlaying
this regulation with modulation of Hsp90 chaperone
activity would provide rheostatic control over client protein
function, perhaps tied to overall cellular stress status
indicators, such as nutrient availability or cytotoxic
environmental conditions including thermal and oxidative
stress. Indeed, although little is known about the cellular
roles of the Sch9 kinase in yeast, it has been implicated
in nitrogen sensing, potentially through a serpentine recep-
tor-G-protein-linked pathway involving the heterotrimeric
G-protein α subunit Gpa2 (Crauwelset al., 1997; Xue
et al., 1998). This G-protein is also directly involved in
glucose signaling (Colomboet al., 1998). Together, these
observations support a model whereby disparate cell
growth and signaling pathways might be coupled to
nutritional status and metabolic potential by recruitment
of Hsp90, and subsequent regulation through Sch9 and
perhaps other kinases and phosphatases.

Potential Sch9 regulatory mechanisms
How does Sch9 regulate Hsp90 complex function? Hsp90
is a phosphoprotein in higher eukaryotic cells (HeLa;
Legagneuxet al., 1991), and its level of phosphorylation
increases immediately following heat shock. The
chaperone is probably multiply phosphorylatedin vivo, as
Hsp90 immunoprecipitated from NIH 3T3 cells contains
both phosphoserine and phosphothreonine, as determined
by phosphoaminoacid analysis (Mimnaughet al., 1995).
Moreover, Hsp90 phosphorylation may have biological
relevance, as treatment of cells with the serine phosphatase
inhibitor okadaic acid both increased the levels of phos-
phorylation and coincided with the release of the associated
substrate protein v-src (Mimnaughet al., 1995). Regulation
of Hsp90 chaperone complex activity may also be
accomplished through post-translational modification of
the co-chaperones. For example, the FK506-binding pro-
tein FKBP52 is phosphorylatedin vivo and in vitro by
casein kinase II, and phosphorylated FKBP52 exhibits
reduced binding to Hsp90 (Miyataet al., 1997). Because
subunits such as FKBP52 play important roles in steroid
receptor maturation and trafficking (Czaret al., 1995),
modulation of co-chaperone association and dissociation
may provide a means to regulate distinct Hsp90–substrate
interactions. It was recently demonstrated that the weak
ATPase activity of Hsp90 is potently inhibited upon
addition of purified Sti1 to Hsp90, while the addition of
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purified Cpr6, which binds to the same tetratricopeptide
repeat (TPR) acceptor domain on Hsp90, had no effect,
suggesting that subunit association may provide a level
of control in yeast (Prodromouet al., 1999). Although
these intriguing findings prompt speculation for similar
protein kinase-mediated regulation of Hsp90 complex
composition in yeast, it is not yet known whether any of
these specific co-chaperones are phosphoproteinsin vivo.
Efforts are currently underway to determine precisely
the phosphorylation status of Hsp90 chaperone complex
components in wild-type andsch9∆ cells. It will be of
considerable interest to elucidate the mechanism by which
signal transduction mediated by the ubiquitous Hsp90
chaperone complex is regulated.

Materials and methods

Strains, plasmids, media and reagents
Strains NSY-A [MATa ade2-1 trp1 can1-100 leu2-3,-112 his3-11,-15
ura3 hsf1∆::LEU2 (pRS314-HSF)] and NSY-B {MATa ade2-1 trp1 can1-
100 leu2-3,-112 his3-11,-15 ura3 hsf1∆::LEU2 [pRS314-HSF(1-583)]}
were described previously and are referred to throughout the text as
‘HSF’ and ‘HSF(1-583)’ for simplicity (Moranoet al., 1999). Strain
KMY3 { MATα ade2-1 trp1 can1-100 leu2-3,-112 his3-11,-15 ura3
hsf1∆::LEU2 [pRS314-HSF(1-583)]} was created using the HO recombi-
nase mating type-switching technique (Herskowitz and Jensen, 1991).
Strain Tn3-13 (NSY-Bhsf1∆::leu2::KANMX2 sch9::mTnLEU2) was
obtained via transposon mutagenesis. Strain KMY55 (relevant genotype
HSF1, sch9::mTnLEU2) was constructed from Tn3-13 by plasmid
shuffling, replacing pRS314-HSF(1-583) with pRS314-HSF. Strain
KMY6 (NSY-B sch9::HIS3) was constructed by cloning both 59 and 39
gene fragments from theSCH9 ORF into plasmid pGEM-3Z-HIS3,
flanking a 1.76 kbBamHI DNA fragment containing theHIS3 gene.
PCR was used to generate a 415 bp fragment encompassing nucleotides
41–456, and a 593 bp fragment containing nucleotides 1882–2475,
numbered relative to the first nucleotide of the initiator codon. The
template for this and all subsequentSCH9 gene manipulations was
plasmid pHV1SCH9, containing a genomic DNA fragment with the
entireSCH9ORF and flanking sequences kindly provided by Dr Anne
Vojtek. The PCR products were cloned into the plasmid pGEM-3Z-
HIS3, and the gene disruption fragment (59-SCH9-HIS3-39 SCH9) was
generated by restriction endonuclease digestion using unique flanking
sites. Plasmids p413SCH9, p416SCH9 and p426HA3-Sch9 were derived
from plasmid pHV1SCH9. To construct an epitope-tagged version of
SCH9, aNotI restriction endonuclease site was introduced after the second
codon using the Chameleon site-directed mutagenesis kit (Stratagene, La
Jolla, CA). A DNA fragment encoding three tandem repeats of the HA
epitope was subcloned into theNotI site. The epitope-tagged gene was
judged to be fully functional. The Chameleon kit was also used to
individually change the lysine at residue 441 to alanine and the aspartic
acid at residue 556 to arginine to create kinase-dead alleles. To reduce
the chance of extraneous mutation, internal 0.8 kbMscI–StuI DNA
fragments encompassing the mutated regions were subcloned after
sequencing to verify that no additional mutations were introduced.

All DNA manipulations were performed using standard techniques.
All yeast and molecular genetic techniques were carried out as described
except where indicated (Kaiseret al., 1994). Transposon mutagenesis
and allele rescue were perfomed as described (Ross-Macdonaldet al.,
1999) using reagents provided by Michael Snyder, Yale University. Yeast
complete media, yeast extract/peptone/dextrose (YPD), and synthetic
complete media (SC) were prepared as described (Kaiseret al., 1994).
Macbecin was kindly provided by the Drug Synthesis and Chemistry
branch of the National Cancer Institute, and geldanamycin was a
gift of Dr William Pratt (University of Michigan Medical School, Ann
Arbor, MI).

Heat shock protein expression analysis,
immunoprecipitation and antibodies
All cultures were grown at 30°C to mid-logarithmic phase prior to heat
shock treatment. To amplify the heat shock response, cells were heat
shocked at low density (OD600 ,0.4) at 39°C. Analysis of Hsp protein
levels was carried out as described (Moranoet al., 1999). The following
antisera were used for immunodetection: monoclonal anti-HA antibody
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12CA5 (Roche Molecular, Basel, Switzerland); anti-Hsp90 and anti-
Cpr6 (kind gift of Dr Susan Lindquist, University of Chicago, IL); anti-
Sti1 (kind gift of Dr David Toft, Mayo Graduate School, MN); anti-Msn2,
Msn4 (kind gift of Dr Francisco Estruch, University of Valencia, Spain);
anti-PGK (Molecular Probes, Eugene, OR).

In some cases, HA3-Sch9 was immunoprecipitated prior to immuno-
blotting as follows. Cells were glass-bead lysed as described above,
equalized for protein concentration and diluted with 1 ml of lysis
buffer with 0.1% Triton X-100. Four microliters of 12CA5 antibody
(corresponding to ~20µg of monoclonal IgG, demonstrated to be in
excess of antigen levels), 5µl of 10 mg/ml bovine serum albumin and
25 µl of Pansorb (Calbiochem, San Diego, CA) suspension were added
and the mixture was rocked for 2 h at 4°C. Immune complexes were
washed four times in the same buffer and eluted into SDS–PAGE
sample buffer.

For analysis of general stress response pathway function, Northern
analysis was used to measure transcript levels ofCUP1, which is not
under control of this pathway, andCTT1, whose heat shock induction is
HSF-independent, using radiolabeled probes. Gene expression is reported
as fold induction relative to non-heat-shocked cells, normalized to
internalACT1 levels.

Hsp90 chaperone assays
Glucocorticoid receptor. A GR reporter system was created by co-
expressing rat GR from plasmid pRS413GPDGR and plasmid
pYRP-GRElacZ carrying alacZ reporter gene driven by glucocorticoid
response elements (Moranoet al., 1999). Logarithmic phase cells were
divided in half, and one culture was treated for 1 h with DOC dissolved
in ethanol to a final concentration of 10µM, while the other received
ethanol alone. Cells were harvested by centrifugation and processed for
β-galactosidase assay as described (Liuet al., 1999).

Hap1 transcription factor. For assay of Hsp90 chaperoning of Hap1, the
plasmid pAx (CEN, URA3) (kind gift of Dr Li Zhang, NYU Medical
Center, NY), which contains the minimal UAS1/CYC1-lacZ reporter
construct, was used. This reporter construct is responsive to cellular
heme levels via transcriptional activation from the Hap1 transcription
factor. In cells that are wild-type for heme biosynthesis, this reporter
exhibits robust expression, which is nearly eliminated in strains deficient
in Hsp90 function (Zhanget al., 1998). Cells carrying pAx were
grown to logarithmic phase in selective media and processed for
β-galactosidase assay.

Ste11 kinase. To assay pheromone-dependent gene expression, a reporter
plasmid was constructed containing three consensus binding sites for
the Ste12 transcription factor driving thelacZ gene as previously
described (Hagenet al., 1991). Complementary oligonucleotides with
three tandem repeats were synthesized, hybridized and cloned into the
minimal CYC1-lacZexpression vector pCM64 (CEN, URA3) digested
with BglI andXhoI to create plasmid pPRE-lacZ. Cells transformed with
this plasmid were grown to logarithmic phase and the cultures were
divided in half.α-factor (Sigma, St Louis, MO) in water was added to
one culture to a final concentration of 5µM, while a parallel culture
was left untreated, and the cells were grown for an additional 3 h. Cells
were then harvested and processed forβ-galactosidase assay.
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