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The C2 domain acts as a membrane-targeting module
in a diverse group of proteins including classical protein
kinase Cs (PKCs), where it plays an essential role
in activation via calcium-dependent interactions with
phosphatidylserine. The three-dimensional structures
of the Ca2F-bound forms of the PKCα-C2 domain
both in the absence and presence of 1,2-dicaproyl-sn-
phosphatidyl-L-serine have now been determined by
X-ray crystallography at 2.4 and 2.6 Å resolution,
respectively. In the structure of the C2 ternary complex,
the glycerophosphoserine moiety of the phospholipid
adopts a quasi-cyclic conformation, with the phos-
phoryl group directly coordinated to one of the Ca2F

ions. Specific recognition of the phosphatidylserine is
reinforced by additional hydrogen bonds and hydro-
phobic interactions with protein residues in the vicinity
of the Ca21 binding region. The central feature of the
PKCα-C2 domain structure is an eight-stranded, anti-
parallel β-barrel with a molecular topology and organ-
ization of the Ca2F binding region closely related to
that found in PKC β-C2, although only two Ca2F ions
have been located bound to the PKCα-C2 domain.
The structural information provided by these results
suggests a membrane binding mechanism of the PKCα-
C2 domain in which calcium ions directly mediate
the phosphatidylserine recognition while the calcium
binding region 3 might penetrate into the phospho-
lipid bilayer.
Keywords: Ca21 binding/C2 domain/phosphatidylserine/
protein kinase C/X-ray structure

Introduction

Protein kinase C (PKC) refers to a large diversity of
phospholipid-dependent serine/threonine kinases that can
be activated upon external stimulation of cells by a
number of ligands including growth factors, hormones and
neurotransmitters (Basu, 1993; Newton, 1995; Nishizuka,
1995; Mellor and Parker, 1998). PKC in mammalian cells
consists of at least 11 closely related isoenzymes that, in
general, contain four conserved domains named C1–C4
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(Coussenset al., 1986). According to their structure and
cofactor regulation, PKCs can be classified into three
groups. The first group, which includes the classical
isoforms (α, βI, βII and γ), can be distinguished from
the other groups because functioning is regulated by
diacylglycerol (DAG) and also cooperatively by calcium
and acidic phospholipids, particularly phosphatidylserine
(PS). Members of the second group are the novel mamma-
lian (δ, ε, η andθ) and yeast PKCs that are not regulated
by calcium and present a molecular organization similar
to the classical isoforms except for differences in the C2
domain. The third group comprises the atypical PKC
isoforms (ζ, λ andµ), which lack the C2 domain and are
regulated neither by DAG nor by calcium (Dekker and
Parker, 1994; Newton and Johnson, 1998).

In the classical PKCα isoenzyme, the Ca21-dependent
binding to membranes presents a high specificity for 1,2-
sn-phosphatidyl-L-serine (Boni and Rando, 1985; Lee and
Bell, 1989; Newton and Keranen, 1994; Johnsonet al.,
1998). Furthermore, it has also been shown that this
binding is mediated by the C2 domain bothin vitro and
in vivo (Edwards and Newton, 1997; Medkova and Cho,
1998; Corbalan-Garciaet al., 1999). Homologs of the
PKCα-C2 domain correspond to regulatory sequence
motifs of ~130 amino acids, existing in a large variety of
proteins involved in intracellular signaling and membrane
trafficking (Nalefski and Falke, 1996; Rizo and Su¨dhof,
1998). Crystal structures of C2 domains from synapto-
tagmin I (Suttonet al., 1995), phospholipase C-δ (Essen
et al., 1996), phospholipase A2 (Perisic et al., 1998;
Bittova et al., 1999; Dessenet al., 1999), PKCβ (Sutton
and Sprang, 1998) and PKCδ (Pappaet al., 1998) have
revealed a homologousβ-sandwich fold that serves in the
first four proteins as the scaffold for a generally bipartite
Ca21 binding site formed by a pair of loops that project
from the opposingβ-sheets. The C2 domains of synapto-
tagmin and the two phospholipases adopt alternative
type I and type II connectivities that differ by circular
permutation of their topologies (reviewed by Nalefski and
Falke, 1996; Rizo and Sudhof, 1998). C2 domains of
classical PKCs can be classified as having a type I topology
(Sutton and Sprang, 1998), while in the novel PKCδ the
C2 domain has been found to exhibit a type II topology
similar to that of the phospholipases but with a degenerated
Ca21 binding site (Pappaet al., 1998).

Mechanisms involved in the membrane interactions
with the C2 domain remain unclear and neither the
structural basis for cooperativity between lipids and Ca21

nor the lipid specificity are well understood for PKCs. The
structural information on the PKCα-C2 domain complexes
obtained in the present work suggests a membrane binding
mechanism in which one calcium ion directly mediates
the PS-specific recognition, while the calcium binding
region 3 (CBR3) might penetrate into the phospholipid
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Table I. Data collection and refinement statistics of PKCα-C2–Ca21 and PKCα-C2–Ca21–DCPS structures

Parameters PKCα-C2–Ca21–DCPS PKCα-C2–Ca21

Space group P3221 P3221
Cell dimensions (Å) a 5 b 5 58.81,c 5 91.68 a 5 b 5 58.35,c 5 91.62
Resolution (Å) 2.6 2.4
Reflections

Total 17 072 11 214
Unique 5610 6553

Rsymm (%) 9.2 5.5
Completeness (%) 94.3 88.9
Refinement reflections 5432 6292
Resolution range (Å) 18–2.6 20–2.4
Non-H atoms 1110 1106
Solvent molecules 38 76
Counterions 3 (2 Ca21; 1 PO4

3–) 4 (2 Ca21; 2 PO4
3–)

MeanB-factor (Å2)
Protein 25.6 28.2
Water molecules 32.6 36.7
Calcium ions 24.5 32.3
Phosphate ions 41.5 37.2
DCPS ligand 40.8 –

R.m.s. deviations from standard
Bond lengths (Å) 0.015 0.018
Bond angles (°) 1.4 1.6

sn-1 model sn-2 model
Rwork (%) 19.5 19.6 22.7
Rfree (%) 23.3 23.6 27.1

bilayer. This translocation mechanism appears to be in
agreement with data about lipid specificity, cooperativity
with calcium ions and most observations derived from
mutational studies.

Results

Overall structures
Crystals of the calcium bound forms of the PKCα-C2
domain, including from His155 to Gly293 residues, were
obtained and analyzed by X-ray crystallography both in
the absence (PKCα-C2–Ca21) and in the presence of the
short chain lipid 1,2-dicaproyl-sn-phosphatidyl-L-serine
(DCPS) (PKCα-C2–Ca21–DCPS). In the two crystal forms
the quality of the final electron density map allowed the
accurate positioning of most residues and side chains from
the C2 domain. Only densities corresponding to the highly
exposed N-terminal residues, His155 to Lys158, and to
the side chains from Lys197, Lys199 and Arg252, were
poorly defined in the two structures. The root mean square
(r.m.s.) deviation of the superimposition of the Cα atoms
from the two PKCα-C2 crystal structures determined is
0.22 Å, a value resulting from both model inaccuracies
and real conformational differences that can be considered
an upper limit error for the coordinates in the two
structures. The high structural similarity between the
protein conformation in the binary and ternary complexes
extends to the disposition of most side chains, indicating
that no important rearrangements of the C2 conformation
were induced by the phospholipid binding. The PKCα-
C2–Ca21 structure, at 2.4 Å resolution, also shows 76
well ordered solvent molecules, two Ca21 and two phos-
phate ions (Table I). The ternary complex PKCα-C2–
Ca21–DCPS, determined at 2.6 Å resolution, includes 38
solvent molecules, two Ca21, one phosphate ion and one
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DCPS molecule with a partial occupancy.50%. Electron
density corresponding to the DCPS ligand was well defined
for the glycerophosphoserine head group moiety, but
weakened towards the phospholipid acyl chains. The
position corresponding to the phosphoryl group of the
DCPS ligand was partially occupied in the binary complex
by a phosphate ion from the solution employed for
crystallization. A strong peak of extra density, both in
the unbound and DCPS-bound structures, also suggested
the presence of a phosphate ion at a conserved positively
charged cluster (Sutton and Sprang, 1998), which in PKCα
involves lysine residues 197, 199, 211 and 213 from
strandsβ3 andβ4.

The central structural feature of the PKCα-C2 domain
is an eight-stranded, anti-parallelβ-sandwich with the
type I or S-type fold, which is a topology similar to the
first C2 domain of synaptotagmin I (Figure 1) (Sutton
et al., 1995). The PKCα-C2–Ca21 domain structure retains
most of the features found in the C2 domain of PKCβ
including the organization of the Ca21 binding region, as
anticipated from the ~80% sequence identity between
the two domains (Sutton and Sprang, 1998). The r.m.s.
calculated between the equivalent Cα atoms of PKCα-C2
and PKCβ was only 0.43 Å for 130 equivalent residues.
The r.m.s. deviation between equivalent Cα atoms of
PKCα-C2 and synaptotagmin-C2A (type I fold) was
0.91 Å for 108 equivalent residues, whereas deviations
from the type II fold PLC-δ-C2 (Essenet al., 1996), PLA2
(Perisicet al., 1998) and PKC-δ-C2 (Pappaet al., 1998)
were 0.95, 0.82 and 1.40 Å for 87, 79 and 40 equivalent
residues, respectively. The greatest variability among all
these C2 domain structures is found in the N-terminal
region and in the strand connections. The Ca21 binding
region 1 (CBR1), which corresponds to theβ2–β3 connec-
tion, is similar in PKCα and β, while both present large



Structure of PKCα-C2–Ca2F–phosphatidylserine

Fig. 1. (A) Overall structure of the C2 domain of PKCα bound to PS.β-strands are depicted as arrows numbered sequentially. The two Ca21 ions
located in the calcium binding site are also shown as orange spheres. The DCPS and phosphate molecules found in the ternary complex are
explicitly shown as balls and sticks. (B) Surface potential drawing of the PKCα-C2–Ca21 domain structure as computed and displayed by GRASP
(Nicholls et al., 1991). Positively and negatively charged regions are shown in blue and red, respectively. The DCPS- and phosphate-bound
molecules are also depicted as stick models.

differences to other C2 domain structures. In contrast, the
organization of connectionβ6–β7, referred to as loop 3
or CBR3, is highly conserved among all the C2 domain
structures. The comparison of theβ3–β4 link of PKCα
and β shows deviations.3 Å for the Cα atoms of
equivalent residues. Finally theβ7–β8 connection, located
at the end of theβ-sandwich opposite to the Ca21 binding
site, is a helix in PKCα andβ but a loop in the remaining
C2 structures available.

Ca2F binding pocket
The two Ca21 ions found in the PKCα-C2 structures
(named Ca1 and Ca2 in Figures 1 and 2) are equivalent
to the central calcium subsites (sites II and III, respectively)
in PKCβ-C2 (Sutton and Sprang, 1998). However, the
location corresponding to the third PKCβ-C2 Ca21 binding
subsite (site IV) is occupied by a water molecule in
PKCα-C2. Ca1 and Ca2 ions in PKCα-C2 are related to
each other by a pseudo-dyad symmetry axis, similar to
what had been observed in most C2 structures (Shaoet al.,
1996; Essenet al., 1997). Protein ligands provide six of
the seven oxygens that coordinate with each of the two
Ca21 ions and are located in loopsβ2–β3 (CBR1) and
β6–β7 (CBR3) at distances ranging from 2.3 to 2.6 Å
(Essenet al., 1997). These protein ligands correspond to
the side chains of the five aspartate residues (187, 193,
246, 248, 254) and to the main chain of residues Met186
and Trp247 (Figure 2). Three aspartate ligands (187, 246
and 248) coordinate simultaneously with the two calcium
ions. Asp246, situated on the pseudo-dyad axis, contributes
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one carboxylate oxygen to each of the Ca21 ions. Asp187,
related by the pseudo-dyad axis to Asp248, shows a
bidentate interaction with Ca1, while still participating in
one coordination bond with Ca2 (Figure 2C). On the other
hand, Asp248 presents a bidentate interaction with Ca2
and a single coordination with Ca1.

The nature and disposition of the seventh ligand of
the two Ca21 ions depart completely from the pseudo-
symmetric organization of the calcium binding pocket of
the C2 domain. Ca1 is bound to the phosphoryl group of
DCPS in the PKCα-C2–Ca21–DCPS ternary complex and
is coordinated to a phosphate ion in the binary complex
(Figure 2A and B). In turn, the seventh ligand of Ca2 is
a water molecule in both the binary and ternary complexes
(Figure 2). The organization of these ligands in PKCα
differs from that found in PKCβ, where the seventh
coordination position was empty for Ca1 and occupied by
the side chain of a glutamic residue from a neighbor
molecule for Ca2 (Sutton and Sprang, 1998).

Conformation and interactions of the DCPS ligand
In order to obtain the ternary complex of PKCα-C2
domain with PS and Ca21 we have used DCPS, which
has the peculiarity of being hydrosoluble at the 2 mM
concentration used during the preparation of the PKCα-
C2–Ca21–DCPS complex in this work, and it shows a
critical micellar concentration of 29 mM (Walkeret al.,
1990). The presence of one bound molecule of DCPS in
the crystal structure of the PKCα-C2–Ca21–DCPS com-
plex was initially suggested by the prominent extra density,
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Fig. 2. Stereoview of the Ca21 binding site of the PKCα-C2–Ca21–DCPS ternary complex (A) and of the PKCα-C2–Ca21 binary complex (B). For
both structures the seven coordination bonds of each calcium ion are represented as broken lines. Protein residues are shown in white, while the
DCPS and phosphate ligands from the ternary and binary complexes, respectively, are shown in gray. Ca21 ions and water molecules are depicted as
large and smaller black balls, respectively. (C) Pseudosymmetric coordination scheme of the two Ca21 ions found in the structure of the ternary
complex.

with a nearly cyclic shape, located in the vicinity of Ca1
in difference Fourier maps (Figure 3). This density was
interpreted as corresponding to the cyclization of the
glycerophosphoserine backbone with a water molecule
(named w0 in Figure 4). Two energetically feasible con-
formations of the phospholipid can be proposed from the
electron density maps, as the similarity of the atomic
dispositions retains the most significant peculiarities in
the two alternative models even when taking into account
protein–lipid interactions or stereochemical constraints
(Figures 3C and 4). In the first conformation, the
N-terminal group of the phosphoserine bridges to the fatty
acyl sn-1 ester carbonyl group (modelsn-1) throughout
water molecule w0, which also interacts with a phosphoryl
oxygen. In the alternative DCPS model (modelsn-2), the
bridging of the phosphoserine N-terminal group is with
the ester carbonyl group of the fatty acylsn-2 also
throughout the water molecule w0. Modelsn-1 (used in
the representations of Figures 1, 2 and 5) behaved margin-
ally better during the final cycles of crystallographic
refinement (Table I). In the two models at least one of
the oxygen atoms from the DCPS phosphoryl group
coordinates directly with Ca1, while the seryl moiety
interacts specifically with main and side chain nitrogen
atoms of Asn189 from CBR1. Furthermore, in the two
models, the DCPS fatty acyl chains present hydrophobic
interactions with the aliphatic carbons from the CBR3
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residue Arg249. Modelsn-1 also shows hydrogen bonds
of thesn-1 ester oxygen atom with the Arg249 main chain
nitrogen. The fatty acylsn-2 ester carbonyl group interacts
with the guanidinium groups of Arg216 and Arg249
(Figure 4A). In this model, Thr251 was also found to
interact with the fatty acylsn-1 ester carbonyl group.
Model sn-2 keeps some of the protein–lipid interactions
with Arg216 interacting with the fatty acylsn-1 ester
carbonyl group and Thr251 with thesn-2 ester carbonyl
group (Figure 4B).

The configuration and the interactions seen in the ternary
complex provide likely explanations for the observed
stereospecific selectivity of PKCα to 1,2-sn-phosphatidyl-
L-serine (Newton and Johnson, 1998). Thus, attempts to
model 2,3-sn-phosphatidyl-L-serine introduce steric
clashes within the lipid binding pocket, while 1,2-sn-
phosphatidyl-D-serine can not reproduce the interactions
of the lipid with L-serine. The favorable character of the
interaction between the phosphoryl group and Ca1 in the
ternary complex is supported by the presence of a phos-
phate ion, though with partial occupancy, in the binary
complex. This electrostatic interaction might also contrib-
ute to the binding of other anionic lipids. The presence
of the phosphate ion in the binary complex also suggests
that a percentage of the binding sites unoccupied by DCPS
in the crystal of the ternary complex might be filled by
phosphate with an occupancy of ~25% at most.



Structure of PKCα-C2–Ca2F–phosphatidylserine

Fig. 3. (A) Stereoviews of theFo–Fc omit map of the ternary complex at 2.6 Å resolution, in the vicinity of Ca1 contoured at 2σ. All the atoms
corresponding to residues Asn189, Arg216, Arg249, Thr251 and also to the ion Ca1 and to the DCPS ligand were omitted for the map calculation
according to the CNS protocols. The molecular fragments modeled into the corresponding density are also shown. The DCPS ligand is represented
with the conformation corresponding to thesn-2 model (see the text). (B) Stereoviews, in the same orientation as in (A), of theFo–Fc omit map
(blue) of the ternary complex calculated omitting only the DCPS ligand. The residualFo–Fc map calculated from the final refined model is also
shown superimposed together with the DCPS model. Only some positive density (red) could be seen close to the position corresponding to the
phosphoryl moiety. All the map contouring shown was carried out 2.5σ. (C) The superimposition of the two alternative DCPS conformations (sn-1
in purple andsn-2 in green) emphasizes the similar atomic disposition.

Furthermore, titration of the fluorescence intensity of
PKCα-C2 domain with DCPS was used to characterize
the lipid binding to the protein domain at different Ca21

concentrations (Bashfordet al., 1979; Surewicz and Epand,
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1984). Results show that binding of DCPS to the protein
increases with the Ca21 concentration; maximal binding
activity was observed when 100µM Ca21 was used, while
at 200 µM EGTA, used as a control, no binding was
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Fig. 4. Stereoview, with the same orientation as in Figure 3A, showing the interactions between DCPS, Ca1 and protein residues Asn189, Arg216,
Arg249 and Thr251 for thesn-1 (A) andsn-2 (B) DCPS models. Possible hydrogen bonds and the coordination with the Ca1 ion are represented as
discontinuous lines. The coordination distances between the Ca1 ion and the closest oxygen of the DCPS ligand are 2.1 and 2.4 Å for thesn-1and
sn-2models, respectively. The presence of the bonded water molecule w0 enhances the quasi-cyclic character of the glycerophosphoserine moiety of
DCPS.

detected (Figure 5A). These results would fully agree with
a Ca21-dependent binding of DCPS to the PKCα-C2
domain, even allowing estimations of the apparent asso-
ciation constants (Kapp) at different Ca21 concentrations
(Figure 5B), suggesting that the overall affinity of DCPS
to the domain increases with Ca21 concentration at ranges
comprising 0.1 and 10µM, and this is similar to those
described for many C2 domains (Dafletov and Su¨dhof,
1993; Nalefskiet al., 1997; Corbalan-Garciaet al., 1999).

Discussion

C2 domains are remarkable folding modules widely dis-
tributed among membrane binding proteins. The dominant
structural feature of the C2 domains is an eight-stranded
β-sandwich motif, which can bind multiple Ca21 ions at
the tip of the domain in a region formed by strand
connections, mainly loops CBR1 and CBR3. In conven-
tional PKCs the Ca21 binding properties to the C2 domain
have been well characterized, but the mechanism by which
Ca21 binding promotes the translocation of the C2 domain
to lipid vesicles is still unclear. A hallmark of PKC’s lipid
regulation is the remarkablespecificity for its lipidactivators
(Newton and Johnson, 1998). Extensive biochemical stud-
ies have established that PKCα is maximally activated by
1,2-sn-diacylglycerol and 1,2-sn-phosphatidyl-L-serine
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lipids both in detergent–lipid mixed micelles (Lee and Bell,
1989) and in model membranes (Bazzi and Nelsestuen,
1987). It has also been shown that DCPS can activate
PKC at the same level as other longer chain PSs such
as bovine brain PS or 1-palmitoyl-2-oleyl-sn-phospha-
tidylserine (Walker et al., 1990; J.Garcia-Garcia,
S.Corbalan-Garcia and J.C.Go´mez-Ferna´ndez, unpub-
lished data). Furthermore, we have demonstrated in this
paper that DCPS is able to bind to the PKCα-C2 domain
in a calcium-dependent manner. Pioneer works by Lee
and Bell (1989, 1992) proposed that specific molecular
determinants on PKC might recognize PS stereo-
specifically as both the carboxyl and amino moieties of
PS and the distance between the phosphate and carboxyl
and amino groups are important to achieve full activation
of PKC. However, other anionic phospholipids can replace
PS with varying degrees of effectiveness (Lee and Bell,
1992; Tokeret al., 1994; Mosioret al., 1996; Epandet al.,
1998). Furthermore, recent results have also demonstrated
that, in the presence of DAG, PKC increases its affinity
for 1,2-sn-phosphatidyl-L-serine, which supports the idea
that selectivity is not only determined by the net phospho-
lipid charge, but mainly by structural complementarity
(Newton and Keranen, 1994; Johnsonet al., 1998).

A number of models have been suggested to explain
the peculiarities of the interaction of the C2 domain from
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Fig. 5. Binding of DCPS to the PKCα-C2 domain. (A) DCPS binding
to PKCα-C2 domain was measured at 100 (s), 10 (u), 1 (n),
0.34 (B), 0.1 (e) and 0.02 (,) µM CaCl2 concentrations. EGTA
(200 µM) was used as a control (d). The protein concentration was
0.5 µM and increasing concentrations of DCPS from 0.1 to 2 mM
were added in each case. (B) Titration of the PKCα-C2 domain
fluorescence with DCPS is plotted as 1 –F/F0 versus (1 –F/F0)/
[lipid], where F0 andF are the fluorescence in the absence and
presence of lipid, respectively. Straight lines indicate the initial slopes.
The inset contains a schematic representation ofKapp (mM–1) versus
the Ca21 concentration, clearly showing that the overall affinity of
DCPS for the protein is Ca21-dependent at concentrations close to
1 µM.

conventional PKCs with membranes. In a first model the
altered surface potential, which would result from the
Ca21 binding, was proposed to act as an electrostatic
switch mediating the macromolecular interactions of the
C2 domain. However, mutational studies on conventional
PKCs replacing aspartates by arginines in the calcium
binding pocket, hence converting the negative electrostatic
potential of the Ca21 site to one that is electropositive,
did not promote the binding of PKC to anionic membranes
in the absence of Ca21 (Edwards and Newton, 1997).

In a second model, the Ca21 binding to the C2 domain
was proposed to produce subtle rearrangements of posit-
ively charged side chains that would result in creating a
lipid binding pocket not necessarily in the proximity of
the Ca21 ions. The co-crystallization ofo-phospho-L-
serine with the C2 domain of PKCβ showed some density
in the vicinity of the lysine-rich cluster (Sutton and Sprang,
1998), and our data also indicate that phosphate groups
can bind in this molecular area. However, extensive
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mutational studies on the PKC basic residues, mainly at
the lysine-rich cluster and for residues Lys236/Lys238,
had, at most, only minor effects on PKC calcium-depend-
ent PS membrane binding and activity (Igarashiet al.,
1995; Edwards and Newton, 1997; Johnsonet al., 1997).
Therefore, direct experimental evidence has still to be
found for a calcium induction mechanism of a remote
lipid pocket and even a role for the lysine-rich cluster
during membrane binding remains questionable.

Results obtained in the present work, with the Ca1 ion
directly coordinated to the phosphoryl oxygen of DCPS,
suggest a third model that is reminiscent of those derived
from the crystal structures of phospholipase A2 and
annexin V complexes, although a second Ca21 ion also
participates in substrate coordination for annexin (Scott
et al., 1990, 1991; Swairjoet al., 1995). Direct bridging
of the phospholipid to Ca21 provides a structural explana-
tion for most experimental observations about the recip-
rocal cooperativity observed when activating conventional
PKCs. Thus, the higher affinity of PS when Ca21 is
present would be a direct consequence of the essential
role of Ca21 in the PS binding pocket. Subsequently, the
interactions of the lipid with residues from the C2 domain
would lock the bridging Ca21 between the lipid and the
protein, increasing the apparent affinity of C2 towards the
calcium ion (Shaoet al., 1996; Nalefskiet al., 1997).
The diversity and spatial disposition of the interactions
observed in the PKCα-C2–Ca21–DCPS complex provide
a rationale for the observed lipid specificity of conventional
PKCs (Johnsonet al., 1998) and might also explain some
of the difficulties in finding soluble PS analogs suitable
for high resolution structural studies. Thus, phospholipid
analogs, such aso-phospho-L-serine or 3-glycero-o-phos-
pho-L-serine, used to analyze the binding of phospholipids
to PKCβ and annexin, respectively, lack the possibility of
some of the interactions seen in the structure of the PKCα-
C2–Ca21–DCPS complex (Swairjoet al., 1995; Sutton
and Sprang, 1998). The different role of the two calcium
ions, where only Ca1 is directly involved in bridging the
C2 domain to the phospholipid, appears to correlate with
mutagenesis studies of PKCα, and in this way substitutions
by Asn of residues Asp187 and Asp193, which coordinate
to Ca1 and are located in CBR1, have remarkably more
significant effects on the vesicle binding than the mutations
of residues Asp248 and Asp254, which coordinate to Ca2
and are located in CBR3 (Medkova and Cho, 1998).

Mutational studies on PKCα had shown that penetration
of the C2 domain into PS-containing membranes was part
of the changes required for PKCα activation and also
essential for its interaction with DAG (Medkova and Cho,
1998). Double-site mutants Arg249/Arg252 and Trp245/
Trp247 indicate that those arginines are involved in
non-specific electrostatic interactions with the anionic
membranes, whereas the tryptophans have hydrophobic
interactions with the internal part of the membranes
(Medkova and Cho, 1998; Bittovaet al., 1999). The
presence of the DCPS ligand in the PKCα-C2–Ca21–
DCPS structure defines an approximate rigid body super-
imposition of the complex onto a membrane (Figure 6).
In the resulting docked model most of the C2 domain
remains in the cytosol with only the central part of CBR3,
particularly side chains from residues Trp247 and Arg249,
inserted into the lipid bilayer. In this model, theβ3–β4
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Fig. 6. Docking of the PKCα-C2–Ca21–DCPS ternary complex onto a model membrane as defined by the approximate superimposition of the DCPS
structure onto an anionic lipid. In the resulting docked model only the central part of CBR3 from the C2 domain is inserted into the lipid bilayer,
while the phosphate ion, found at the lysine-rich cluster region, might correspond to the polar head of another lipid molecule. In this model, the N
and C ends of the C2 domain are both situated in the protein face opposite to the membrane.

connection of the C2 domain approaches the membrane
surface, especially residue Lys205, without penetrating,
and the phosphate molecule found at the lysine-rich cluster
superimposes with a polar head from one of the membrane
lipids. In this model, the N and C ends of the C2 domain
are both situated in the protein face opposite to the
membrane.

As a consequence of the structural and binding informa-
tion described above, this work suggests a membrane
binding mechanism of the PKCα-C2 domain in which
Ca1 and Ca2 play different roles in membrane binding.
These studies have also identified several residues that
are directly involved in electrostatic and hydrophobic
interactions with PS. We propose a two-step mechanism
of function of the C2 domain as a membrane docking
module in which Ca1 will trigger the interaction with
negatively charged phospholipids at the membrane surface,
and this first contact would enable different protein resi-
dues located in CRB3 to interact with the phospholipid,
leading to membrane penetration. This model provides
good insight into the PKCα membrane association process,
which is the event that triggers the catalytic activation of
the enzyme. These studies also support a better understand-
ing of the mechanism of Ca21-dependent phospholipid
binding that could be extended to other C2-domain-
containing proteins.

Materials and methods

Expression plasmids
The DNA fragment corresponding to the C2 domain of PKCα (residues
155–293) was amplified using PCR with oligonucleotides 5PS and
3PS (sequences: 59-CAAGAATTCACACAGAGAAGAGG-39 and 59-
CAAAAGCTTTCATCCTTCTGGAATGGG-39, respectively). PKCα
cDNA was a kind gift from Drs Nishizuka and Ono (Kobe University,
Kobe, Japan). The resulting 414 bp PCR fragment was subcloned into
theEcoRI andHindIII sites of the bacterial expression vector pET28c(1)
(Novagen), in which the insert is fused to a His6 tag.
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Expression and purification of the His-PKC-C2 domain
The pET28c(1) plasmid containing the PKC-C2 domain was transformed
into BL21(DE3)Escherichia colicells. The bacterial cultures (OD600 5
0.6) were induced for 5 h at 30°C with 0.5 mM isopropyl-β-D-
thiogalactopyranoside (IPTG) (Boehringer Mannheim, Germany). The
cells were lysed by sonication in lysis buffer (25 mM HEPES pH 7.4,
100 mM NaCl) containing protease inhibitors (10 mM benzamidine,
1 mM PMSF and 10µg/ml trypsin inhibitor). The soluble fraction of
the lysate was incubated with Ni–NTA agarose (Qiagen, Hilden, Ger-
many) for 2 h at 4°C. The Ni beads were washed with lysis buffer
containing 20 mM imidazole. The bound fractions were eluted with the
same buffer containing 250 mM imidazole. His6 tags were removed
after thrombin cleavage, and finally the PKC-C2 domain was desalted
and concentrated using an Ultrafree-5 centrifugal filter unit (Millipore
Inc., Bedford, MA).

Binding of DCPS to the PKC-C2 domain
Steady-state fluorescence emission spectra were measured at 25°C in a
Shimadzu RF-540 spectrofluorophotometer. The excitation wavelength
was 280 nm and the emission wavelength ranged from 300 to 450 nm,
the maximum was at 340 nm. Protein (0.5µM) was dissolved in a buffer
containing 100 mM NaCl, 20 mM HEPES pH 7.4 and different Ca21

concentrations as indicated in Figure 5. Free Ca21 concentration was
estimated from total Ca21 and EGTA concentrations (Fabiato, 1988).
Contaminating Ca21 in the buffer solution was determined by using a
dual wavelength spectrophotometer (Bio-Logic Co., Claix, France) as
described by Daniet al. (1979). Aliquots of a DCPS solution were
added to the quartz cuvette containing the protein solution, and titration
of the fluorescence intensity with DCPS was evaluated and used to
determine the binding parameters (Bashfordet al., 1979; Surewicz and
Epand, 1984; Butkoet al., 1997). This approach does not attempt to
separate the association constant and stoichiometry, but it yields an
overall affinity of the lipid to the protein. The ratioKd/n of the
dissociation constant and stoichiometry is the reciprocal of the classic
first association constantKapp for the protein–lipid interaction. Provided
that CL .. CP (CL, DCPS concentration; CP, protein concentration),
Kd/n can be determined from the slope of the plot of 1 –F/F0 versus
(1 – F/F0)/CL, whereF0 is fluorescence in the absence of quencher and
F is fluorescence in the presence of quencher at a given concentration
of DCPS. In this case, only the high-lipid-concentration data were taken
into account to calculateKapp, since the low-lipid-concentration data do
not fulfill the condition CL .. CP and consequently the model is
not applicable.



Structure of PKCα-C2–Ca2F–phosphatidylserine

Crystallization and data collection
Crystals of the calcium-bound form of the PKCα-C2 domain, both in
the absence and presence of DCPS, were obtained with the hanging
drop vapor diffusion technique at 20°C. Protein (4–8 mg/ml) was first
incubated overnight at 4°C with 25 mM calcium chloride and 2 mM
DCPS–25 mM CaCl2, respectively.

Two milliliters of the protein complex were mixed with an equal
volume of the crystallization buffer (20% PEG8K and 50 mM potassium
phosphate pH 6.5) on silanized glass coverslips and inverted over a 1 ml
reservoir containing the crystallization buffer. Crystals appeared after
3–4 days and grew slowly over 3 weeks to ~0.63 0.1 3 0.1 mm3.
Isomorphous crystals from PKCα-C2–Ca21 and PKCα-C2–Ca21–DCPS
had P3221 symmetry with cell parametersa 5 58.9, c 5 91.3 Å
(Table I), and contained one protein complex per asymmetric unit that
would correspond to a specific volume solvent content of 50%. The
PKCα-C2–Ca21 data set was collected at 100 K by means of the
cryo-crystallographic techniques using the crystallization buffer as a
cryoprotectant. A 2.4 Å data set was measured from a single crystal
using synchrotron radiation at the X31 beamline of the DESY Hamburg
outstation on a Mar Research Imaging Plate using radiation of wavelength
0.91 Å. Diffraction intensities were indexed and integrated using the
package Denzo and internally scaled with Scalepack (Otwinowskiet al.,
1996). The data were 96% complete at 2.4 Å resolution giving an
internal agreement factor of 5% and an averageI/σ(I) of 10 for all
reflections and 7 for the highest resolution shell (Table I). The X-ray
data of the PKCα-C2–Ca21–DCPS complex were collected at room
temperature with a Mar Research Imaging Plate in a Rigaku rotating
anode generator and were reduced with the Denzo/Scalepack software.
Data were 98% complete at 2.6 Å resolution (Rsymm 5 9%) and the
I/σ(I) in the last resolution shell was 5 (Table I).

Structure resolution and refinement
Both structures were determined by molecular replacement. The PKCα-
C2–Ca21 was solved and refined first, and then the final model obtained
was used to refine the PKCα-C2–Ca21–DCPS complex. The C2–Ca21

structure was determined using the AMoRe package (Navaza, 1994).
The starting model was taken from the structure of the C2 domain of
PKCβ (Sutton and Sprang, 1998; Protein Data Bank ID code 1A25)
excluding Ca21, ligand and solvent molecules. The correctly oriented
and positioned model yielded a correlation coeficient of 0.7 and an
R-factor of 35% for data between 15 and 4 Å resolution.

Refinement was carried out following standard protocols using the
CNS program iteratively (Bru¨nger et al., 1998) with the amplitude
based, maximum likelihood target function and alternating with manual
rebuilding in the interactive graphics programs O and TURBO (Jones
et al., 1991; Roussel and Cambillau, 1991). Bulk solvent correction and
restrained, isotropic individualB-factors were used at the final rounds
of refinement and model building. The refined atomic model for
PKCα-C2–Ca21 comprises 126 protein residues, 76 well ordered water
molecules and two Ca21 ions clearly discerned in the 2Fo–Fc and
Fo–Fc electron density maps. In addition, two phosphate ions were
located in the structure. The first one was found coordinated with one
of the Ca21 ions (Figure 2B) and the second was located near a cluster
of lysine residues in an equivalent position to that of a molecule of
o-phospho-L-serine observed in the structure of the C2 domain of PKCβ
(Sutton and Sprang, 1998). Both phosphate ions were included in the
final model with a refined occupancy of 0.6 and 0.45, respectively. The
Rfree and Rwork for the refined model were 0.27 and 0.22, respectively,
for 6800 reflections withF . 2σF in the 18–2.4 shell (Table I).

To obtain an accurate model of the PKCα-C2–Ca21–DCPS complex,
the coordinates of the PKCα-C2–Ca21 model were subjected to a
crystallographic refinement against structure factor amplitudes measured
from crystals of the DCPS complex (FoDCPS); the solvent molecules and
ions were not included in this model. TheFo–Fc difference map showed
two clear peaks at the putative Ca21 binding sites and a continuous
density with a nearly cyclic shape that would correspond to one molecule
of DCPS closely connected with one of the Ca21 ions. The conformation
of the glycerophosphoserine head group, as seen in the complex with
annexin V (Swairjoet al., 1995), was used to start the modeling of the
DCPS structure, while the two acyl chains were manually built with
correct bond distances and angles using programs O and TURBO (Jones
et al., 1991; Roussel and Cambillau, 1991). Two possible interactions
between the amino group of the phosphoserine moiety contacting with
the fatty acyl ester carbonyl groupssn-1 or sn-2, explained the quasi-
cyclic density almost equally well. Protein–ligand interactions were also
similar for both models (Figure 4). However, the model involving
interactions with the carbonyl groupsn-1 showed consistently better
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agreement factors in the refinement and was considered to be the most
probable model (Table I).

The 2Fo–Fc electron density maps showed weak electron density for
the DCPS, probably due to the partial occupancy of this bound ligand.
The partial occupancy observed for the lipid ligand was refined with the
program CNS to 0.55. Final cycles of Powell minimization of potential
energy terms gaveRfreeandRwork values of 23.3 and 19.5%, respectively,
for 5432 reflections withF . 2σF for data between 20 and 2.6 Å. The
refined atomic model of the PKCα-C2–Ca21–DCPS comprises 126
protein residues, 38 well ordered water molecules, two Ca21 ions, one
phosphate ion and one DCPS ligand molecule (Table I).

The deviation from ideal geometry of the PKCα-C2 models was
analyzed using the program PROCHECK (Laskowskiet al., 1993).
Eighty-five percent of the non-glycine residues fall within the most
favored regions of the Ramachandran plot and the rest are inside the
‘additional allowed regions’. The stereochemistry of both the Ca21 and
Ca21–DCPS models is given in Table I. The comparisons between the
different C2 models were made using the program SHP.

Cooordinates of both DCPS-bound and unbound structures will be
deposited in the Protein Data Bank, and are available directly from the
authors on request until they have been processed and released.
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