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Abstract
Tumour content plays a pivotal role in directing the bioinformatic analysis of molecular profiles such as copy number
variation (CNV). In clinical application, tumour purity estimation (TPE) is achieved either through visual pathological
review [conventional pathology (CP)] or the deconvolution of molecular data. While CP provides a direct measure-
ment, it demonstrates modest reproducibility and lacks standardisation. Conversely, deconvolution methods offer an
indirect assessment with uncertain accuracy, underscoring the necessity for innovative approaches. SoftCTM
is an open-source, multiorgan deep-learning (DL) model for the detection of tumour and non-tumour cells in
H&E-stained slides, developed within the Overlapped Cell on Tissue Dataset for Histopathology (OCELOT) Challenge
2023. Here, using three large multicentre colorectal cancer (CRC) cohorts (N = 1,097 patients) with digital
pathology and multi-omic data, we compare the utility and accuracy of TPE with SoftCTM versus CP and bioinfor-
matic deconvolution methods (RNA expression, DNAmethylation) for downstreammolecular analysis, including CNV
profiling. SoftCTM showed technical repeatability when applied twice on the same slide (r = 1.0) and excellent
correlations in paired H&E slides (r > 0.9). TPEs profiled by SoftCTM correlated highly with RNA expression
(r = 0.59) and DNA methylation (r = 0.40), while TPEs by CP showed a lower correlation with RNA expression
(r = 0.41) and DNA methylation (r = 0.29). We show that CP and deconvolution methods respectively underesti-
mate and overestimate tumour content compared to SoftCTM, resulting in 6–13% differing CNV calls. In
summary, TPE with SoftCTM enables reproducibility, automation, and standardisation at single-cell resolution.
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SoftCTM estimates (M = 58.9%, SD ±16.3%) reconcile the overestimation by molecular data extrapolation (RNA
expression: M = 79.2%, SD ±10.5, DNA methylation: M = 62.7%, SD ±11.8%) and underestimation by CP
(M = 35.9%, SD ±13.1%), providing a more reliable middle ground. A fully integrated computational pathology
solution could therefore be used to improve downstream molecular analyses for research and clinics.
© 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great
Britain and Ireland.

Keywords: pathology; artificial intelligence; colorectal cancer; diagnostic molecular pathology; personalised medicine

Received 28 May 2024; Revised 11 October 2024; Accepted 29 October 2024

Conflict of interest statement: Both VHK and LAS have served as invited speakers on behalf of Indica Labs. VHK reports being an invited speaker for
Sharing Progress in Cancer Care (SPCC), serving on the advisory board of Takeda, and sponsoring research agreements with Roche and IAG, all
unrelated to the current study. VHK is a participant in several patent applications on the assessment of cancer immunotherapy biomarkers by digital
pathology, a patent application on multimodal deep learning for the prediction of recurrence risk in cancer patients, and a patent application on
predicting the efficacy of cancer treatment using deep learning. KS and J Rittscher are cofounders and equity holders of Ground Truth Labs. GIM is an
editorial board member of The Journal of Pathology and Treasurer of The Pathological Society, the owners of this journal. No other conflicts of
interest were declared.

Introduction

The assessment of the cancer microenvironment plays a
pivotal role in informing the interpretation of transcrip-
tional signatures and copy number variation (CNV) calls
within molecular pathology workflows [1,2]. Semi-
quantitative visual evaluations of tumour purity (TP) are
commonly employed to gauge sample adequacy prior to
omic profiling. However, these estimations suffer from a
lack of standardisation and exhibit poor reproducibility,
potentially introducing bias into genomic analyses [3,4].
Bioinformatic deconvolution techniques for estimating
tumour content from genomic data offer a potential solu-
tion but are costly to implement, lack spatial preservation,
and demonstrate relevant failure rates [5–7]. In contrast,
computational pathology (CPATH) has emerged as a
robust and non-destructive approach to identifying and
segmenting neoplastic and non-neoplastic cell populations
within clinical pathology samples, seamlessly integrating
into existing laboratory workflows. In this study, we
explored the potential of CPATH to enhance diagnostic
molecular pathology, comparing it directly with expert
pathologist assessment and established deconvolution
methods using transcriptional and DNA methylation
data. The findings of this investigation carry significant
implications for selecting themost suitablemethod for both
clinical and research purposes. Given the importance of TP
estimations (TPEs) in interpreting CNV calls and next-
generation sequencing (NGS) readouts in molecular
pathology, we postulate that a more precise approach to
cell deconvolution could greatly benefit colorectal cancer
(CRC) molecular pathology workflows and cancer geno-
mics in general.

DNA aneuploidy has been associated with a shorter
disease-free and overall survival in CRC patients [8,9].
NGS data can be utilised to derive information on copy
number variations following TPE from deconvolution
methods. However, the accuracy of this approach remains
uncertain due to the lack of correlation with conventional
pathology (CP) TPEs [4,10]. Conventional methods to

measure CNVs involve tissue dissociation and assessment
of DNA content using flow cytometry or microscopic
imaging [9]. Since copy number alterations are diluted
by an increase in normal diploid cells, accurately deter-
mining TP is crucial for bioinformatic correction of CNV
calls. By extracting precise measures of TP, CPATH has
the potential to improve the identification of CRC cases
harbouring aneuploid neoplastic populations.
Here we perform a comprehensive analysis of TP in

three cohorts with a total of 1,097 CRC patients from the
Stratification inCOloRecTal cancer (S:CORT) programme
and The Cancer Genome Atlas (TCGA) with full molecu-
lar information and available whole slide images (WSIs).
We compare the impact and utility of (1) a gold-standard
molecular deconvolution method (ESTIMATE) with
(2) CP, (3) a DNA-methylation-based deconvolution
method (InfiniumPurify), and (4) a novel open-source,
multiorgan CPATH algorithm (SoftCTM) on TPEs,
including downstream CNV analysis and biological
stratification.
Our systematic analysis reveals that SoftCTM-based

TPE surpasses the accuracy of CP, ESTIMATE, and
InfiniumPurify. These currently established methods
tend to respectively underestimate and overestimate
TP. TPE using SoftCTM offers analytical robustness,
automation, and standardisation, resulting in remarkably
high reproducibility at the single-cell level. Leveraging
CPATH approaches could therefore enhance the planning
and evaluation of subsequent molecular analyses.

Materials and methods

Cohorts
This study included a total of 1,097 CRC cases from three
independent cohorts (FOCUS, GRAMPIAN, TCGA)
with complete digital pathology (DP) and multi-omic
datasets. Cases from FOCUS and GRAMPIAN were
characterised as part of the Medical Research Council
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(MRC)CancerResearchUK(CRUK)S:CORTprogramme,
the S:CORT case IDs considered in this study are detailed
in supplementary material, Table S1. Figure 1A pro-
vides an overview of the three datasets’ specifications,
Figure 1B indicates the available data types and applied
TPE methods, and Figure 1C shows their sample col-
lection strategy. Further details on data and resource
availability can be found in supplementary material,
Figure S1.

Cohort 1: FOCUS

As part of the Stratification in the S:CORT programme,
385 patients with available formalin-fixed paraffin
embedded (FFPE) blocks of the primary CRC were
selected from theMRC FOCUS randomised clinical trial
(RCT) that tested different strategies of sequential and
combination chemotherapy for patients with advanced
CRC [11]. Serial sections were cut from one representative
block for H&E staining followed by four unstained sections
for RNA extraction, a second H&E-stained section, and

eight unstained sections for DNA extraction (Figure 1).
Glass H&E slides were re-reviewed by an expert gastroin-
testinal pathologist and tumour tissue with the associated
intra-tumoural stroma was annotated in the first and second
H&E-stained section respectively to guide RNA and DNA
extractions. No tumour microdissection was performed.
Regions of extensive necrosis and non-tumour tissue were
excluded according to standard practice for downstream
molecular tumour profiling. RNA expression
microarrays (Xcel array, Affymetrix, Santa Clara, CA,
USA), DNA target capture (SureSelect, Agilent, Santa
Clara, CA, USA) followed by NGS sequencing
(Illumina, San Diego, CA, USA), and DNA methyla-
tion arrays (EPIC arrays, Illumina) were applied in that
order [12]. All H&E slides were scanned on an Aperio
scanner at 20�. Digital slides were re-reviewed by a
second gastrointestinal pathologist and tumour region anno-
tations for deep-learning (DL) classification were generated.
Areas containing folds or debris were excluded by digital
annotation. Samples were excluded if they contained
biopsies instead of resections and/or metastatic tissue

Figure 1. Experimental study design. (A) Specifications and data summary of the three independent datasets (FOCUS, TCGA, and GRAMPIAN)
used in this study. (B) Available data types and tumour estimation methods applied on each data type. (C) Sample collection and profiling
strategy in FOCUS and GRAMPIAN cohorts. Created with canva.com.
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instead of primary lesions or extensive ulceration/necro-
sis. Slides with irrecoverable failure of the staining or
scanning procedure were excluded for technical rea-
sons. The final set was composed of 702 primary
tumour H&E slides from 366 cases.

Cohort 2: TCGA

A total of 624 digital slides from 615 cases of colon
and rectal adenocarcinoma were downloaded from the
TCGA Data Portal (COAD and READ datasets, https://
www.cancer.gov/tcga, last accessed: 2 August 2018).
All digital slides were re-reviewed, and tumour tissue
was annotated. Slides were excluded based on the same
quality control (QC) criteria as described for FOCUS.
Gene-level expression data were downloaded with the
R package TCGAbiolinks [13]. After excluding slides
based on QC and six duplicated tumours, the final num-
ber of slides was 548, all from unique cases.

Cohort 3: GRAMPIAN

A total of 334 slides from 184 pretreatment biopsy FFPE
blocks from rectal cancer patients were analysed for this
study as part of the S:CORT programme [14,15].
Following the initial biopsy, all patients received preop-
erative (chemo)radiotherapy followed by surgical resec-
tion. Slides and molecular profiling were processed as
described for cohort 1 (FOCUS) but using five to nine
sections for RNA extraction and nine for DNA. A total
of four slides were excluded after QC for a final set of
332 slides from 183 cases.

Ethics approval
The FOCUS and GRAMPIAN cohorts of S:CORT have
ethical approval (REC 15/EE/0241) from the East of
England – Cambridge South Research Ethics Committee.
TCGA (https://www.cancer.gov/tcga, last accessed:
2 August 2018) is an open-source public database.

Analysis of cell composition by deep learning
Weutilised the Soft Cell-TissueDLmodel (SoftCTM) [16]
to detect tumour and non-tumour cells in the test cohorts.
The model was developed on the Overlapped Cell on
Tissue Dataset for Histopathology (OCELOT) training
and validation set [17] within the OCELOT 2023
Challenge. The sets respectively comprised n = 400
and n = 137 pairs of annotated cell patches at 50�
and tissue patches at 12.5� extracted from 173 and
65 TCGA slides and six distinct organs (bladder, endo-
metrium, head and neck, kidney, prostate, and stomach).
SoftCTM consists of a model for tissue segmentation and
cell detection (Figure 2). The tissue
segmentation prediction was provided as input to the
cell detection model, allowing consideration of
predicted tumour versus non-tumour tissue regions.
As our test cohort slides were at 20�, we utilised the
SoftCTM 20� version and WSI inference pipeline from
the public GitHub repository (https://github.com/lely475/
ocelot23algo, last accessed: 27 May 2024). Contrary

to [16], the WSI inference pipeline does not extract a larger
field of view for tissue segmentation or apply test-time
augmentation for either model, thereby reducing compu-
tational costs. We inferred the SoftCTM model on each
slide (Figure 2A) and collected the tumour and back-
ground (non-tumour) cell counts (TC, BC) (Figure
2B). Visualisations of SoftCTM predictions (supple-
mentary material, Figure S1) were found to be of high
quality based on visual review by an experienced
board-certified pathologist (VHK).

Correlation of SoftCTM with pathologist-supervised
DP algorithm
To further verify the reliability of the SoftCTM algorithm,
we investigated its correlation with a CPATH algorithm
for cell detection, developed within the Indica Labs
HALO AI™ digital image analysis platform [18].
Further referred to as HALO DP, the algorithm consisted
of (1) a tissue segmentation algorithm, which was trained
on >1,500 tissue areas from S:CORT, TCGA, TEM, and
CORGI CRC cohorts with pathologist annotations
(tumour, desmoplastic stroma, inflamed stroma, mus-
cle, necrosis, mucin, mesenchyme, background) and
(2) a visually optimised general cell segmentation
algorithm implemented in the HALO image analysis
platform. Algorithms 1 and 2 were combined for cell
classification, where all cells within a predicted tissue
area were treated as the respective tissue’s cells (e.g. all
cells in the tumour area are treated as tumour cells). This
provides amore fine-grained distinction between different
non-neoplastic cell classes than SoftCTM, but it is more
restricted in the assumption that a specific tissue area
cannot contain other cell types. As with SoftCTM, we
derived TPEs for HALO DP as tumour cell counts
divided by total cell counts. TPEs by SoftCTM and
HALO DP showed a high correlation of 0.78 consider-
ing all cohorts (supplementary material, Figure S3),
with a Pearson correlation coefficient of 0.85 and 0.79
for FOCUS and GRAMPIAN cohorts and slightly
lower, 0.68, for TCGA.

Preprocessing of image data and exclusion criteria
Digital slides were re-reviewed and invasive cancer
regions annotated by an experienced board-certified
pathologist (VHK) using the HALO™ software version
2.3.2089.52 (Indica Labs, Corrales, NM, USA). The
SoftCTM algorithm was applied within the annotated
regions.

Tumour purity estimations
All TPEs were harmonised to scale 0% (e.g. no tumour)
to 100% (pure tumour). CPATH estimations were deter-
mined using cell counts by SoftCTM (tumour cell counts
divided by total cell counts). CP estimations were derived
in TCGA and GRAMPIAN by one expert pathologist
visually estimating the proportion of viable tumour versus
all cells at fractions of 5%. In FOCUS, scores from two
different pathologists were available showing modest
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correlation [r = 0.59, CI = (0.52, 0.65)]. One of
them was randomly selected for all further analyses.
Estimations from multi-omic data were derived from
transcriptomewith ESTIMATE [19] and frommethylation
with InfiniumPurify [20] using their original R packages in
FOCUS and GRAMPIAN. For TCGA, purity based on
ESTIMATE and InfiniumPurify were retrieved from pre-
vious publications [10,21].

Gene copy number estimation
The targeted NGS panel applied to FOCUS and
GRAMPIAN cohorts contains probes spanning SNPs
evenly distributed along the human genome (average
of one SNP per 3 Mb) and 66 chromosomal regions
recurrently gained or lost in CRC. This design allows
for the generation of copy number estimations from
targeted NGS at row resolution, acknowledging that
such estimations may not be directly comparable to
techniques that examine the entire genome.
Furthermore, CNVkit [22], a tool specifically designed
to enhance targeted NGS data by the analysis of both
targeted and off-target reads, was used on both cohorts
adjusting by TPEs from different methods. Copy num-
ber segments with estimations ≥3 were classified as
gain, 2 as neutral, and ≤1 as loss. The Whole Genome
Instability Index (WGII) measuring the proportion of
the genome with an aberrant copy number was calcu-
lated as the sum of the lengths of calls for either loss or
gain divided by the whole length.

Consensus molecular subtype (CMS) classification
CMS was derived as described previously [14]. In brief,
the R library CMSclassifier [23] was used to compute
both single sample predictions after row-centring the
expression data and random forest in each of the three
cohorts separately. CMS calls were generated by
matching both methods without applying any cut-off.

Statistics
Correlations were analysed using Pearson’s correlation
coefficient, with confidence intervals provided at 95%.
Statistical differences between TPE methods were evalu-
ated using paired-samples t-tests. We used the SciPy [24]
statistics Python package for Pearson correlation analysis,
paired-samples t-test, generation of boxplots and histo-
grams and Pingouin [25] for generating Bland–Altman
plots.

Results

Assessment of cell composition by DL is accurate,
robust, and reproducible
The objective of this studywas to evaluate the efficacy of
a reliable and openly accessible CPATH technique for
estimating TP on CRC histology slides and to conduct
a comprehensive comparison with CP and molecular
deconvolution methods (ESTIMATE, InfiniumPurify).
Test cohorts including a total of 1,097 patients were

Figure 2. Inference workflow for tumour and background cell nuclei (TC, BC) detection by SoftCTM on a H&E-stained WSI. (A) WSI-level
inference: Pathologist-marked ROIs of a H&E-stained WSI are tiled into patches (1,024 � 1,024 pixels at 0.5 MPP), on which SoftCTM is
applied. The predictions are then recombined into a spatially resolved WSI-level prediction of detected TC and BC. (B) Patch-level inference:
The SoftCTM algorithm consists of two stages: tissue segmentation and cell detection. Tissue segmentation is performed at 0.8 MPP, cell
detection at 0.5 MPP. For cell detection, the tissue segmentation prediction is used as input along with the input patch. The output is a
probability map for each cell class, from which detected cells are extracted through a postprocessing step. MPP, microns per pixel; WSI, whole
slide image
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selected to represent relevant clinical scenarios in the
management of CRC patients including postoperative
resection specimens (FOCUS, n = 702 slides from
366 patients; TCGA, n = 548 slides from 548 patients)
and endoscopic biopsy material (GRAMPIAN, n = 332
slides from 183 patients) (Figure 1A). Tumour areas on
each slide were annotated by a pathologist, and molec-
ular analysis was performed on material obtained from
strict serial sections (FOCUS and GRAMPIAN). Please
refer to Sirinukunwattana et al [14] (https://gut.bmj.com/
content/gutjnl/70/3/544/DC2/embed/inline-supplementary-
material-2.pdf, last accessed: 29 October 2024) for clinical
and molecular data characterisation and a summary of the
GRAMPIAN and FOCUS cohorts. Technical reproducibil-
ity was checked by rerunning SoftCTM on 50 H&E slides
from FOCUS, comparing cell counts and TPEs in each
paired output. The correlation was excellent with an
r-coefficient equalling 1.0, showing technical repeat-
ability and stability of SoftCTM predictions. In contrast,
CP estimates by two different pathologists in the FOCUS
cohort showed onlymild correlation [r = 0.59, CI = (0.52,
0.65)]. As SoftCTMwas not trained on CRC histology, we
further investigated its agreement with a pathologist-
supervised CPATH algorithm that was trained utilising
parts of the test cohort data and report a high level of
agreement in TPE between the methods (supplemen-
tary material, Figure S3). To investigate intra-sample
variance, we then compared TPE by SoftCTM between
the first and second H&E slides in all available cases
from FOCUS and GRAMPIAN (334 and 149 pairs
respectively) (Table 1 and supplementary material,
Figure S4). Importantly, these slides represent serial
sections with approximately 20 μm Z-axis distance for
FOCUS and 40 μm for GRAMPIAN, with additional
material taken for RNA profiling between the section-
ing planes of interest. Across serial sections, both the
TPE and total cell counts showed excellent correlations
(all r > 0.8, Table 1). We further verified that the num-
ber of detected cells correlated with the size of the
invasive cancer region [supplementary material, Figure S5,
r = 0.925, CI = (0.916, 0.933)]. For this comparison, only
tissue regions inside the expert pathologist annotation were
considered. The mean cell density in resection specimens
from the FOCUS and TCGA cohorts was approxi-
mately 19,000 cells/mm2, whereas GRAMPIAN biopsy
specimens exhibited a cellular density of approximately
26,000 cells/mm2 indicating increased tissue compres-
sion in biopsy samples. This difference may be attributed
to the sampling technique involving compression by
biopsy forceps and enhanced fixation of smaller tissue
samples, resulting in greater shrinkage.

Tumour purity assessed by different methods
Next, we compared TPEs derived from cell counts of
SoftCTM with visual estimates determined by expert
pathologists and TPEs derived from bioinformatic
deconvolution from RNA expression using
ESTIMATE [19] and DNA methylation
using InfiniumPurify [20]. We first conducted a statis-
tical comparison of all TPE methods using paired-
samples t-tests, revealing significant differences
between each method (p < 0.001) (supplementary
material, Figure S6). SoftCTM displays a broad distribu-
tion of TPE predictions, aligning with biological expec-
tations. In contrast, the other three methods
demonstrate narrower distributions, and these converge
at varying levels (Figure 3, and cohort-specific in
supplementary material, Figure S7). Our objective was
to provide additional context to thesefindings by considering
CRC biological subgroups. To achieve this, we employed
the primary transcriptomic classifier CMS as a framework,
given its significant association with TPE metrics. Notably,
CMS1 and CMS4 subtypes are associated with elevated
levels of immune and stromal infiltration, resulting in lower
TPE, whereas the canonical and metabolic subgroups
(CMS2 and CMS3) are distinguished by higher epithelial
content [14,23]. As expected, we observed lower TPEs in
CMS4 followed by CMS1 and higher epithelial content
in CMS2/3 (supplementary material, Figure S8). These
results suggest that all four methods reliably capture the
expected associations across biological subgroups.
We further examined the direct correlation between

SoftCTM,CP, andmolecular TPEmethods (ESTIMATE,
InfiniumPurify) (Figure 4, and cohort-specific in sup-
plementary material, Figure S9). The correlation
coefficients (r) comparing SoftCTM with
ESTIMATE and InfiniumPurify exhibited strong agree-
ment in FOCUS and GRAMPIAN cohorts (all r in 0.49–
0.70). Conversely, in TCGA, where spatial continuity
between molecular and pathological profiles is lacking,
the correlation was notably lower (all r in 0.29–0.32).
The correlations of SoftCTM with CP were generally
strong (all r in 0.53–0.61). Notably, tumour content
tended to be overestimated when analysed by
ESTIMATE and, to a lesser degree, by
InfiniumPurify, compared to SoftCTM, while we
observed underestimation by CP. When comparing
CP with ESTIMATE and InfiniumPurify TPEs, we
observed a mild correlation in FOCUS and GRAMPIAN
(all r in 0.31–0.56) and note an overestimation by the
molecular deconvolution methods compared to CP. In
TCGA, there was no correlation between CP and molecu-
lar methods (all r ≈0.0).

Table 1. Pearson correlation of tumour purity estimation, tumour, and background cell counts by digital pathology for H&E sections 1 and 2,
which gives insight into the reproducibility and dependency of the method on the selected tissue section (all p < 0.001).

TPE Tumour cells Background cells

FOCUS (N = 334) r = 0.949, CI = (0.937, 0.959) r = 0.976, CI = (0.970, 0.981) r = 0.908, CI = (0.887, 0.925)
GRAMPIAN (N = 149) r = 0.818, CI = (0.757, 0.865) r = 0.976, CI = (0.967, 0.982) r = 0.946, CI = (0.927, 0.961)
Total (N = 485) r = 0.916, CI = (0.901, 0.929) r = 0.983, CI = (0.980, 0.989) r = 0.945, CI = (0.934, 0.954)

Abbreviations: CI, confidence interval; r, Pearson correlation coefficient.
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Copy number adjusted using TPEs from CP, DP, and
bioinformatic deconvolution methods
Our findings revealed variation in TP distribution
depending on the assessment method. This variability
can significantly impact the correction of downstream
metrics in molecular pathology analysis. One common
application involves using TPEs to normalise copy num-
ber data, which may be affected by increasing propor-
tions of non-tumour, diploid cells in DNA extractions.
Here, we quantify the impact of utilising TPEs derived from
different methods on copy number analysis. Specifically,
we assessed the WGII, which measures the proportion of
the genome that deviates from diploidy, within the FOCUS
and GRAMPIAN cohorts (Figure 5). The TCGA cohort
was excluded for this analysis, as we compared copy num-
ber adjustment by TPE of SoftCTM in H&E1 with H&E2,
which is not feasible in TCGAwith only a singleH&E slide
available.
The correlation of WGII following copy number

adjustment using TPEs from SoftCTM for H&E1 and
H&E2 was excellent [FOCUS: r = 0.973, CI = (0.966,
0.979), GRAMPIAN: r = 0.978, CI = (0.965, 0.986)].
In contrast, comparison of TPEs by SoftCTM with
TPEs from RNA (ESTIMATE) and DNA methylation
(InfiniumPurify) revealed lower correlations [FOCUS:
r = 0.617, CI = (0.540, 0.683), GRAMPIAN: r = 0.881,
CI = (0.818, 0.924) and FOCUS: r = 0.741, CI = (0.684,
0.789), GRAMPIAN: r = 0.724, CI = (0.594, 0.818)].
Compared to SoftCTM, ESTIMATE clearly under-
estimated WGII, while InfiniumPurify underestimated
WGII for FOCUS but showed mixed patterns with a
tendency towards overestimation for GRAMPIAN.
Similarly, a lack of correlation was observed in compar-
isons of SoftCTM TPEs with CP [FOCUS: r = 0.809,
CI = (0.765, 0.845), GRAMPIAN: r = 0.714, CI = (0.581,
0.811)], where CP tends to overestimate WGII.

We then measured changes in copy number at the
chromosome arm level (Table 2). When comparing
SoftCTM for H&E1 and H&E2, only �1.5% of copy
number segments differed between both cohorts, with a
slight tendency towards overcalling in FOCUS (76.06%)
and a balanced distribution in GRAMPIAN. However,
following adjustment with TPEs from ESTIMATE, 9–13%
of calls differed, nearly all of them being underestima-
tions. Conversely, when compared to following adjust-
ment with TPEs fromCP, the difference was also 8–14%,
but most of them were overestimations. For adjustment
with InfiniumPurify TPEs we note 6–9% differing calls
with primarily underestimations in FOCUS and a tendency
(67.2%) to overcalling in GRAMPIAN.

Discussion

H&E slides are routinely prepared in the work-up of
CRC tissue samples in pathology laboratories. TPE
serves as an important QC metric for selecting tissue
material suitable for molecular tumour profiling [26] and
is essential for the correct interpretation of molecular
diagnostic tests [27]. Here, we propose a DL-based
cell-level TPE method and demonstrate its high repro-
ducibility, correlation to other TPE methods, and impli-
cations for downstream molecular analyses on a large
CRC dataset, including three separate cohorts with
complete DP and multi-omic data.

While the assessment of tumour percentage on a given
tissue slide may appear to be a straightforward task, it is
more complex than initial observationmight suggest [28].
Interobserver reproducibility of CP between domain
experts is low to moderate [4,29]. Previous research
associated this variability with insufficiently defined
cellularity criteria and underestimation of the non-

Figure 3. Boxplot and histogram comparing distribution of TP estimated by different methods for the combined test cohorts. We only consider
samples with TPE available for all methods. The box represents the IQR, encompassing 50% of the data points. Red line indicates median, and
whiskers extend to ±1.5 IQR from IQR edges. TP, tumour purity; IQR, interquartile range
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linear correlations between area- and cell-level assess-
ments [30,31]. This effect is particularly pronounced in
cases with very high or low cellular density in regions
of interest (ROIs) [30]. These limitations reflect nega-
tively on the quality and reliability of tumour molecular
profiling in clinical practice [4,29]. Manual cell counting
could be amore accuratemethodology but is not routinely
carried out in diagnostic practice due to prohibitive
demands on time [28]. DL algorithms for automated
TPE address the need for higher robustness, reproducibil-
ity, and standardisation at low cost [3,32]. Computer-
aided diagnostic decisions can offer valuable support
to pathologists in clinical practice as described elsewhere
[33,34].

We distinguish DL-based approaches to TPE into
(1) WSI-level methods, where TP is directly predicted
as a WSI-level score, (2) tile-level methods, whereWSIs
are tessellated and each tile is classified into tumour and
non-tumour or TP is directly predicted for each tile,
and (3) cell-level methods, where cells are detected

and classified into tumour and non-tumour cells.
Supplementary material, Table S2 provides an overview
from the literature for each approach. From approaches
1–3 we note an increase in detail and interpretability. From
a pathology standpoint, the cell counting methodology
represents the most direct measurement of tumour DNA
content and is robust with regard to cellular compression,
so it is our chosen methodology. Several applications split
this task into tissue and cell segmentation, with cells
classified into tumour and non-tumour classes based on
their localisation within a predicted tissue compartment,
but this is not an exact representation of biological reality.
Many published methods were developed for a specific
cancer indication and lacked broad applicability across
different cancer types. Further, accessibility is limited,
with seven out of ten considered cell-level methods not
available for public access and one requiring further fine-
tuning by experts (supplementary material, Table S2).
Lastly, validation and comparison against other state-of-
the-art approaches are often incomplete. Our chosen

Figure 4. Comparison of TPE method results for test cohorts. Below diagonal: scatter plots comparing respective TPE method results.
Diagonal: histogram for each TPE method with mean (M) and standard deviation (SD) in top right. Above diagonal: Pearson correlation
coefficient between respective TPE methods; ****p < 0.0001. CI, confidence interval; TPE, tumour purity estimation.
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method, SoftCTM [16], addresses these concerns.
SoftCTM is a multiorgan, open-source (https://github.
com/lely475/ocelot23algo, last accessed: 27 May 2024)
solution for detecting tumour and non-tumour cells,
unrestricted by tissue segmentation prediction, developed
as part of the OCELOT challenge (https://ocelot2023.
grand-challenge.org, last accessed: 27 May 2024). It
achieved third place in mean F1 on the OCELOT
multiorgan test set [17] compared to 14 other methods,
with a difference of only 0.69% mean F1 to the first
place method (Test Leaderboard: https://ocelot2023.
grand-challenge.org/evaluation/test/leaderboard/, last
accessed: 27 May, 2024).
Here, we apply SoftCTM on three large and diverse

CRC cohorts, consisting of a randomised clinical trial for
patients with advanced disease [11], the CRC TCGA
dataset, and a cohort of preoperative rectal biopsies, for
a total of over 1,000 samples, including serial sections
taken in alternation with tissue material sampled for RNA
and DNA profiling within the S:CORT programme. This
design ensures continuity of tissue sections extracted for
molecular and imaging purposes and is a unique setting to
compare the accuracy of CPATH and genomic methods
for the determination of TPE within the same sample. For
all samples, SoftCTM TPEs were compared with three
established approaches (CP, ESTIMATE, InfiniumPurify)
widely used in both research and clinical workflows. TPEs
by these three methods showed very different distributions.
Specifically, the average TPE by CP stood at 35.88%
(SD ±13.11), contrasting sharply with InfiniumPurify at
62.66% (SD ±11.82), and even more so with ESTIMATE
at 79.24% (SD ±10.48). However, these variations corre-
spond to underlying biology as they all show expected
associations with CMS classification. Notably, SoftCTM
presents amiddle ground, with amean of 58.87 and broader

distribution (SD ±16.32), indicative of potentially more
accurate estimations due to its direct cell count measure-
ment. Overestimation can occur in ESTIMATE due
to its exclusive measurement of stromal and immune
components as the non-tumour fraction, neglecting the
contribution of other normal cell types. In InfiniumPurify,
normal tissue, and tumour cells are distinguished, but meth-
ylation specific to stromal/immune cells is overlooked. For
both methods, this leads to overestimation of tumour cell
content, particularly in cases of low purity where the impact
of uncaptured non-tumour biology is strongest. Further,
underestimation of TP by CP compared to CPATH or
molecular methods is uncommon, as many studies report
an overestimation [33,35–39]. We speculate that this dis-
crepancy may stem from visual pathologist assessment
influenced by variability in tissue appearance and cell
compression across different cancer types and pathol-
ogy workflows. Additionally, pathologist training plays
a role, with some sources documenting both over- and
underestimations [19,29,30,40]. This underscores the
necessity for more standardised and strictly quantitative
methodologies.

As a result of the TPE underestimation by CP and
overestimation by deconvolution methods, the adjusted
arm-level copy numbers result in consistent overcalls
and undercalls by around 10% respectively compared
to SoftCTM. In contrast, comparison between paired
H&Es with SoftCTM shows only�1.5% differing calls,
considered to be expectable background noise. Hence,
the 10% differing calls for intermethod comparison
contrasted by 1.5% for intra-method variability highlight
the impact of TPE methods on subsequent molecular
analysis. This is consistent with and expands recent
observations by others [31]. Although the overall
patterns of genomic profiles may not be strongly biased,

Figure 5. Comparison of Whole Genome Instability Index (WGII) adjusted by (A) SoftCTM, (B) ESTIMATE, (C) InfiniumPurify, and (D) CP; all
p < 0.001. CI, confidence interval.
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this level of difference could have a tangible effect on
future precision medicine pipelines and impact clinical
decisions. In addition, deconvolution methods may be
confounded by some assumptions such as level of molec-
ular intra-heterogeneity and/or ploidy, where near-diploid
or near-tetraploid may provide similar genomic patterns.
An accurate, unbiased cell count of tumour and non-
tumour cells before DNA/RNA extraction may provide
more objective TPEs to consider for further downstream
analyses.

The strengths of this study lie in its comprehensive
comparison of TPE assessments across relevant clinical
settings, including both resection and biopsy samples.
The reference method SoftCTM is publicly available,
fully reproducible, and robust with regards to slide selec-
tion. SoftCTMpredictions are interpretable, as cellmarkups
can be generated for pathologist review (supplementary
material, Figure S2). This highlights the applicability and
usability of CPATH for TPE. SoftCTM was not initially
trained on CRC histology, but it still achieves high agree-
ment of TPEs with a pathologist-supervised CPATH
algorithm for CRC trained on the test cohorts. Still
further validation of SoftCTM with regards to cell
detection performance for CRC and other indications
beyond the OCELOT dataset is recommended.

Overall, SoftCTM showed excellent consistency across
slides, was biologically sound, and showed reliable esti-
mates of TPE that were directly interpretable by patholo-
gists. Subsequent steps could lead to the development of
image-based methods for tumour diagnosis together with
sample selection and downstreambioinformatic pipelines in
research and clinical labs for accurate molecular profiling.
While ambitious, recent successes in the classification of
cancers at the intersection of digital and molecular pathol-
ogy make this a plausible next development step [41].
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SUPPLEMENTARY MATERIAL ONLINE
Figure S1. Overall and cohort-specific overlap of available data and resources

Figure S2. Visualisation of the SoftCTM predictions for areas from two randomly selected WSIs for each cohort

Figure S3.Correlation of TPE by SoftCTM and HALODP, a cell detection algorithm developedwithin the digital image analysis platformHALOAI™
by IndicaLabs

Figure S4. Scatter plots comparing SoftCTM TPE, tumour and background cell counts for H&E section 1 and 2 in FOCUS (N = 334), GRAMPIAN
(N = 149) and both combined (N = 483), to assess reproducibility and dependency of SoftCTM on the selected tissue section (all p < 0.001)

Figure S5. Scatter plot showing the total number of cells for each cohort over the ROI

Figure S6.Bland–Altman plots comparing results for each TPEmethod, bias is indicated as a thick black line, the levels of agreement as dotted lines (all
p < 0.001)

Figure S7. Boxplot comparing distribution of TP estimated by different method for each test cohort

Figure S8. Box plots for TPE by different methods for each CMS subtype

Figure S9. Comparison of TPE method results for (A) FOCUS, (B) TCGA and (C) GRAMPIAN cohorts

Table S1. List of all S:CORT case ids used in this study and their cohort origin (FOCUS or GRAMPIAN)

Table S2. Selected examples of automated TPE methods
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