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Abstract

Background: Acid sphingomyelinase deficiency (ASMD) and Gaucher

disease type 1 (GD1) are rare inherited sphingolipid disorders with

multisystemic manifestations, including liver disease and dyslipidemia.

Despite effective treatments, insufficient disease awareness frequently

results in diagnostic delays during which irreversible complications occur.

We delineated the shared and distinctive features of hepatic, splenic, and

lipoprotein phenotypes in ASMD and GD1.

Methods: We analyzed baseline hepatic, splenic, and lipoprotein pheno-

types of untreated adults in pivotal trials of ASMD (ASCEND, N= 36) and

GD1 (ENGAGE, N=40).

Abbreviations: ASMD, acid sphingomyelinase deficiency; BMI, body mass index; GD, Gaucher disease; GD1, Gaucher disease type 1; MASH, metabolic
dysfunction–associated steatohepatitis; MASLD, metabolic dysfunction–associated steatotic liver disease; MN, multiple of normal.
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Results: The mean cohort ages were 34.8 years in ASMD and 31.8 years in

GD1. Most patients had normal or low body mass index. Moderate hep-

atosplenomegaly (mean volume in multiples of normal) was common in both

cohorts (hepatomegaly 1.53± 0.42 and 1.40±0.32, respectively; spleno-

megaly 11.45±4.36 and 13.20± 5.91, respectively). Liver function tests

were mildly elevated in ASMD but normal in GD1. In both disorders, mean

HDL cholesterol (mg/dL) was profoundly low (22.23± 9.14 ASMD;

26.25± 8.08 GD1) and correlated inversely with liver volume (r=−0.45

ASMD, p=0.005; r=−0.50 GD1, p= 0.001) and spleen volume (r=−0.60

ASMD, p= 0.0001; r=−0.63 GD1, p< 0.0001). Mean LDL cholesterol (mg/

dL) was elevated in ASMD (145.86± 49.80) but low in GD1 (68.85±22.53).

HDL cholesterol correlated inversely with serum concentrations of lyso-

sphingomyelin in ASMD (r=−0.48, p= 0.003) and glucosylsphingosine in

GD1 (r=−0.63, p< 0.0001).

Conclusions: ASMD and GD1 should be considered in differential diagno-

sis of patients with unexplained liver and lipid abnormalities, especially

young, lean adults with very low HDL and hepatosplenomegaly. HDL

emerged as a potential biomarker of disease activity in these sphingolipid

disorders.

Keywords: acid sphingomyelinase deficiency, dyslipidemia, gaucher dis-
ease type 1, glucosylsphingosine, HDL cholesterol, hepatomegaly, LDL
cholesterol, liver function tests, lyso-sphingomyelin, niemann pick type B,
splenomegaly

INTRODUCTION

Acid sphingomyelinase deficiency (ASMD) and Gaucher
disease (GD) are inherited lipid disorders caused by
deficiency of lysosomal enzymes (acid sphingomyeli-
nase and acid β-glucosidase, respectively) that result in
pathologic accumulation of the respective substrates
(sphingomyelin and glucosylceramide) in cells of multiple
organs.[1–3] As rare diseases, ASMD and GD are
commonly under-recognized, leading to prolonged diag-
nostic journeys and irreversible disease manifestations.
Both lipidoses exhibit hepatomegaly, elevated liver
enzymes, progressive fibrosis, and dyslipidemia and
confer an increased risk of HCC (Figure 1).[1,2,5]

Accordingly, hepatologists may evaluate these patients
during their diagnostic journey, where there is an
opportunity for early diagnosis, appropriate monitoring,
and initiation of disease-specific treatment.[1,6] Enzyme
replacement therapies are available for ASMD[7] and GD
types 1 and 3, and substrate reduction therapy for GD
type 1.[8]

ASMD and GD display wide phenotypic heterogene-
ity and are broadly subclassified based on the presence
and extent of neurological involvement and age of

onset.[1–3,9] At the most severe end of the spectrum are
infantile-onset subtypes characterized by acute neuro-
visceral disease and early mortality: ASMD type A and
GD type 2. The intermediate phenotypes with onset in
early childhood, prominent visceral manifestations, and
milder neurological manifestations are ASMD type A/B
(also referred to as chronic neurovisceral ASMD) and
GD type 3 (GD3). The late-onset chronic visceral forms
without overt neurological manifestations are ASMD
type B (also referred to as chronic visceral ASMD) and
GD type 1 (GD1). Visceral manifestations of ASMD
include progressive hepatomegaly and liver dys-
function, splenomegaly, interstitial lung disease, dysli-
pidemia, anemia and thrombocytopenia, skeletal dis-
ease, growth failure, and accelerated coronary artery
disease.[9–11] Visceral manifestations of GD similarly
cause progressive hepatomegaly, but less prominent
liver dysfunction and more prominent splenic, hemato-
logic, and skeletal disease, while cardiovascular and
pulmonary complications are uncommon.[12]

Hepatic involvement in ASMD is typically prominent.
ASMD leads to sphingomyelin accumulation within
lysosomes of hepatocytes and macrophage-derived
KCs that underlie progressive liver fibrosis and,
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ultimately, hepatic decompensation,[9,11] ASMD-related
hepatomegaly can present with fibrosis and cirrhosis,
abnormal liver chemistries, and a proatherogenic lipid
profile,[13–15] leading to liver failure in some patients.
Natural history studies have identified liver disease as a
major cause of death in ASMD.[4,15–17] In contrast, most
patients with GD1 present with hepatomegaly due to
infiltration of glycosphingolipid-laden KCs, which may
occur with or without liver enzyme abnormalities.[18–20] A
subset of patients with GD1 develop progressive liver
disease, including fibrosis, cirrhosis, and portal
hypertension,[18,20–23] which can necessitate liver
transplantation.[24] A recent analysis from the Interna-
tional Collaborative Gaucher Group Gaucher Registry
reported incidence of solid malignancies of the liver is
2.9 times higher in patients with GD1 than in the US
general population.[25] In ASMD and GD1, cholelithiasis
and cholecystitis requiring cholecystectomy are more
common than in the general population.[15,26]

Herein, we characterized the full spectrum of hepatic
and lipoprotein phenotypes of ASMD and GD1 by
utilizing baseline data from two pivotal placebo-controlled
trials, one in untreated adults with ASMD and the other in
untreated adults with GD1. Our findings delineate the
hepatic phenotype in ASMDandGD1, with its associated
pattern of dyslipidemia that underscore the importance
of considering these single-gene disorders in the
differential diagnosis of patients who present with
idiopathic liver disease, metabolic dysfunction–
associated steatotic liver disease (MASLD), or metabolic
dysfunction–associated steatohepatitis (MASH), espe-
cially in lean individuals.[27]

METHODS

We analyzed liver and lipoprotein parameters at
baseline (before receiving treatment) in 36 adults with
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F IGURE 1 Liver histology in ASMD and GD. (A) Baseline liver histology in an adult patient with ASMD in the phase 1b trial. A modified
toluidine blue stain was used; dark areas denote sphingomyelin storage in both hepatocytes (“H”) and KCs (“K”). Computer-assisted morphometric
analysis using MetaMorph software estimated that 53.8% of the total tissue area was occupied by sphingomyelin. Reprinted from Thurberg et al.[4]

(B) (left) A liver biopsy from a patient with GD showing clusters of enlarged macrophages with pale eosinophilic cytoplasm (short arrow), lipid-laden
stellate cells (long arrows) and largely unremarkable hepatocytes (hematoxylin and eosin stain; ×200 magnification). B (right) A closer view of the
liver histology showing the enlarged macrophages with pale eosinophilic cytoplasm producing a classic “crumpled tissue paper” appearance
(hematoxylin and eosin stain; ×400 magnification). Panel B images courtesy of D. Jain, MD, Yale School of Medicine.
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chronic visceral ASMD (type B and type A/B) in the
ASCEND trial of intravenous olipudase alfa enzyme
replacement therapy (NCT02004691)[28] and 40 adults
with GD1 (ie, non-neuronopathic GD) in the ENGAGE
trial of oral eliglustat substrate reduction therapy
(NCT00891202).[29] Baseline demographics and clinical
characteristics are from the time of randomization,
before the start of active treatment, and therefore, data
from the placebo and treatment arms are pooled. As
reported previously, both studies were conducted in
accordance with the Declarations of Helsinki, all
research was approved by the appropriate ethics and/
or institutional review committees, and study partici-
pants provided written informed consent.[28,29]

The following baseline values from the 2 trial cohorts
were compared descriptively:[28,29] body mass index
(BMI); liver and spleen volumes in multiples of normal
(MN); ALT; AST; ALP; lactate dehydrogenase; total,
direct, and indirect bilirubin; GGT; albumin; international
normalized ratio; blood urea nitrogen; ferritin; HDL
cholesterol; LDL cholesterol; triglycerides; total choles-
terol; hemoglobin; platelet count; sphingomyelin; and
chitotriosidase (a disease biomarker for both disorders).
We also examined medical and surgical histories for
gallstone disease and cholecystectomy in both popula-
tions. Organomegaly in MN was calculated from MRI-
based liver and spleen volumes based on normal liver
volume of 2.5% of body weight and normal spleen
volume of 0.2% of body weight.[30] Baseline values are
reported as mean±SD, and the distributions for each
continuous parameter by the study are presented side
by side in box and whisker plots. The number and
proportion of patients meeting clinically relevant

thresholds were determined for BMI (normal/low
<25 kg/m2) and liver enzymes (> 36 IU/L for AST
and >40 IU/L for ALT), and anemia (hemoglobin
<11 g/dL for women and < 12 g/dL for men). Normal
ranges for clinical variables are indicated in the box-
whisker plots. Spearman correlations were conducted
to explore potential cross-sectional relationships be-
tween lipid parameters and organ volumes and be-
tween lipid parameters and the disease-specific bio-
markers lyso-sphingomyelin for the ASMD cohort and
glucosylsphingosine for the GD1 cohort.

Clinical inclusion and exclusion criteria for each trial
were disease-specific (previously published in detail in
the studies by Wasserstein et al. and Mistry et al.[28,29])
and are summarized in Table 1. In both trials, patients
with overt neurologic symptoms (ie, suggestive of
ASMD type A or GD3) were excluded. None of the
patients in the ASCEND trial had received prior
disease-specific treatment because this trial occurred
before the approval of olipudase alfa, the first and only
disease-specific treatment for ASMD. In the ENGAGE
trial, 5 patients had received enzyme replacement
therapy that was stopped >9 months before random-
ization, 4 of whom had also received substrate
reduction therapy with miglustat that was stopped
>6 months before randomization.[29] Splenomegaly
eligibility criteria were similar in the 2 trials: spleen
volume ≥ 6 MN for ASCEND[28] and 6–30 MN for
ENGAGE;[29] patients with ASMD in the ASCEND trial
also needed to have a patient-reported outcome of
splenomegaly-related score ≥ 5. In addition to spleen,
liver, and hematologic criteria, patients in the ASCEND
trial were also required to have a percent predicted lung

TABLE 1 Major inclusion and exclusion criteria for both trials

ASCEND (N= 36)[31] ENGAGE (N= 40)[32]

Diagnostic
criteria

Clinical and enzymatic diagnosis of ASMD and no CNS
involvement or genotype suggestive of ASMD type A

Clinical and enzymatic diagnosis of GD type 1 and no CNS
involvement suggestive of GD type 3

Age ≥ 18 y old ≥16 y old

Treatment
history

No prior disease-specific treatment No ERT in the previous 12 mo and no miglustat in the
previous 6 mo

Spleen Spleen volume ≥6 MN (no patient had partial
splenectomy but protocol allowed it if the procedure
was ≥1 year before screening/baseline and residual
spleen volume is ≥ 6 MN)

Splenomegaly-related score ≥ 5a

Spleen volume 6–30 MN, no splenectomy

Liver ALT or AST <250 IU/L or total bilirubin < 1.5 mg/dL
(except patients with Gilbert syndrome)

Protocol amendment allowed patients with cirrhosis
INR <1.5

Liver volume <2.5 MN
No documented prior esophageal varices or liver infarction
or current liver enzymes (ALT/AST) or total bilirubin >2x
ULN unless the patient has a diagnosis of Gilbert
syndrome

Other Percent predicted DLCO adjusted for hemoglobin ≤70% Anemia and/or thrombocytopenia: hemoglobin 8.0–11.0 g/
dL if female or 8.0–12.0 g/dL if male and/or platelet count
50–130 ×109/L

aPatient-reported outcome developed from a subset of assessments used in clinical trials of myelofibrosis; not validated for ASMD.
Abbreviations: ASMD, acid sphingomyelinase deficiency; CNS, central nervous system; DLCO, diffusion capacity for carbon monoxide; ERT, enzyme replacement
therapy; GD, Gaucher disease; INR, international normalized ratio; MN, multiples of normal; ULN, upper limit of normal.
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diffusing capacity for carbon monoxide ≤ 70% of normal
due to the prominent pulmonary involvement in ASMD
and patients in the ENGAGE trial were required to have
a hemoglobin level of 8.0–11.0 g/dL (females) or
8.0–12.0 g/dL (males) and/or platelet count of 50–130
× 109/L due to prominent hematologic involvement in
GD. Age inclusion criteria were similar in the 2 trials,
with ASCEND patients aged 18 years old or above and
ENGAGE patients aged 16 years old or above.[29]

RESULTS

Baseline demographic characteristics were similar in
the 2 populations. Both trial populations were predom-
inantly White (89% in ASCEND and 98% in ENGAGE).

Mean age at baseline was 34.8 years (range 18.6–65.9,
median 29.9 y) in ASCEND and 31.8 years (range:
16.1–62.9, median 30.4 y) in ENGAGE. In ENGAGE,
clinical characteristics of the two 16-year-olds were
consistent with those of the other trial participants.
There was a higher proportion of women in ASCEND
versus ENGAGE (male-to-female ratio: 14:22 and
20:20, respectively). The mean baseline BMI for
ASCEND was 24.3 kg/m2 (range: 18.3–33.3), and for
ENGAGE was 23.4 kg/m2 (range: 18.0–30.9). The
proportion of patients with normal or low BMI (< 25 kg/
m2) was 64% in ASCEND and 68% in ENGAGE.
Among those with above-normal BMI, it is important to
note that BMI may overestimate adiposity due to the
contribution of increased liver and spleen volumes (up
to 3.2 additional kilograms) to body weight. Hence, BMI

ASCEND: ASMD Patients (N=36) ENGAGE: GD1 Patients (N=40)

Spleen volume (MN) 11.45 ± 4.36 ↑↑ 

↑↑ 1.53 ± 0.42

13.20 ± 5.91 ↑↑

Liver volume (MN) 1.40 ± 0.32 ↑↑

Hemoglobin (g/dL) 13.21 ± 1.80 12.39 ± 1.74

Platelet count (x109/L) 111.38 ± 31.77 ↓ 76.76 ± 18.68 ↓↓

Alanine aminotransferase (IU/L) 42.72 ± 29.23 ↑ 25.55 ± 11.56

Aspartate aminotransferase (IU/L) 42.86 ± 31.91 ↑ 28.15 ± 8.55

Alkaline phosphatase (IU/L) 83.72 ± 37.84 72.25 ± 24.46

Lactate dehydrogenase (U/L) 153.78 ± 31.83 146.38 ± 28.25

Gamma-glutamyl transferase (IU/L) 26.86 ± 26.71 25.68 ± 19.37

Albumin (g/dL) 4.03 ± 0.46 4.56 ± 0.30

Serum protein (g/dL) 6.99 ± 0.61 7.42 ± 0.57

Blood urea nitrogen (mg/dL) 17.20 ± 6.19 15.08 ± 4.46

International normalized ratio 1.15 ± 0.11 1.19 ± 0.14

Ferritin (ng/mL) 161.53  ± 178.48 409.53 ± 372.96 ↑↑

Total bilirubin (mg/dL) 1.12 ± 0.96 0.77 ± 0.26

Direct bilirubin (mg/dL) 0.19 ± 0.10 0.23 ± 0.10 ↑

Indirect bilirubin (mg/dL) 0.94 ± 0.89 0.54 ± 0.22

LDL cholesterol (mg/dL) 145.86 ± 49.80 ↑ 68.85 ± 22.53

HDL cholesterol (mg/dL) 22.23 ± 9.14 ↓↓ 26.25 ± 8.08 ↓↓

Triglycerides (mg/dL) 194.88  ± 81.47 ↑ 149.20 ± 72.88

Total cholesterol (mg/dL) 197.33 ± 42.73 123.98 ± 26.18

Chitotriosidase (nmol/hr/mL) 18x upper limit of normal   ↑ 102x upper limit of normal    ↑↑

Sphingomyelin (μg/mL) 299.31 ± 61.85 240.40 ± 59.06

Lyso-sphingomyelin (ng/mL) ~43x upper limit of normal   ↑↑ N/A

Glucosylsphingosine (ng/mL) N/A ~72x upper limit of normal    ↑↑

Body mass index (kg/m2) 24.3 ± 4.0 23.4 ± 3.1

Normal Abnormal ↑ denotes elevated ↑↑ denotes very elevated
↓ denotes low ↓↓ denotes very low

F IGURE 2 Heat map of mean±SD organomegaly, hematologic parameters, liver and lipid profiles, and disease biomarkers at the respective
study baseline visits. Normal values for each parameter are provided in the methods section; Figures 3, 4, 5; or ref.[33] Abbreviations: ASMD, acid
sphingomyelinase deficiency; GD1, Gaucher disease type 1; MN, multiples of normal.
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estimates for lean and overweight individuals may be
overestimated.

The heat map in Figure 2 summarizes the similarities
and differences in clinical disease manifestations
between the 2 cohorts, excluding pulmonary manifesta-
tions, which are prominent in ASMD but rare in GD1 and
thus were not monitored in ENGAGE. Splenomegaly, a
common and prominent manifestation in both diseases
and a trial inclusion criterion for both trials (Table 1) was
similar in ASMD (mean 11.45± 4.36 MN) and GD1
(mean 13.20± 5.91 MN). Modest hepatomegaly was
also similar in ASMD (mean 1.53±0.42 MN) and GD1
(mean 1.40±0.32 MN). Mean hemoglobin levels were
> 12 g/dL in both cohorts; 3/36 patients with ASMD (8%)
were anemic at baseline (< 12 g/dL for men and < 11 g/
dL for women) versus 9/40 patients with GD1 (23%).
Platelet counts were low, with more severe thrombocy-
topenia in the GD1 cohort (for whom anemia or
thrombocytopenia were inclusion criteria) than the
ASMD cohort. The box and whisker plots in Figure 3
show the data distribution and median values for organ
volumes and hematologic parameters in the context of
the normal ranges in healthy individuals. Most patients

in both studies had moderate to severe splenomegaly,
moderate hepatomegaly, and hemoglobin levels in the
normal range.

Mean liver transaminase levels were elevated in the
ASMD cohort and normal in the GD1 cohort (Figures 2,
4). Overall, 44% of the patients with ASMD (16/36) had
elevated ALT (> 40 IU/L) versus 10% of patients with
GD1 (4/40). Mean direct bilirubin levels were elevated in
the GD1 cohort and normal in the ASMD cohort,
whereas indirect bilirubin levels were within the normal
range for most patients in both cohorts (Figures 2, 4). In
both cohorts, mean ALP, lactate dehydrogenase, GGT,
serum protein, blood urea nitrogen, and international
normalized ratio were mostly in the normal range (data
not shown). Notably, 3 patients in ASCEND had GGT
values > 45 IU/L (53, 80, and 150 IU/L, respectively),
and 2 patients in ENGAGE had values >45 IU/L (87
and 108 IU/L, respectively).

Proatherogenic lipid profiles were divergent, with
elevated LDL cholesterol and triglycerides in ASMD but
not in GD1. However, in both cohorts, mean HDL
cholesterol was profoundly reduced (Figures 2, 5).
None of the patients in either cohort had normal values
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F IGURE 3 Box and whisker plots of organ volumes and hematologic parameters. Each dot represents a single ASCEND (orange) or
ENGAGE (blue) patient. The line inside the box indicates the median value. Bottom and top edges of the box indicate 25th and 75th percentiles.
Whiskers encompass data points within 1.5 times the IQR from the edge of the box. A lighter color is used for dots that fall within the box so that
the mean value (indicated by the diamond) is visible. Abbreviations: ASMD, acid sphingomyelinase deficiency; GD1, Gaucher disease type 1; MN,
multiples of normal.
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(Figure 6A). Most values were r40 mg/dL, and 39% of
ASMD and 25% of patients with GD1 had values
≤ 20 mg/dL. Mean ferritin levels were normal in the
ASMD cohort and elevated in the GD1 cohort
(Figure 2); 11% of patients with ASMD had ferritin
levels > 341 ng/mL for men or >255 ng/mL for women
versus 55% of patients with GD1. In both cohorts, mean
chitotriosidase activity, a marker of alternatively acti-
vated lipid-laden macrophages, was elevated (18 times
the upper limit of normal in ASMD and 102 times the
upper limit of normal in GD1), and mean sphingomyelin
levels were in the normal range (Figure 2).

To understand the significance of aberrant HDL
levels, we sought correlations between lipid parameters
and other disease indicators shown in Figure 6A–D.
HDL cholesterol was inversely correlated with liver
volume in both cohorts (r= −0.46, p=0.005 for ASMD
and r= −0.50, p= 0.001 for GD1). In contrast, only the
ASMD cohort showed correlations between LDL cho-
lesterol and liver volume (r= 0.53, p=0.001) and
triglycerides and liver volume (r= 0.48, p= 0.003). An
inverse correlation was also observed between HDL
cholesterol and spleen volume in both cohorts (r=
−0.60, p=0.001 for ASMD and r= −0.63, p< 0.0001 for
GD1); in contrast, no correlations were observed
between LDL cholesterol or triglycerides and spleen

volume in either cohort (data not shown). Inverse
correlations were observed between HDL cholesterol
and disease-specific lyso-sphingolipid biomarkers in
both cohorts (Figure 6E, F): r=−0.48 (p=0.003) for
correlation of HDL cholesterol with plasma lyso-sphin-
gomyelin in patients with ASMD and r=−0.63
(p< 0.0001) for correlation of HDL cholesterol with
plasma glucosylsphingosine in patients with GD1.

In the ASMD cohort, 2 of 36 patients (5.5%) (2
women aged 43 and 59 years, with BMIs of 29.3 and
25.1 kg/m2, respectively) had a history of gallstones
and/or cholecystectomy. In the GD1 cohort, 5 of 40
(12.5%) patients had a history of gallstones and/or
cholecystectomy or gallbladder disease (four men aged
25, 38, 58, and 62 years and one woman aged 44 years,
BMI range 21.2–28.9 kg/m2).

DISCUSSION

Herein, 2 pivotal clinical trials in rare lipidoses afforded
a valuable opportunity for deep phenotyping of lipo-
protein and hepatic manifestations of ASMD and GD.
Both disorders cause hepatomegaly, splenomegaly,
abnormal liver function tests, and profoundly low HDL
cholesterol levels in the setting of low or normal BMI.
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F IGURE 4 Box and whisker plots of liver function parameters. Each dot represents a single ASCEND (orange) or ENGAGE (blue) patient. The
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Markedly elevated LDL cholesterol in ASMD is consist-
ent with an increased incidence of premature coronary
artery disease,[14] whereas very low LDL cholesterol in
GD is consistent with a low incidence of coronary artery
disease despite very low HDL cholesterol.[5] In both
disorders, the serum biomarker of lipid-laden, alterna-
tively activated macrophages, chitotriosidase, is mas-
sively increased, underscoring the critical role of tissue
macrophages in disease pathophysiology.

ASMD and GD1 are primarily viewed as disorders of
intracellular lipidosis centered on lysosomal accumula-
tion of pathogenic sphingolipids. A relatively smaller
amount of pathological accumulating lipids are compo-
nents of secreted lipoproteins but, due to high turnover of
the latter, there may be a hitherto underappreciated role
of altered lipoprotein metabolism in pathogenesis of
these disorders.[26,31] In ASMD, excess sphingomyelin
has been shown to inhibit lipoprotein lipase and turnover
of plasma VLDL[32] and also to increase proprotein
convertase subtilisin/kexin type 9 activity;[34] both may
underly the pathogenesis of hyperlipidemia and its
reversal with enzyme replacement therapy.[35,36] Under-
standing these lipoprotein phenotypes would enhance
the optimal management of atherogenic dyslipidemia

and could propel biomarker discovery. Indeed, we found
significant correlations between low HDL cholesterol and
indicators of disease severity (hepatomegaly and spleno-
megaly), as well as the validated, bioactive lysolipid
biomarkers of ASMD and GD (lyso-sphingomyelin and
glucosylsphingosine, respectively). These findings focus
attention on HDL particles as likely having a key role in
pathophysiology of both disorders. Recent studies have
described the intersection of cellular cholesterol and
glycosphingolipid metabolism.[37] In addition to sphingo-
myelin accumulation in hepatocytes and KCs in ASMD,
there is a secondary accumulation of cholesterol.[13,38]

Pathological cellular accumulation of these lipids in
ASMD would a priori affect hepatocyte lipoprotein
metabolism, but there is a paucity of data on this topic.
Earlier studies suggested that increased sphingomyelin
content of nascent HDL particles impaired LCAT-
mediated HDL lipidation, offering one mechanism for
profound hypoalphalipoproteinemia in ASMD.[39] Other
studies suggested abnormal enrichment of all lipoprotein
classes beyond VLDL with triglycerides.[11,40] Elevated
triglycerides and LDL cholesterol in our ASMD cohort are
consistent with the notion that the sphingolipid metabolic
defect may cause increased VLDL secretion as an
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important contributor to atherogenic dyslipidemia and
accelerated atherosclerosis.[14]

Liver biopsies in patients with ASMD show 10%–

60% of liver tissue is occupied by sphingomyelin within
the lysosomes of hepatocytes and macrophage-derived
KCs.[13,14,28] Early in the disease, the liver biopsies
exhibit staining in KCs; as the disease progresses with
increasing build-up of sphingomyelin, there is florid

histological staining in both KCs and hepatocytes.[14]

Baseline liver biopsies in previous ASMD trials revealed
liver fibrosis ranging from mild to cirrhotic in almost all
patients. In ASCEND, 4 of 36 patients (11%) had
established cirrhosis at baseline.

Patients with conspicuous liver enlargement and/or
dysfunction associated with dyslipidemia are often
referred to hepatologists to investigate underlying
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etiology. Our study underscores the importance of
considering ASMD and GD1 in the differential diagnosis
of patients with idiopathic liver disease with a diagnosis of
MASLD or MASH.[41] Patients with ASMD who manifest
with echogenic steatotic liver, high liver enzymes, high
triglycerides, high LDL cholesterol, and very low HDL
cholesterol levels may be misdiagnosed with MASLD/
MASH. Both ASMD and GD manifest with prominent
hepatomegaly and even greater splenomegaly, a com-
bination that may lead to erroneous diagnosis of primary
cirrhosis and portal hypertension.[42] In ASMD, significant
liver dysfunction (50% have abnormal liver function tests

and >90% have dyslipidemia[17,43,44]) is associated with
hepatomegaly, whereas liver dysfunction is less promi-
nent in GD1,[18] yet the frequent occurrence of hyper-
ferritinemia (11% in ASMD and 55% in GD in our cohorts)
may lead to an erroneous diagnosis of hemo-
chromatosis.[45] In our adult ASMD and GD1 cohorts,
most were lean (BMI <25 kg/m2) in the setting of
hepatosplenomegaly and strikingly low HDL cholesterol.
A combination of such findings and gallstone disease
(which has increased prevalence in GD1 due to
abnormal metabolism of glycosphingolipids and plasma
lipoproteins[23,26]) may strengthen the conviction of
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MASLD or MASH, despite low BMI.[41] Therefore, in a
lean patient who phenocopies metabolic syndrome, it
becomes mandatory to exclude ASMD and GD1,[46]

particularly in patients with less severe splenomegaly
or, for ASMD, minimal or “silent” pulmonary involvement.

ASMD and GD1 are treatable diseases,[1,6] which
underscores the importance of prompt diagnosis. Treat-
ment with enzyme replacement therapy for ASMD and
enzyme replacement or substrate reduction therapy for
GD1, especially early in the disease course, can alleviate
or reverse key disease manifestations (ie, hematovisc-
eral, hepatic, pulmonary, and skeletal) and prevent the
development of serious, irreversible, and potentially life-
threatening disease complications.[28,29,47–49] Although
not a primary outcome in either clinical trial, mean HDL
cholesterol increased after 3.5 years by 88%±50%
(n=23) with olipudase alfa therapy in the ASCEND trial
and 69%±43% (n=28) with eliglustat therapy in the
ENGAGE trial (Supplemental Figure S1, http://links.lww.
com/HC9/B866).

Diagnosis of both ASMD and GD1 can now be
performed simultaneously utilizing a dried blood spot
test to measure enzyme activity. Because of the overlap
in presenting symptoms, parallel testing for both dis-
eases is generally recommended.[1] In a recent prospec-
tive analysis in which 31,838 individuals suspected to
have GD based on clinical presentation were tested for
both acid β-glucosidase and acid sphingomyelinase
activity, 1411 of 5933 (24%) cases were eventually
diagnosed with GD, and 550 of 5933 (9%) with ASMD.[50]

In summary, liver dysfunction and atherogenic
lipoprotein profiles were more pronounced in untreated
adults with ASMD than in untreated adults with GD1. In
both diseases, there was a strong inverse association
between HDL cholesterol levels and liver volume,
spleen volume, and disease-specific biomarkers. ASMD
and GD1 should be considered in patients with
idiopathic liver disease who also present with hepatos-
plenomegaly and low HDL cholesterol levels. Aware-
ness among hepatologists of the distinctive lipoprotein
phenotypes in ASMD and GD1 could hasten diagnosis
and initiation of effective treatment.
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