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Abstract
Key message Genetic variation for malting quality as well as metabolomic and near-infrared features was identi-
fied. However, metabolomic and near-infrared features as additional omics-information did not improve accuracy 
of predicted breeding values.
Abstract Significant attention has recently been given to the potential benefits of metabolomics and near-infrared spectros-
copy technologies for enhancing genetic evaluation in breeding programs. In this article, we used a commercial barley breed-
ing population phenotyped for grain yield, grain protein content, and five malting quality traits: extract yield, wort viscosity, 
wort color, filtering speed, and β-glucan, and aimed to: (i) investigate genetic variation and heritability of metabolomic 
intensities and near-infrared wavelengths originating from leaf tissue and malted grain, respectively; (ii) investigate variance 
components and heritabilities for genomic models including metabolomics (GOBLUP-MI) or near-infrared wavelengths 
(GOBLUP-NIR); and (iii) evaluate the developed models for prediction of breeding values for traits of interest. In total, 639 
barley lines were genotyped using an iSelect9K-Illumina barley chip and recorded with 30,468 metabolomic intensities and 
141 near-infrared wavelengths. First, we found that a significant proportion of metabolomic intensities and near-infrared 
wavelengths had medium to high additive genetic variances and heritabilities. Second, we observed that both GOBLUP-
MI and GOBLUP-NIR, increased the proportion of estimated genetic variance for grain yield, protein, malt extract, and 
β-glucan compared to a genomic model (GBLUP). Finally, we assessed these models to predict accurate breeding values in 
fivefold and leave-one-breeding-cycle-out cross-validations, and we generally observed a similar accuracy between GBLUP 
and GOBLUP-MI, and a worse accuracy for GOBLUP-NIR. Despite this trend, GOBLUP-MI and GOBLUP-NIR enhanced 
predictive ability compared to GBLUP by 4.6 and 2.4% for grain protein in leave-one-breeding-cycle-out and grain yield in 
fivefold cross-validations, respectively, but differences were not significant (P-value > 0.01).

Introduction

Barley (Hordeum vulgare L.) is a widely cultivated cereal 
crop primarily utilized for animal feed and malting for alco-
holic beverage production (Miralles et al. 2021; Verma et al. 
2022). Over the last decades, a growing demand for malting 
barley has increased the necessity for commercial varieties 
that integrate high productivity and superior malting quality. 
Grain yield (GY) and grain protein content (PC) are two of 
the most important traits in barley production. Developing 
varieties with high grain yield potential and protein content 
in the range of 9.0–11.5% are central goals in barley breed-
ing programs (Bertholdsson 1999; Emebiri 2015; Barmeier 
et al. 2017). These traits can only be assessed late in the 
breeding process when there are enough seeds for replicated 
field trials. Malting quality refers to the capacity to undergo 
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a successful malting process, which ultimately influences the 
flavor, aroma, and overall quality of the resulting beverage. 
Key traits influencing malting quality include malt extract 
yield ≥ 80%, malt protein between 9.5 and 12.5%, β-glucan 
from < 0.2 to 1.5%, soluble protein between 4 and 6%, dia-
static power between 70 and120°L, wort viscosity between 
1.5 and 5.0 cP, and low enzyme concentration (α-amylase, 
β-amylase, limit dextrinase, and β-glucosidase), among other 
traits (Li et al. 2009; Guo et al. 2020; Sarup et al. 2020). 
The assessment of malting quality is a complex and expen-
sive process as it depends on numerous interrelated traits 
that collectively contribute to producing high-quality malt. 
Therefore, this assessment is usually not available for all 
breeding lines and replicate samples. Most importantly, just 
as the phenotypes for grain yield and protein content, reli-
able information of malting quality is not available in the 
early stages of the breeding cycle where selection is most 
intense. Breeding for the improvement of yield and malting 
quality traits in barley is challenged by assessments of these 
traits only being available late in the breeding process.

Genomic selection (GS, Meuwissen et al. 2001) based 
on whole-genome prediction (WGP) is a cost-effective 
methodology that can enhance accuracy in the early stages 
of selection, and it has been successfully utilized in plant 
and animal breeding to improve traits of economic impor-
tance (Crossa et al. 2010; Hayes and Goddard 2010; Raffo 
and Jensen 2023). To further extend and improve genomic 
selection breeding programs, there has been an increasing 
interest in exploiting omics technologies (Fakrudin et al. 
2012; Chaudhary et al. 2019). The omics approaches gener-
ate a large quantity of data that can be seen as intermediate 
phenotypes (i.e., endophenotypes) between the DNA action 
and the final phenotype. Some examples of the utilization of 
omics in the context of genetic analysis and breeding can be 
found for metabolomics (Riedelsheimer et al. 2012; Hayes 
et al. 2017; Guo et al. 2022, 2023), transcriptomics (Guo 
et al. 2016; Delrot et al. 2020; Morgante et al. 2020), and 
proteomics (Zhu et al. 2021). In addition, other techniques 
measuring chemometric traits, such as near-infrared spec-
troscopy (NIRS), have been proposed (Hayes et al. 2017; 
Rincent et al. 2018; Robert et al. 2022). Similarly to genom-
ics, different omics features, and near-infrared (NIR) wave-
lengths can be utilized to predict the phenotype and genetic 
values (Riedelsheimer et al. 2012; Hayes et al. 2017; Rincent 
et al. 2018; Christensen et al. 2021; Derbyshire et al. 2022; 
Robert et al. 2022).

In this article, we focus on the utilization of metabo-
lomics and NIR data originating from nuclear magnetic 
resonance (NMR) spectroscopy and NIRS, respectively. 
The NMR spectroscopy is a powerful analytical technique 
that produces a high-dimensional set of signal intensities 
that can be associated with specific metabolites (Gunther 
et al. 1980); the signal intensities will be referred to as 

metabolomic intensities (MIs) hereinafter. The metabo-
lomics data has been successfully utilized for the predic-
tion of complex traits in maize (Riedelsheimer et al. 2012), 
rice (Xu et al. 2016), wheat (Hayes et al. 2017), barley 
(Guo et  al. 2022), and other plant and animal species 
(reviewed by Fernandez et al. 2021; Scossa et al. 2021, 
and Sakurai 2022). The NIRS is a low-cost, non-destruc-
tive technique that quantifies absorbance/reflectance of 
biological samples at a broad range of wavelengths in the 
visible and NIR spectrum. The NIR wavelengths are rou-
tinely used in cereal breeding programs to predict water 
and protein content (Dowell et al. 2006; Osborne 2006) 
and are often available for any other purpose without addi-
tional costs. Recently, Rincent et al. (2018) proposed an 
alternative called phenomic selection, where NIR wave-
lengths are used for prediction of phenotypes. Phenomic 
selection has been successfully used to predict complex 
traits in wheat (Rincent et al. 2018; Cuevas et al. 2019; 
Krause et al. 2019; Robert et al. 2022), maize (Lane et al. 
2020), rye (Galán et al. 2020), triticale (Zhu et al. 2021), 
Soybean (Parmley et al. 2019; Zhu et al. 2021), and poplar 
(Rincent et al. 2018).

Different methods have been proposed to incorporate 
omics or NIRS data in statistical genetic models. The 
MIs and NIR wavelengths can be included as regressors 
in genomic-like omics-based (GLOB) prediction models 
(Robert et al. 2022), where all variables can be directly 
incorporated as separated random effects or via similar-
ity matrices (Riedelsheimer et al. 2012; Guo et al. 2016; 
Rincent et al. 2018; Schrag et al. 2018; Brault et al. 2022). 
However, while several approaches have provided insights 
into the relevance of MIs or NIR wavelengths on the trait, 
they do not generate predictions of omics- or NIR-based 
genetic effects that can be directly used for breeding pur-
poses. For this purpose, Christensen et al. (2021) proposed 
to use a joint model that generates genomic estimated 
breeding values (GEBVs) as a combination of estimates 
of direct genomic effects and omics-mediated genomic 
effects (GOBLUP). This model has recently been imple-
mented using genomics and metabolomics for barley (Guo 
et al. 2023) and microbiome data in sheep (Boggio et al. 
2023), and the GOBLUP model can also be potentially 
useful to exploit NIR data.

In this study, we used a spring barley breeding population 
phenotyped for grain yield (GY), grain protein content (PC), 
and five malting quality traits: malt extract yield (EY), wort 
viscosity (WV), wort color (WC), filtering speed (FS), and 
β-glucan content (BG), and with MIs originating from NMR 
on leaf tissue and NIR wavelengths originating from whole 
grain after malting from the same experimental plots. We 
had three specific objectives:
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 (i) To investigate the genetic variation and heritability 
of MIs and NIR wavelengths.

 (ii) To investigate variance components (VCs) and herit-
abilities for genetic models including genomic and 
metabolomics (GOBLUP-MI) or genomic and NIR 
wavelengths (GOBLUP-NIR) for all the available 
traits.

 (iii) To evaluate the performance of the developed mod-
els (GBLUP, GOBLUP-MI and GOBLUP-NIR) for 
prediction of breeding values for the traits included.

The accuracies of predicted breeding values were eval-
uated using fivefold and leave-one-breeding-cycle-out 
(LBCO) cross-validation (CV) schemes, and results from 
both models were compared with a baseline genomic model 
(GBLUP).

Materials and methods

Experimental data

The plant material consisted of 639 sixth-generation  (F6) 
spring barley (Hordeum vulgare L.) lines tested in 2,250 
individual plots by the breeding company Nordic Seed A/S. 
The descriptive statistics for GY, PC, and the MQ traits WV, 
BG, EY, FS, and WC are presented in Table 1. The breed-
ing lines came from two breeding cycles tested in years 
2021 to 2022 in two locations in Denmark (DK): Odder 
(Central DK), Holeby (South-East DK) and Skive (North-
West DK). A breeding cycle is defined as all crosses made 
within a single calendar year. The breeding lines within each 
year-location combination were arranged in field trials (i.e. 
experimental blocks) following a randomized incomplete 
block design. The field trials were divided into smaller plots 
of size 8.25  m2 (5.5 × 1.5 m), where in each plot a barley 
breeding line or a control line was sown. Two control barley 
lines were sown with three replications in each trial. The 
grain yield (kg/8.25  m2) and protein content (%) estimated 

by NIR spectra on raw grain using a PerkinElmer DA 7440 
On-line NIR instrument were recorded on each plot. Grain 
samples from each plot were collected and processed in 
micro-malting batches to obtain several malting quality 
traits: malt extract yield (%), wort viscosity (mPa-s), wort 
color (European Brewery Convention units), filtering speed 
(cm/20 min), and β-glucan (mg/L). A detailed description 
of the methodology utilized to obtain malting quality traits 
can be found in Sarup et al. (2020).

The DNA extraction was performed using a modified 
CTAB method (Rogers and Bendich, 1985). The plant mate-
rial was genotyped using an Illumina iSelect9K barley chip. 
A total of 8,198 single-nucleotide polymorphism (SNP) 
markers were utilized. Quality control was done by remov-
ing SNPs with minor allele frequency (MAF) lower than 
5% and call rate lower than 0.90. Genotypes were coded 
0,1,2, counting the number of alleles of the reference allele 
for each locus. Missing genotypes were ~ 0.3% and were 
assigned two times the observed allele frequency (i.e., mean 
dosage).

For each plot, the metabolomic information was obtained 
from 10 cuts of green flag leaf tips randomly distributed in the 
yield plot just after flag leaf appearance. All samples from the 
same location, year, and trial were collected in Eppendorph 
tubes on the same date within 3 h. The tubes were stored on 
dry ice in the field and subsequently frozen at -20 °C. The tis-
sue samples were freeze dried and thereafter pulverized using 
a TissueLyser II (Qiagen®), after which 1.0 ml 50% metha-
nol was added to the tubes. The samples were incubated in 
a Thermo shaker (TS-DW, Biosan) at 50 °C for 10 min and 
cooled to room temperature. After 5 min at 4000G in a centri-
fuge (4-5C, Sigma), 0.70 ml of supernatant was transferred to 
2 ml Eppendorph tubes and frozen at − 20 °C until shipment 
to the NMR laboratory in one batch per year (3 months after 
harvest). The samples were shipped on dry ice and stored at 
− 80 °C upon arrival to the Swedish NMR center at the Uni-
versity of Gothenburg, Sweden. For NMR analysis, samples 
were put in CentriVap lyophilizer to dry for 2 h, setting at 
20 °C. Following, 60 µl methanol-d4 was added to each tube 

Table 1  Descriptive statistics 
for grain yield, protein content, 
and malting quality traits

† All traits were evaluated for 639 sixth-generation  (F6) barley lines with 2,250 observations. GY: grain 
yield; PC: protein content; WV: wort viscosity; BG: β-glucan; EY: extract yield; FS: filtering speed; WC: 
wort color; EBC: European Brewery Convention units

Trait† (unit) Minimum Mean Maximum Standard 
deviation

Coefficient of 
variation (%)

GY (kg/8.25m2) 4.92 7.19 8.81 0.61 8.45
PC (%) 8.80 10.75 13.10 0.57 5.32
WV (mPa-s) 1.33 1.47 1.99 0.05 3.40
BG (mg/L) 70.00 153.00 730.00 3.71 76.60
EY (%) 76.76 82.28 95.50 1.44 1.74
FS (cm/20 min) 1.40 4.91 6.80 1.07 21.73
WC (EBC units) 2.40 5.11 7.31 0.53 10.33
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and dried again for one hour. Then 600 µl PREC buffer was 
added to the samples (37.5 mM NaPi pD 6.95, 0.05% NaN3, 
99.8% D2O, 0.747 mM TSP-d4). The samples were shaken at 
800 rpm, 25 °C for 45 min and transferred to 5 mm SampleJet 
rack tubes. Acquisition was performed as IVDr 32-scan 1D 1H 
NOESY. In total, 30,468 metabolomic intensities (MIs) were 
recorded from one-dimensional (1D) 1H nuclear magnetic 
resonance (NMR) spectroscopy. The signal intensities were 
integrated over small chemical shift intervals along the spectra 
expressed in parts per million ranging from 0.70 to 9.00 ppm. 
For a full description of the procedure to prepare NMR and 
obtain MIs, see Guo et al. (2020).

The NIR data was obtained from whole grain after malted. 
A total of 141 NIR wavelengths were recorded for absorb-
ance from 950 to 1650 nm with a step of 5 nm. The resulting 
wavelengths were treated according to Rincent et al. (2018) as 
follows: i) the NIR wavelengths were normalized (centered to 
zero and scaled to variance one), and ii) the first derivative was 
computed using a Savitzky-Golay filter (Savitzky and Golay 
1964) implemented in the R package signal (Signal Developers 
2014). The Savitzky-Golay first derivative is a preprocessing 
step used to reduce random noise produced by instrumental 
fluctuations and environmental interference, and for feature 
enhancement, preserving the important spectral features and 
amplifying changes in absorbance. See supplementary mate-
rial 1 for an illustration of NIR wavelengths before and after 
Savitzky-Golay transformation. In the end, all 2,250 plots were 
characterized using MIs and NIR wavelengths.

Estimation of heritability of MIs and NIR 
wavelengths

Two univariate models were utilized to estimate variance com-
ponents (VCs) and narrow-sense heritabilities ( h2 ) for MIs 
(Model-MI) and NIR wavelengths (Model-NIR). The Model 
1 was defined as:

where yj  is the vector of phenotypes for MIs 
( j = 1,… , 30,468 ); X is the design matrix for the fixed 
effects; bj is the vector of fixed effects (year-location-trial); 
gj is the vector of genomic breeding values of the lines with 
gj ∼ N(0,G�2

gj
) , where �2

gj
 is the additive genomic variance 

and G is the genomic relationship matrix (VanRaden 2008): 
G =

QQ
′

2
∑

pi(1−pi)
 , with Q being the genotypic matrix centered 

by two times the observed allele frequencies of the reference 
alleles, and pi is the allele frequency for the ithSNP ; lj is the 
vector of genetic line effects, which includes non-additive 
genetic effects, such as epistasis, and additive effects not 
explained by marker genotypes, with lj ∼ N(0, I�2

lj
) , where 

�2

lj
 is the variance of line effects; igj and ilj are vectors of 

(1)yj = Xbj + Zggj + Zllj + Zig igj + Zil ilj + Zssj + ej

genotype-by-environment interactions with the environment 
defined as the year-location combination, where 

igj ∼ N(0,

⎡
⎢⎢⎢⎣

G 0

0 G

0 0

0 0

0 0

0 0

G 0
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⎤
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igj
) and ilj ∼ N(0, I�2

lj
) , with �2

gj
 

being the additive genomic-by-environment interaction vari-
ance, and �2

lj
 being the genetic line-by-environment interac-

tion variance due to additive genetic effects not accounted 
for by marker genotypes and non-additive genetic effects; sj 
is the vector of spatial effects, with sj ∼ N(0, S�2

sj
) , where S 

is a spatial similarity matrix computed as: S =
��

�

tr(��
� )∕n

 , 
where � is an indicator matrix relating the position of the 
target plot and their eight surrounding plots (neighboring 
plots) with the observations, tr is the trace (sum of diagonal 
elements) and n the total number of rows, and �2

sj
 is the vari-

ance of the sj effect (see Raffo et al. 2022 and Tessema et al. 
2024 for a detailed description of this spatial effect), note 
that the degree of similarity in S depend on the distance 
between plots; Zg , Zl , Zig

 , Zil
 , and Zs are the design matrices 

for gj , lj , igj , ilj , and sj , respectively; ej is a vector of random 
residual effect with ej ∼ N(0, I�2

ej
) , where �2

ej
 is the residual 

variance.
Model 2 was defined for NIR wavelengths ( j = 141 ) 

with the same effects as in Model 1 plus an additional 
random effect Zmmj , corresponding to the batch in which 
the samples were malted, where mj is the vector of malting 
batch effects with mj ∼ N(0, I�2

mj
) , and �2

mj
 is the variance 

of the malting batch effects; Zm is the design matrix for mj . 
Note that Models 1 and 2 are adapted versions of GBLUP 
models (Habier et al. 2007; VanRaden 2008).

VCs were estimated by Restricted Maximum Likelihood 
(REML) using the Average Information (AI-REML) mod-
ule in DMU (Madsen and Jensen, 2013). The heritability 
at the level of single-plot measurement was estimated for 
each MI and NIR wavelength as ĥ2

j
= d(�)�̂2

gj
∕�̂2

Pj

 , where 

d(�) is the average of diagonal elements of the genomic 
relationship matrix d(�) = 1.83,�̂2

gj
 is the estimated addi-

tive genomic variance, and �̂2

Pj
 is the estimated phenotypic 

variance for each MI or NMR wavelength. The �̂2

Pj
 for 

M o d e l  1  w a s  e s t i m a t e d  a s :  �̂2

Pj
= 

d(�)�̂2
gj
+ �̂2

lj
+ d(�)�̂2

igj
+ �̂2

ilj
+ (d(�) − mean(�)) ∗ �̂2

sj
+ �̂2

ej
 , 

where �̂2

lj
 , �̂2

igj
 , �̂2

ilj
 , �̂2

sj
 , and �̂2

ej
 are the estimated parameters, 

d(�) is 1, and mean(�) is 0.004. The �̂2

Pj
 for Model 2 was 

estimated using the same formula as Model 1 plus the 
variance of the malting batch effects �̂2

mj
 . In addition, a 

significance test for ĥ2
j
 equal to zero was performed using 

a simulation procedure to determine the null distribution 
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of ĥ2
j
 in our specific statistical design. This was done fol-

lowing the procedure proposed by Guo et al. (2020); see 
description in their article for further details.

Genomic and multi‑omics models for yield 
and malting traits

GBLUP

The GBLUP model (Habier et al. 2007; VanRaden 2008) 
was utilized for the traits GY, PC, EY, WV, WC, FS, and 
BG. For analyses of GY and PC, GBLUP was defined with 
the same model effects as described in the previous subsec-
tion for Model 1. For analyses of MQ traits EY, WV, WC, 
FS, and BG, GBLUP was defined as previously described 
for Model 2.

GOBLUP‑MI

The GOBLUP model was proposed by Christensen et al. 
(2021) to integrate different omics data into genetic evalu-
ations. In brief, the MBLUP is a joint model assuming that 
the phenotype of interest is affected by different omics 
expression levels (in addition to genomic effects), and where 
GEBVs can be obtained from a combination of genomic 
and omics information. See Christensen et al. (2021) for a 
complete theoretical description of the model and derivation 
of GEBVs. In our study, GOBLUP-MI refers to the model 
including MIs and GOBLUP-NIR to the model including 
NIR wavelengths. The model of Christensen et al. (2021) 
(GOBLUP-MI) for GY and PC was implemented using the 
following two steps:

step 1:

step 2:

where y is the vector of phenotypes, X , b , Zg , Zl , Zig
 , Zil

 , Zs , 
g , l  , ig , il , s , e are defined as for GBLUP, regardless of 
whether it is denoted with a subscript 1 or 2; u is the vector 
of MIs effects on phenotype with u ∼ N(0,QMI�

2

u
) , where 

QMI is the metabolomic similarity matrix computed as 
QMI =

MMIM
′

MI

q
 with MMI  a 2,250 (number of observa-

tions) × 30,468 (number of MIs) matrix of centered and 
scaled MIs, and �2

u
 the metabolomic variance. In the step 2 

(Eq. 3), û is the vector of predicted metabolomic effect from 
step 1 (Eq. 2). The vector of GEBVs in GOBLUP-MI are 
therefore computed as the vector of GEBV in step 1 ( ̂g1 ) plus 
the vector of GEBVs in step 2 ( ̂g2 ). The GOBLUP-MI for 

(2)y = Xb1 + u + Zgg1 + Zll1 + Zig ig1 + Zil il1 + Zss1 + e1

(3)û = Xb2 + Zgg2 + Zll2 + Zig ig2 + Zil il2 + Zss2 + e2

MQ traits (EY, WV, WC, FS, and BG) was defined with the 
same effects as for GY and PC plus an additional random 
effect Zmm1 (for step 1) and Zmm2 (for step 2), corresponding 
to the mashing batch group in which samples were malted, 
where Zm and m were defined as for GBLUP regardless of 
subscript 1 or 2.

GOBLUP‑NIR

The GOBLUP-NIR was developed to include NIR wave-
lengths instead of MIs. This model had the same effects 
as GOBLUP-MI for all traits except for the metabolomic 
effects ( u ), which was replaced by a new effect for NIR 
wavelengths. For step 1 of GOBLUP-NIR, the NIR effect 
was defined as v (equivalent to u in GOBLUP-MI), with v as 
the vector of NIR wavelength effects on phenotype, where 
v ∼ N(0,QNIR�

2

v
) . To build the NIR relationship matrix QNIR , 

principal component analysis (PCA) was performed over the 
141 centered and scaled NIR wavelengths for the complete 
population. The first eight principal components explained 
more than 99% of the variation and were utilized to compute 
QNIR =

MNIRM
′

NIR

t
 , where MNIR is a 2,250 (number of observa-

tions) × 8 (number of selected principal components) matrix, 
and �2

v
 the estimated NIR wavelength variance. The principal 

components were used since it improved convergence of the 
REML algorithm used for VCs estimation compared to when 
NIR wavelengths were used directly. For step 2 of GOBLUP-
NIR, the NIR wavelengths estimated effects were defined 
as v̂ (equivalent to û in GOBLUP-MI). The GOBLUP-NIR 
was used for all traits except PC, as PC is directly predicted 
from NIRS. Note that in both models, GOBLUP-MI and 
GOBLUP-NIR, independence and equal heritabilities of all 
omics features are assumed.

Variance and heritability estimation for GBLUP 
and GOBLUP for yield and malting quality traits

The VCs estimation was performed using the AI-REML 
module in the DMU software (Madsen and Jensen, 2013). 
For the GBLUP models, ĥ2 was computed using the same 
formulas as described for Models 1 and 2 in the section 
"Estimation of heritability of MIs and NIR wavelengths"; 
note that all these models have similar effects, but are used 
for different phenotypes (i.e., MIs, NIR wavelengths, GY, 
PC, or MQ traits).

The GOBLUP-MI allowed us to obtain different herita-
bilities than GBLUP. According to Christensen et al. (2021) 
the heritability in the GOBLUP can be defined as 
h2 = h2

d
+ c2

m
∗ h2

M
 ; where h2

d
 is the direct heritability 

obtained from step 1 of MGLUP. For GOBLUP-MI, h2
d
 is 

estimated as ĥ2
d
= d(�)�̂2

g1
∕�̂2

P1

 , with d(�) and �̂2

g1
 as previ-
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ously def ined,  and �̂2
P1

= d(�)�̂2
g1
+ d

(

QMI
)

�̂2
u + �̂2

l1
+ d(�)�̂2

ig1
+ �̂2

il1
+ (d(�) − mean(�)) ∗ �̂2

s1
+ �̂2

e1
 ; c2

m
 is the 

metabolomics variance ratio, and is estimated as 
ĉ2
m
= d

(
QMI

)
�̂2

u
∕�̂2

P1

 ; and h2
M

 is the heritability of MIs, and 
i s  e s t i m a t e d  a s  ĥ2

M
= d(�)�̂2

g2
∕�̂2

P2

 w i t h 
�̂2
P2

= d(�)�̂2
g2
+ �̂2

l2
+ d(�)�̂2

ig2

+ �̂2
ig2

+ (d(�) − mean(�)) ∗ �̂2
s2
+ �̂2

e2
. For GOBLUP-NIR, 

parameters were calculated using the same formulas as for 
GOBLUP-MI, but replacing QMI with QNIR for computing 
�̂2

P1

 and ĉ2
m

 (NIR wavelength variance ratio in GOBLUP-
NIR); the h2

M
 in GOBLUP-NIR represents the heritability of 

NIR wavelengths.

Cross‑validation and model validation

Predictions of GEBVs from GBLUP, GOBLUP-MI and 
GOBLUP-NIR were assessed using fivefold and leave-one-
breeding-cycle-out (LBCO) CVs schemes. The fivefold CV 
consisted of randomly masking the phenotypes of all repli-
cates of 20% of the lines and using the remaining lines to 
predict the additive genetic values. This process was 
repeated five times until all lines were assigned to one of the 
five folds and predicted. The fivefold CV is useful for predic-
tions with high genetic relationship between reference popu-
lation (RP) and validation population (VP) as relatives such 
as parents, siblings, and half-siblings can be shared between 
RP and VP. Thus, the fivefold allows us to investigate the 
performance of the genetic models in a scenario where a new 
variety is predicted via genotype but no phenotypic records 
is available. The LBCO CV was performed by masking the 
phenotypes of one breeding cycle in the VP and using the 
remaining phenotyped lines to predict the masked lines. This 
process was repeated twice to predict the breeding cycles 
evaluated in 2021 and 2022. The LBCO CV allowed us to 
evaluate the prediction problem where newly developed lines 
are predicted from parental and historical records. For GOB-
LUP-MI and GOBLUP-NIR both CVs were performed by 
masking both phenotypes and MIs (or NIR) information in 
the VP. The reason for masking MIs (or NIR) in VP is that 
environmental correlations may influence predictions if MIs 
(or NIR) wavelengths are not masked, and this would repre-
sent a similar scenario to the situation of a bivariate model 
with records for the secondary trait in VP (see Guo et al. 
2023 for details). The models' predictive ability (PA) was 
evaluated as the correlation between GEBVs and phenotypes 
corrected by fixed effects ( yc ). In addition, the regression 
coefficient of GEBVs obtained with whole phenotypic infor-
mation on GEBVs obtained with partial phenotypic informa-
tion was used as an estimate of variance inflation: 
bw,p =

cov(ĝw,ĝp)

var(ĝp)
 (Legarra and Reverter 2018). The standard 

errors for PA and bw,p were obtained using an ordinary non-
parametric bootstrapping with replacement, full sample size, 
and 10,000 replications. The PA between models for each 
trait was contrasted using a two-tailed paired  t-test 
(critical P-value = 0.01).

Ratios of accuracies

Different scenarios comparing ratios of population accura-
cies of predicted breeding values were assessed according 
to Lagarra and Reverter (2018). The ratios of accuracies are 
a measure of the increase in accuracy when including addi-
tional information to the models and can be estimated as the 
correlation between breeding values estimated with whole 
( ̂gw ) and partial information ( ̂gp ); the lower the correlation, 
the larger the increase in accuracy by adding new infor-
mation. Different ratios of accuracies were computed and 
named according to the different information in VP (Fig. 1). 
The ratios of accuracies computed were: i) GBLUPg/gp, rep-
resenting the correlation of GEBV with genomic informa-
tion in VP and GEBV with genomic and phenotypic infor-
mation in VP, ii) GOBLUPg/gm as the correlation of GEBV 
with genomic in VP and GEBV with genomic and omics 
information in VP, iii) GOBLUPgm/gmp as the correlation 
of GEBV with genomic and omics in VP and GEBV with 
genomic, omics, and phenotypic information in VP, and iv) 
GOBLUPg/gmp as the correlation of GEBV with genomic in 
VP and GEBV with genomic, omics, and phenotypic infor-
mation in VP.

Results

Estimates of heritability of metabolomic intensities 
and NIR wavelengths

The estimates of h2 for each MI and each NIR wavelength 
are shown in Figs. 2 and 3, respectively. For the other VCs, 
the relative proportions of VCs for each MIs and NIR wave-
lengths are shown in supplementary material 2. The distribu-
tion of ĥ2 of MIs is displayed in the histogram in Fig. 2a. A 
wide range of ĥ2 was observed, with 40.22% of values lower 
than 0.01 and a maximum value of 0.93. The average ĥ2 of 
MIs was 0.08, with a median of 0.03 and a third quartile of 
0.11. The ĥ2 for each of the 30,468 MIs ordered by chemical 
shift is shown in Fig. 2b. Across the different regions of the 
chemical shift interval, a trend of ĥ2 close to zero was seen 
for MIs at the beginning and end of the spectra, indicating 
that no biological signals were detected in these regions, 
6.77% of MIs had moderate ĥ2 from 0.2 to 0.5, and 2.91% 
of Mis had ĥ2 larger than 0.5. The significance test for ĥ2 of 
MIs based on determination of the null distribution of ĥ2 , 
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Fig. 1  Allocation of training and validation sets for ratios of popula-
tion accuracies analysis. TP: training population; VP: validation pop-
ulation; GBLUPg: GBLUP with genomic information in validation 
population; GBLUPgp: GBLUP with genomic and phenotypic infor-
mation in validation population; GOBLUPg: GOBLUP with genomic 
information in validation population; GOBLUPgm: GOBLUP with 

genomic and metabolomic (or NIR) information in validation popula-
tion; GOBLUPgmp: GOBLUP with genomic, metabolomic (or NIR) 
and phenotypic information in validation population; Pheno: pheno-
typic information, Geno: genomic information; MI: metabolomic 
intensities; NIR near-infrared

Fig. 2  Estimated heritabilities for metabolomic intensities of barley 
leaf tissue; (a) histogram of estimated narrow-sense heritability ( ̂h2 ); 
(b) estimated narrow-sense heritability for the 30,468 metabolomic 

intensities (MIs) ordered by chemical shift in ppm, the horizontal 
red-dashed line is the significance level at ĥ2 of 0.0123 (significant 
threshold at 0.01)
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resulted in a significance level at ĥ2 of 0.0123 estimated for 
a significance threshold of 0.01 (horizontal red-dashed line 
in Fig. 2b). A total of 17,677 out of 30,468 MIs (58.02%) 
significantly differed from zero in this statistical test.

The distribution of ĥ2 of NIR wavelengths is displayed in 
the histogram in Fig. 3a. This shows that 1.42% of ĥ2 were 
lower than 0.01 and a maximum value of 0.48 was observed. 
The average and median ĥ2 of NIR wavelengths were both 
0.16, with a third quartile of 0.20. The ĥ2 for each of the 141 
NIR wavelengths ordered by absorbance is shown in Fig. 3b. 
Across the different regions of the NIR spectra, 25.53% of 
wavelengths had moderate ĥ2 (> 0.2). In comparison with 
MIs, the NIR wavelengths had a lower proportion of very 
low or high ĥ2 , and most of them were in the intermediate 
range.

Variance components and heritabilities using 
GBLUP and GOBLUP models for yield and malting 
quality traits

The GBLUP, GOBLUP-MI and GOBLUP-NIR models were 
utilized to estimate VCs and population parameters for GY, 
PC (except for GOBLUP-NIR), and MQ traits.

The estimates of genetic ( ̂�2

g
 ) and phenotypic ( ̂�2

P
 ) vari-

ances are shown in Table 2. The other VCs and the standard 
deviations of estimates are shown in supplementary mate-
rial 3. The VCs were successfully estimated with GBLUP 
and GOBLUP-MI for all traits. The GOBLUP-NIR was 
successfully utilized to estimate VCs for GY, WV, BG, and 
EY, but it was not possible for FS and WC due to the esti-
mated NIR variance ( ̂�2

v
 ) converging towards zero. The �̂2

g
 

for GBLUP was higher than the direct genomic variance 
of GOBLUP-MI ( ̂�2

g
 in step 1) for GY and PC. This trend 

was not observed for MQ traits, where in general the �̂2

g
 for 

GBLUP and the direct genomic variance of GOBLUP-MI 
were similar. The direct genomic variance of GOBLUP-NIR 

Fig. 3  Estimated heritabilities for NIR wavelengths of barley on whole grain after malting for Savitzky-Golay transformation; (a) histogram of 
estimated narrow-sense heritability ( ̂h2 ); (b) estimated narrow-sense heritability for the 141 NIR wavelengths ordered by absorbance
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was slightly higher than that for GBLUP and GOBLUP-MI 
for GY, and it was slightly lower for the MQ traits. For each 
trait, the �̂2

P
 differed between models, with the largest differ-

ences observed for BG and EY, where �̂2

P
 for GOBLUP-NIR 

was considerably larger than for the other models. The �̂2

P
 

for BG and EY in the GOBLUP-NIR were higher than the 
raw phenotypic variance of the trait (Table 1). The �̂2

P
 for 

GBLUP and GOBLUP-MI were in general in a similar range 
for GY, PC, WV, and WC, but it was higher for the GBLUP 
for BG and FS, and higher for the GOBLUP-MI for EY.

The estimates of genetic parameters and heritabilities 
for GBLUP, GOBLUP-MI, and GOBLUP-NIR models are 
shown in Table 3. The heritabilities varied depending on 
the model used; the highest values were obtained for WC 
(0.38–0.38), followed by WV (0.21–0.22), BG (0.18–0.33), 
EY (0.11–0.26), GY (0.11–0.13), PC (0.08), and the low-
est was obtained for FS (0.02). Note that the ĥ2 estimated 
from GOBLUP models is the sum of a direct heritability 

( ̂h2
d
 ) and an omics-mediated heritability equal to the prod-

uct of ĉ2
m
 and ĥ2

M
 (decomposed in Table 3). The proportion 

of ĉ2
m
 for GOBLUP-MI was higher for GY (20.5%) and PC 

(25.5%) than for MQ traits (< 4%). The proportion of ĉ2
m
  for 

GOBLUP-NIR was in a similar range to GOBLUP-MI for 
GY (22.3%), but it was considerably higher for WV (81.2%), 
BG (63.2%), and EY (85.3%). The ĥ2

M
 for GOBLUP-MI was 

higher for WV (0.16) followed by FS (0.14), BG (0.14), GY 
(0.14), EY (0.11), and WC (0.04). The ĥ2

M
 for GOBLUP-NIR 

was higher for BG (0.44), EY (0.28), WV (0.22), and GY 
(0.03). Comparing the two GOBLUP models, the GOBLUP-
MI presented higher ĥ2 for GY and WV, but the GOBLUP-
NIR presented higher ĥ2 for BG and EY, and both models 
presented from similar to higher ĥ2 than GBLUP for the 
different traits.

Table 2  Genetic and phenotypic variance estimates from GBLUP and GOBLUPs models

GY: grain yield; PC: protein content; WV: wort viscosity; BG: β-glucan; EY: extract yield; FS: filtering speed; WC: wort color; EBC: European 
Brewery Convention units; d(�)�̂

2

g
 : estimated additive variance; �̂2

P
 : estimated phenotypic variance. Incomplete variances are presented for FS 

and WC in GOBLUP-due to NIR variance converged towards zero in step 1. Standard errors of estimates are presented in supplementary mate-
rial 3

Trait GBLUP GOBLUP-MI GOBLUP-NIR

step 1 step 2 step 1 step 2

d(G)�̂2

g
�̂2

P
d(G)�̂2

g
�̂2

P
d(G)�̂2

g
�̂2

P
d(G)�̂2

g
�̂2

P
d(G)�̂2

g
�̂2

P

GY 0.015 0.134 0.014 0.122 0.002 0.014 0.017 0.143 0.0006 0.017
PC 0.016 0.198 0.012 0.193 0.002 0.022 - - - -
WV 3.94 E-04 0.002 3.94 E-04 1.80 E-03 3.05 E-07 1.92 E-06 2.26 E-04 7.44 E-03 3.87 E-04 1.77 E-03
BG 1817 11,831 1818 10,136 0.03 0.24 1162 23,062 579 1312
EY 0.095 0.685 0.099 0.873 0.001 0.010 0.094 5.161 0.027 0.099
FS 0.018 1.073 0.018 0.805 1.33 E-06 9.72 E-06 0.017 0.803 - -
WC 0.092 0.244 0.091 0.239 9.07 E-06 0.0002 - - - -

Table 3  Genetic parameters 
and heritability estimates from 
GBLUP and GOBLUPs models

GY: grain yield; PC: protein content; WV: wort viscosity; BG: β-glucan; EY: extract yield; FS: filter-
ing speed; WC: wort color; h2

d
 : direct heritability; c2

m
 : metabolomics (GOBLUP-MI) or NIR wavelengths 

(GOBLUP-NIR) variance ratio; h2
M

 : heritability of MIs (GOBLUP-MI) or NIR wavelengths (GOBLUP-
NIR). Bold numbers are narrow-sense heritability ( h2 ) for each trais and model

Trait GBLUP GOBLUP-MI GOBLUP-NIR

ĥ2 ĥ2
d

ĉ2
m ĥ2

M
ĥ2 ĥ2

d
ĉ2
m ĥ2

M
ĥ2

GY 0.11 0.11 0.21 0.14 0.14 0.12 0.22 0.03 0.13
PC 0.08 0.06 0.26 0.09 0.08 - - - -
WV 0.22 0.22 0.01 0.16 0.22 0.03 0.81 0.22 0.21
BG 0.18 0.18  < 0.01 0.14 0.18 0.05 0.63 0.44 0.33
EY 0.11 0.11 0.04 0.11 0.12 0.02 0.85 0.28 0.26
FS 0.02 0.02  < 0.01 0.14 0.02 0.02  < 0.01 - -
WC 0.38 0.38 0.01 0.04 0.38 - - - -
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Prediction of breeding values

The PA and bw,p for GBLUP, GOBLUP-MI and GOBLUP-
NIR models were investigated using fivefold (Table 4) and 
LBCO (Table 5) CV schemes.

In fivefold CV (Table 4), the highest PA was observed 
for WC (0.70), followed by WV (0.37 to 0.48), GY (0.39 
to 0.42), PC (0.37), BG (0.27 to 0.32), EY (0.27 to 0.32), 
and the lowest for FS (0.23). As a general trend, the PA 
between GBLUP and GOBLUP-MI was similar, and it 
was significantly higher for several traits than the PA for 
GOBLUP-NIR. For PC, the highest PA was obtained for 
GOBLUP-MI and it was 1.4% higher than for GBLUP (not 
significant at a critical P-value of 0.01). For WV, the highest 
PA was obtained for GBLUP and GOBLUP-MI, which was 
significantly higher (~ 30%) than for GOBLUP-NIR. A simi-
lar trend as in WV was observed for BG and EY, with sig-
nificantly higher PA for GBLUP and GOBLUP-MI (~ 17%) 
compared to GOBLUP-NIR. However, for GY the highest 
PA was obtained using the GOBLUP-NIR model, followed 
by the GBLUP and GOBLUP-MI models. Here, the increase 
in PA provided by GOBLUP-NIR was low, representing a 
2.4% increase compared to GBLUP and 8.3% compared to 

GOBLUP-MI; the differences for GY were not significant in 
the t-test (critical P-value of 0.01). No relevant differences 
in PA were observed between models for BG, FS, and WC. 
In the fivefold CV, the bw,p did not signal any significant 
under- or -over dispersion since values were around 1 for all 
models (Table 4).

In LBCO CV (Table 5), PAs were lower than in the 
fivefold CV. The highest PA was observed for WC (0.60), 
followed by WV (0.33 to 0.43), BG (0.25 to 0.29), EY 
(0.26 to 0.27), PC (0.22), GY (0.10 to 0.13), and FS (0.10). 
Similarly to fivefold CV, in LBCO there was a general 
trend of similar PA between GBLUP and GOBLUP-
MI, and both models significantly outperformed the PA 
of GOBLUP-NIR for several traits. For GY, the highest 
PA was obtained using the GBLUP and GOBLUP-NIR 
models, which was ~ 39% higher than for GOBLUP-MI; 
these differences were significant (P-value < 0.01) between 
GBLUP and GOBLUP-MI but not between GOBLUP-NIR 
and GOBLUP-MI. For PC, the highest PA was obtained 
for GOBLUP-MI and represented a no significant increase 
of 4.6% compared to GBLUP. For WV, the highest PA 
was obtained using the GBLUP and GOBLUP-MI mod-
els and it was ~ 33% higher than for GOBLUP-NIR; these 

Table 4  Predictive ability (PA) 
and slope of regression of 
estimated genetic values with 
whole information on genetic 
values with partial information 
( b

w,p ) for models in fivefold 
cross-validation

GY: grain yield; PC: protein content; WV: wort viscosity; BG: β-glucan; EY: extract yield; FS: filtering 
speed; WC: wort color. †Differences in the letter in parentheses represent significant differences between 
models for each trait (P-value < 0.01). SE: bootstrap-based standard errors of estimates

Trait GBLUP GOBLUP-MI GOBLUP-NIR

PA | SE bw,p PA | SE bw,p PA | SE bw,p

GY 0.41 (a)†| 0.04 1.00 (0.02) 0.39 (a) | 0.04 1.01 (0.02) 0.42 (a) | 0.04 1.01 (0.02)
PC 0.37 (a) | 0.03 1.00 (0.02) 0.37 (a) | 0.03 1.01 (0.02) - -
WV 0.48 (ab) | 0.03 1.00 (0.03) 0.48 (a) | 0.03 1.00 (0.03) 0.37 (b) |0.03 1.10 (0.03)
BG 0.32 (b) | 0.04 1.00 (0.03) 0.32 (a) | 0.04 1.00 (0.03) 0.27 (c) | 0.04 1.07 (0.04)
EY 0.32 (a) | 0.04 1.00 (0.02) 0.32 (a) | 0.04 0.99 (0.02) 0.27 (b) | 0.04 1.00 (0.02)
FS 0.23 (a) | 0.04 1.03 (0.01) 0.23 (a) | 0.04 1.03 (0.01) - -
WC 0.70 (a) | 0.02 1.00 (0.01) 0.70 (a) | 0.02 1.00 (0.01) - -

Table 5  Predictive ability (PA) 
and slope of regression of 
estimated genetic values with 
whole information on genetic 
values with partial information 
( b

w,p ) for models in fivefold 
cross-validation

GY: grain yield; PC: protein content; WV: wort viscosity; BG: β-glucan; EY: extract yield; FS: filtering 
speed; WC: wort color. †Differences in the letter in parentheses represent significant differences between 
models for each trait (P-value < 0.01). SE: bootstrap-based standard errors of estimates

Trait GBLUP GOBLUP-MI GOBLUP-NIR

PA | SE bw,p PA | SE bw,p PA | SE bw,p

GY 0.13 (a)† | 0.04 0.75 (0.04) 0.10 (b) | 0.04 0.68 (0.04) 0.13 (ab) | 0.04 0.68 (0.04)
PC 0.22 (a) | 0.04 0.97 (0.04) 0.23 (a) | 0.04 0.97 (0.04) - -
WV 0.43 (ab) | 0.05 0.99 (0.03) 0.43 (a) | 0.04 0.99 (0.03) 0.33 (b) | 0.05 1.07 (0.06)
BG 0.29 (a) | 0.06 0.92 (0.03) 0.29 (a) | 0.06 0.92 (0.03) 0.25 (a) | 0.06 0.96 (0.04)
EY 0.27 (a) | 0.04 1.02 (0.03) 0.26 (a) | 0.04 1.00 (0.03) 0.26 (a) | 0.04 0.88 (0.03)
FS 0.10 (a) | 0.04 0.90 (0.03) 0.10 (a) | 0.04 0.86 (0.03) - -
WC 0.60 (a) | 0.03 0.96 (0.02) 0.60 (a) | 0.03 0.94 (0.02) - -
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differences were significant (P-value < 0.01) between 
GOBLUP-MI and GOBLUP-NIR but not between GBLUP 
and GOBLUP-NIR. A similar trend as in WV was observed 
for BG, with the highest PA for GBLUP and GOBLUP-MI 
and an increase of 14.6% compared to GOBLUP-NIR, but 
differences were not significant between models. No rel-
evant differences in PA were observed between models for 
BG, FS, and WC. The estimate for bw,p in LBCO differed 
depending on the trait and model. No significant under- or 
-over dispersion was observed for most traits; but some 
over-dispersion was observed for GY.

The ratios of population accuracies of predicted breed-
ing values obtained with the LR method for fivefold and 
LBCO CV are presented in Tables 6 and 7, respectively. 
Ratios of accuracies close to one reveal that no relevant 
improvement by including new information for prediction 
is obtained. We observed that the ratios for fivefold CV (0.85 
to 1.0) were higher than for the LBCO CV (0.61 to 1.0) 
for all traits. In fivefold CV, a moderate improvement was 
observed for including phenotypic information in VP for all 
models and traits (ratios from 0.87 to 0.95 in GBLUPgm/

gmp and  GOBLUPsgm/gmp). A similar trend but with a 
larger effect of including phenotypes in VP was observed in 
LBCO CV (ratios from 0.62 to 0.86 in GBLUPgm/gmp and 
 GOBLUPsgm/gmp). The impact of including omics in VP 
can be observed by looking at the GOBLUPg/gm ratio. From 
GOBLUPg/gm, it can be observed that there was no relevant 
effect of including MI in any of the two CVs for GOBLUP-
MI (GOBLUP-MIg/gm ratio ~ 1 for all traits). Similar results 
were observed for the GOBLUP-NIRg/gm ratio for GY in 
both CVs. The GOBLUP-NIRg/gm ratio for WV, BG and 
EY were about 0.95 for GOBLUP-NIR in fivefold and 0.90 
for LBCO. In principle, it may suggest an improvement by 
using NIR wavelengths in GOBLUP-NIR, but considering 
the lower PA of GOBLUP-NIR for these traits, this improve-
ment does not seem to represent an extra benefit of using 
NIR wavelengths in the predictive performance compared 
to the baseline GBLUP or GOBLUP-MI models.

Table 6  Ratio of population 
accuracies of predicted 
breeding values for GBLUP, 
GOBLUP-MI, and GOBLUP-
NIR for fivefold cross-validation

GY: grain yield; PC: protein content; WV: wort viscosity; BG: β-glucan; EY: extract yield; FS: filter-
ing speed; WC: wort color.  GOBLUPsg/gm: ratio of accuracies for validation populations with genomic 
vs. genomic + phenotypes;  GOBLUPsgm/gmp: ratio of accuracies for validation populations with 
genomic + omics vs. genomic + omics + phenotypes;  GOBLUPsg/gmp: ratio of accuracies for validation 
populations with genomic vs. genomic + omics + phenotypes

Trait GBLUPg/gp GOBLUP-MI GOBLUP-NIR

g/gm gm/gmp g/gmp g/gm gm/gmp g/gmp

GY 0,90 0,99 0,91 0,90 1,00 0,90 0,90
PC 0,92 0,99 0,92 0,92 - - -
WV 0,88 1,00 0,88 0,88 0,94 0,94 0,87
BG 0,87 1,00 0,87 0,87 0,94 0,92 0,85
EY 0,90 1,00 0,90 0,90 0,96 0,91 0,88
FS 0,95 1,00 0,95 0,95 - - -
WC 0,95 1,00 0,95 0,95 - - -

Table 7  Ratio of population 
accuracies of predicted 
breeding values for GBLUP, 
GOBLUP-MI, and GOBLUP-
NIR for leave-one-breeding-
cycle-out (LBCO) cross-
validation

GY: grain yield; PC: protein content; WV: wort viscosity; BG: β-glucan; EY: extract yield; FS: filter-
ing speed; WC: wort color.  GOBLUPsg/gm: ratio of accuracies for validation populations with genomic 
vs. genomic + phenotypes;  GOBLUPsgm/gmp: ratio of accuracies for validation populations with 
genomic + omics vs. genomic + omics + phenotypes;  GOBLUPsg/gmp: ratio of accuracies for validation 
populations with genomic vs. genomic + omics + phenotypes

Trait GBLUPg/gp GOBLUP-MI GOBLUP-NIR

g/gm gm/gmp g/gmp g/gm gm/gmp g/gmp

GY 0,64 0,97 0,62 0,66 0,97 0,61 0,58
PC 0,74 0,92 0,75 0,69 - - -
VISC 0,81 1,00 0,81 0,81 0,89 0,80 0,90
BETA 0,79 1,00 0,79 0,79 0,91 0,77 0,87
EXTR 0,81 1,00 0,81 0,80 0,90 0,80 0,73
FILT 0,68 1,00 0,68 0,68 - - -
WC 0,86 1,00 0,86 0,86 - - -
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Discussion

The present study used a commercial spring barley breed-
ing population phenotyped for yield, grain protein content, 
and malting quality traits to investigate the following three 
research questions. First, we investigated the genetic varia-
tion and heritabilities for MIs and NIR wavelengths, and we 
found a significant proportion of MIs and NIR wavelengths 
presenting medium to high additive genetic variance and ĥ2 . 
Second, we assessed the performance of genetic models, 
including genomic and metabolomic intensities (GOBLUP-
MI), or genomic and NIR wavelengths (GOBLUP-NIR), to 
estimate VCs and heritabilities for all the available traits. 
We found that GOBLUP-MI and GOBLUP-NIR increase 
the proportion of genetic variance explained by the model 
for grain yield, grain protein content, malt extract yield, and 
β-glucan content. Third, we evaluated the performance of 
the developed models to predict breeding values, and we 
generally observed a similar accuracy between GBLUP and 
GOBLUP-MI, and a worse accuracy for GOBLUP-NIR. 
Despite this general trend, GOBLUP-MI and GOBLUP-NIR 
enhanced predictive ability by 4.6 and 2.4% for grain pro-
tein in leave-one-breeding-cycle-out and grain yield in five-
fold cross-validations, respectively, compared to a baseline 
GBLUP model; although these differences between models 
were not statistically significant in a t-test (critical P-value 
of 0.01).

Heritability of metabolomic intensities and NIR 
wavelengths

The h2 was investigated using univariate analysis for each 
of the 30,468 MIs and 141 NIR wavelengths. We observed 
that ĥ2 of MIs varied from values < 0.01 to 0.93, and we 
identified that the heritability of 17,677 MIs (58.02%) were 
statistically significantly different from zero (Fig. 2). Guo 
et al. (2020), analyzed a similar barley dataset from the same 
breeding company, but with MIs obtained from wort (instead 
of leaf tissue as in our study). In comparison to our study, 
both studies had a distribution with a high proportion of low 
ĥ2 values < 0.1, but in our case, we found a higher propor-
tion of moderate ĥ2 with values from 0.2 to 0.5 and high ĥ2 
with ĥ2 > 0.5. In Guo et al. (2020), they found that 35.82% 
out of 24,018 MIs were significantly different from zero. 
Despite both studies having defined the significant thresh-
old at 0.01, and having a relevant proportion of significant 
MIs, the percentage reported by Guo et al. (2020) was lower 
than in our case. The different statistical power to detect sig-
nificant ĥ2 may influence the results, as in our study greater 
statistical power is expected due to a larger sample size. 
Also, Guo et al. (2020) included three years of information 
in the analysis instead of two, which could lead to higher 

environmental variance and decrease estimates of ĥ2 . The 
differences between studies might also be explained by hav-
ing used a different tissue to obtain MIs. Heritability of MIs 
has also been investigated for other species using different 
tissues such as fruits and leaves of coffee (Gamboa-Becerra 
et al. 2019), milk and blood in Holstein cattle (Wittenburg 
et al., 2013; Aliakbari et al. 2019) and plasma and serum 
in humans (Frahnow et al. 2017; Hagenbeek et al. 2020), 
and variable ĥ2 for MIs (ranging from 0 to > 0.5 for the dif-
ferent tissues) have been found for the different tissues and 
species. According to our significance threshold estimated 
at 0.0123, the 41.8% of ĥ2 of MIs were not significantly dif-
ferent from zero. The large proportion of non-significant ĥ2 
are somehow expected since we used all the available NMR 
spectra, where some regions may include MI with low or 
no biological signals (similarly observed by Aliakbari et al. 
2019, and Guo et al. 2020). Despite that, using the wide 
range of MIs may ensure that all potential biological signals 
can be detected.

The ĥ2 of NIR wavelengths in our study ranged 
from < 0.01 to 0.48 (Fig. 3). Rincent et al. (2018) investi-
gated the broad-sense heritability of NIR for leaf and grain 
tissue of wheat and wood tissue in poplar. These authors 
reported that the broad-sense heritability was highly variable 
along the spectrum, with peaks above 60% for both tissues. 
Similar values of broad-sense heritability of NIR wave-
lengths from grain tissue in in wheat were found in Robert 
et al. (2022). The articles of Rincent et al. (2018) and Robert 
et al. (2022) estimated broad-sense heritability instead of 
narrow-sense heritability. Our models also allow us to esti-
mate broad-sense heritability by using the total estimated 
genetic variance (i.e. d(�)�̂2

gj
+ �̂2

lj
 ), and the highest peaks 

of broad-sense heritability were between 40 and 60%. A pos-
sible explanation for the higher values obtained in Rincent 
et al. (2018) and Robert et al. (2022) may be related to dif-
ferent species involved in the studies. Our result presented 
on ĥ2 are novel, as this is the first report on ĥ2 of MIs for leaf 
tissue in barley and NIR wavelengths in whole grain after 
malting.

Population parameters estimated with genomic 
and multi‑omics models for yield and malting 
quality traits

Population parameters for GY, PC and MQ traits were esti-
mated with GBLUP and GOBLUP-MI models, and for GY 
and MQ traits with GOBLUP-NIR. The estimated pheno-
typic variance ( ̂�2

P
 ) was larger for GOBLUP models than for 

GBLUP. This occurs because the MIs (GOBLUP-MI) and 
NIR wavelengths (GOBLUP-NIR) capture environmental 
variance from year-location-trial, that in GBLUP models 
would be captured by the fixed effects. For GOBLUP-NIR, 
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we observed that the �̂2

P
 for WV, BG, and EY was higher 

than the variances of the traits. This issue was also observed, 
and even more extreme, in Guo et al. (2023) for MQ traits 
using a GOBLUP model with MIs from wort; possible rea-
sons were thoroughly discussed by these authors and were 
related to possible wrong model assumptions. According 
to Christensen et al. (2021) and Guo et al. (2023), possible 
model deficiencies could be related to: i) wrongly assuming 
independence and constant heritabilities of omics effects; 
note that this assumption is needed when using the joint 
model for prediction of breeding values, but we observed 
different ĥ2 for MIs and NIR across the spectra; and ii) 
assumption of additivity of omics features, which implies 
that the similarity matrices QMI and QNIR are matrix cross 
products of MI and selected principal components of NIR, 
respectively.

Comparing the GBLUP and GOBLUP-MI, a lower direct 
genomic variance was observed for GOBLUP-MI for GY 
and PC. The lower direct genomic variance can be explained 
due to part of the genetic variance being captured by MIs ( u 
effect in step 1). A similar and even more extreme trend has 
been recently observed by Guo et al. (2023) for GOBLUP 
for MQ traits in barley (Guo et al. 2023). The partition of 
VCs in GOBLUP-MI revealed that a large proportion of the 
total variance was captured by MIs for GY and PC (meas-
ured by ĉ2

m
 > 0.20). This trend was not observed for MQ 

traits, where ĉ2
m

 was lower than 0.05 for all traits. Previous 
reports using GOBLUP with MIs have found higher values 
of ĉ2

m
 for MQ traits (Guo et al. 2020, 2023). However, an 

important difference between these studies and ours is that 
they have used MIs from wort; and therefore, MIs are more 
directly related to MQ traits. For GY and PC, we see that a 
substantial metabolome-mediated heritability was obtained 
with GOBLUP-MI, resulting in higher ĥ2 than for GBLUP. 
The differences in ĥ2 between GBLUP and GOBLUP-MI 
were smaller for MQ traits. Considering the metabolomic 
mediated heritability ( h2

M
 ) estimated for the different traits, 

a greater potential to include MIs for prediction can be 
expected for GY and PC than for MQ traits. Additional VC 
analyses were performed with GOBLUP-MI that tested the 
performance of using only significant MIs or removing the 
first 4000 and last 1000 low-signal MIs, but no relevant dif-
ferences were observed in VCs compared to using all MIs.

For GOBLUP-NIR, a large proportion of total variance 
was captured by NIR wavelengths for GY, WV, BG, and 
EY, where ĉ2

m
 was higher than in GOBLUP-MI for the four 

traits. The ĉ2
m

 in GOBLUP-NIR was especially large for 
WV ( ̂c2

m
 = 0.81), BG ( ̂c2

m
 = 0.63), and EY ( ̂c2

m
 = 0.85). The 

large ĉ2
m

 for these traits could be related to a high correlation 
between NIR wavelengths and grain composition, which is 
well-established in the literature, and NIR wavelengths are 
commonly used to predict grain composition and quality in 

cereals (Dowell et al. 2006; Osborne 2006). In our study, 
NIR wavelengths have been optimized to predict grain pro-
tein content, but still, they may be potentially highly corre-
lated to other quality traits than protein content. Similarly to 
GOBLUP-MI, the direct genomic variance in GOBLUP-NIR 
was reduced for WV, BG, ET, and FS, but unexpectedly, 
an opposite trend was observed for GY. A hypothesis for 
this opposite trend is that the NIR wavelengths may help 
to improve the partition of environmental, genetic, and 
genotype-by-environment interaction effects, resulting in 
more genetic variance captured by the genomic effect for 
GY. This could also be true for WV, BG, ET, and FS, but 
it may be more relevant for traits with higher genotype-by-
environment interaction as GY (see VCs in supplementary 
material 3). Conversely, this could also be related to an 
upward-biased estimate of direct genomic variance due to 
wrong model assumptions as described above.

Comparing the ĥ2 obtained with GOBLUP-NIR and the 
other models, it was intermediate for GY, highest for BG 
and EY, and lowest for WV. The GOBLUP-NIR failed to 
reach convergence of the REML algorithm for FS and WC 
due to the NIR variance converging towards zero. Several 
alternatives to get estimates for those traits were utilized, 
such as trying different starting values for the REML algo-
rithm, using raw or normalized NIR wavelengths instead of 
the Savitzky-Golay transformation, and using NIR wave-
lengths of raw grain instead of whole grain after malting, 
but none of these attempts helped to get VCs for these traits. 
This could mean that the NIR variance for these traits is not 
significant and the NIR effect could be excluded from the 
model, which result in a GBLUP model. Note that principal 
components were used for NIR wavelengths in GOBLUP-
NIR; this strategy is different from the study by Rincent 
et al. (2018), where they directly used all NIR wavelengths. 
We believe that no relevant differences in the results should 
be expected by using all NIR wavelengths or principal com-
ponents as they explained more than 99% of the variation in 
NIR wavelengths. However, using the principal components 
was convenient to facilitate convergence in our study.

Genomic and multi‑omics prediction

The predictive ability (PA), ratio of accuracies according 
to Legarra and Reverter (2018), and variance dispersion of 
GEBV ( bw,p ) were evaluated in fivefold and LBCO CVs for 
GOBLUPs and GBLUP models. The fivefold CV allows us 
to investigate predictions of models in a favorable scenario 
as close relatives such as parents, siblings, and half-siblings 
can be shared between RP and VP, increasing genetic con-
nections between RP and VP. The LBCO CV better reflects 
the practical conditions in a breeding program, where new 
lines must be predicted from historical information before 
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the phenotypes are obtained. Thus, the genetic relationships 
between RP and VP in LBCO are much lower compared to 
fivefold, and lower PAs are expected (Shao 1993; Kohavi, 
1995). On the other hand, different hypotheses can be tested 
depending on the CV used. In fivefold CV, the accuracy of 
new lines included in a breeding cycle that were genotyped 
but not phenotyped can be tested; this investigation is par-
ticularly relevant when genotyping is less expensive than 
phenotyping. The LBCO, alternatively, allows us to test the 
accuracy of predicting future performance given that lines 
are genotyped after single seed descent in  F4.

GBLUP and GOBLUP-MI generally exhibit a similar 
PA for both CVs, performing better than GOBLUP-NIR for 
most traits. Despite that, there were some specific cases in 
each CV where the PA of GOBLUP-MI and GOBLUP-NIR 
was higher than the PA of GBLUP. In fivefold CV, the GOB-
LUP-NIR revealed an increase of 2.4% for GY, and in LBCO 
CV the GOBLUP-MI revealed an increase of 4.6% for PC, 
although these differences were not statistically significant 
(critical P-value of 0.01). There were also some cases in 
which the GBLUP outperformed the PA of GOBLUP-MI 
(GY in both CVs and EY in LBCO CV) and GOBLUP-NIR 
(WV, BG, and EY in both CVs), but differences were only 
statistically significant between GBLUP and GOBLUP-NIR 
in fivefold CV for BG and EY. This trend of lack of improve-
ment in PA with GBLUP-MI is consistent with results by 
Guo et al. (2023). The reasons for the lower PA using the 
GOBLUPs models could be related to deficiencies in model 
assumptions, as discussed in the previous section.

The ratios of population accuracies were analyzed for 
fivefold and LBCO CVs. We observed a moderate to high 
improvement in including phenotypic information in VP in 
fivefold and LBCO CVs, respectively. This is expected as a 
higher response for including new information is generally 
obtained in more restrictive scenarios. No relevant improve-
ment of including MIs or NIR wavelengths was observed in 
any of the CVs and models; these results were consistent 
with the observed in the analysis of PA. In contrast, a sub-
stantial improvement for including MIs was observed using 
the ratios of accuracies by Guo et al. (2023). Importantly, 
Guo et al. (2023) used MIs from wort instead of leaf tissue 
to assess MQ traits, which could be the main explanation 
for the differences observed. Comparing our study and Guo 
et al. (2023), we observed that the sampling stage and tissue 
was relevant for MQ traits, with the highest benefit observed 
for MI sampled in wort. Nevertheless, sampling MI in the 
wort may not represent an optimal strategy, as this requires 
all the malting steps incurring extra cost. Further studies 
exploring alternative sampling stages and tissues to define 
what is the best sampling strategy either to obtain MI or NIR 
wavelengths for the different traits are warranted. No vari-
ance inflation ( bw,p ) was found for any of the traits in fivefold 
CV; however, moderate over-dispersion was found for GY 

in LBCO CV. A possible explanation for this may be related 
to the fact that in LBCO CV each breeding cycle is assessed 
in a different year. This could result in an unbalanced sce-
nario to predict traits with large genotype-by-environment 
interactions as lines assessed in one year are used to predict 
outcomes for a different breeding cycle tested in a different 
year, which could lead to issues of variance inflation (Raffo 
and Jensen 2023). Additional analyses were performed with 
GOBLUP-MI by testing the predictive performance of using 
only significant MIs or removing the first 4000 and last 1000 
low-signal MIs, but a similar or a lower performance were 
observed compared to using all MIs. Further studies are war-
ranted to explore alternative sampling strategies for identify-
ing the optimal stage and tissue and to investigate the impact 
of violating assumptions in GOBLUP models.

Conclusions

In this study, we used a commercial barley breeding popu-
lation to investigate the viability of including metabolomic 
intensities sampled from early flag leaves, and near-infrared 
wavelengths, sampled from whole grain after malting, for 
genomic evaluations of yield and malting quality traits. First, 
we concluded that a significant proportion of metabolomic 
intensities and near-infrared wavelengths had medium to 
high additive genetic variance and heritabilities ( ̂h2 ) and 
can, therefore, be potentially useful for genetic evaluations. 
Second, we concluded that multi-omics models including 
genomic and metabolomics (GOBLUP-MI), or genomic and 
NIR wavelengths (GOBLUP-NIR), increased the proportion 
of genetic variance explained by the models for grain yield, 
grain protein content, malt extract yield, and β-glucan con-
tent, compared to a purely genomic model (GBLUP). Third, 
we assessed genomic and multi-omics models for predic-
tion of breeding values, and we concluded that GBLUP and 
GOBLUP-MI had a similar prediction accuracy, and per-
formed better than GOBLUP-NIR for most traits. Despite 
that, the GOBLUP-MI and GOBLUP-NIR models slightly 
improved accuracy of predicting breeding values compared 
to the GBLUP for some specific traits, but differences were 
not statistically significant in a t-test. The different perfor-
mance of GOBLUPs models across traits might be related 
to different aspects specific to each trait (e.g. genetic archi-
tecture, influence of genotype-by-environment interactions), 
and the sampling strategy to obtain metabolomic intensities 
or near-infrared wavelengths. For malting quality traits, sam-
pling leaf tissue revealed worse performance for GOBLUP-
MI compared to previous research that had sampled wort. 
The lack of advantage confered in our case is likely attrib-
uted to the sampling strategy and not to the method utilized.
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