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This retrospective cohort study evaluates the impact of an AI-supported continuous glucose
monitoring (CGM) mobile app (“January V2”) on glycemic control and weight management in 944
users, including healthy individuals and those with prediabetes or type 2 diabetes (T2D). The app,
leveragingAI topersonalize feedback, trackedusers’ food intake, activity, andglucose responsesover
14 days. Significant improvements in time in range (TIR) were observed, particularly in userswith lower
baseline TIR. Healthy users’ TIR increased from 74.7% to 85.5% (p < 0.0001), while T2D users’ TIR
improved from 49.7% to 57.4% (p < 0.0004). Higher app engagement correlated with greater TIR
improvements. Users also experienced an average weight reduction of 3.3 lbs over 33 days. These
findings suggest that AI-enhanced digital health interventions can improve glycemic control and
promote weight loss, particularly when users are actively engaged.

The rapid evolution of digital health tools has transformed the landscape of
chronic disease management, offering new avenues for personalized treat-
ment, real-time notifications and interventions at the individual level1. Type
2 diabetes (T2D) is a condition that requires constant monitoring and
management due to the mechanism of the disease and its implications on
the body’s energy expenditure2. T2D has seen significant enhancement in
monitoring, especially with the integration of continuous glucose mon-
itoring (CGM) systems3. CGM provides users with immediate feedback on
their glycemic control, enabling timely adjustments to diet, exercise, and
medication, if patients are medicated4.

While CGM has been predominantly used by insulin-treated
individuals4,5, recent developments have made CGM more available to
individuals with diet-controlled diabetes or no diabetes, thereby placing
CGM center-stage in efforts to prevent diabetes through lifestyle mod-
ifications such as healthier food choices and increased physical activity6,7.
However, continuous use of CGMs in non-insulin users can sometimes be
burdensomeboth physically andfinancially due to the invasiveness and cost
of the devices, and may not provide immediate perceived benefits7.

Indeed, the global prevalence of T2D and its precursor, prediabetes, is
rising, with 1.3 billion people expected to live with T2D by 20508. Given this
increase in prevalence, effective management and prevention strategies are
critical. Traditional methods such as the widely used Diabetes Prevention
Program (DPP) often rely on periodic clinical visits, one-on-one coaching,
and self-reported data9. The DPP has historically seen successful outcomes.
Launched by the Centers for Disease Control (CDC) in 2010, the National
Diabetes Prevention Program is clinically proven to reduce the risk of
developing T2D by 58%, and, among those 60 years or older, by 71%10.

Despite this success, DPP is hampered by a high user burden and lack
of engagement. Even though approximately 135 million people in the
United States have T2D or prediabetes11, fewer than 500 thousand Amer-
icanshave gone through theDPP since its inception12.Additionally, thehigh
cost of such programs that require coaching limits their reach13,14, which is
especially worrisome as metabolic disease is inversely correlated with
income15.

Digital health interventions offer a promising alternative by leveraging
technology to provide continuous monitoring, personalized feedback, and
behaviormodification in a scalable fashion. AI approaches in particular can
alleviateCGMburdenby enabling infrequentCGMusewhile still providing
insights into blood sugarmanagement. By harnessing predictive algorithms
and data modeling, AI can estimate glucose levels based on historical data
and behavioral patterns, reducing the need for constant monitoring. Fur-
thermore, flexible programs that allow users to engage at their own pace,
without feeling constrained by rigid schedules or frequent device use, are
likely to see better adherence.

This studybuildsuponourprevious research16,wherewe showed that a
structured digital health program integrating CGMand behavioral tracking
improved glycemic control and promoted weight loss. Here, we introduce a
flexible, AI-supported intervention (“January V2”) designed to reduce the
user burden of CGMwhile promoting bettermetabolic health outcomes. By
focusing on infrequent CGM use and personalized, adaptive feedback, we
sought to create a system that is both more sustainable for long-term use,
and simultaneously more appealing to a broad population and especially
users in earlier stages of metabolic disease who are not reliant on insulin
therapy.
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To assess the effectiveness of the January V2 app, we conducted a
retrospective cohort study involving 944 users who utilized the app over a
14-day period. Participants included healthy individuals as well as those
with prediabetes or type 2 diabetes. The study analyzed changes in glycemic
control andweightmanagement, stratifying results by health condition and
level of app engagement. Our study evaluated the impact of January V2 on
key healthmetrics and endpoints related tometabolic health, including time
in range (TIR), weight management, and glycemic events, across user
cohorts in various stages of metabolic disease and particularly among those
with lower baseline metrics. Additionally, we investigate the role of user
engagement in these outcomes. Our results demonstrate that unstructured
digital interventions that reduce patient burden and address poor user
engagement can be effective for glycemic control and weight management.
A key aspect of this research is the focus on user engagement where we
found a clear correlation between highly engaged “power users” and
improved outcomes in TIR andweight loss compared to less engaged users.

Results
Time in Range (TIR)
The study found significant improvements in TIR among users with lower
baseline values (< 90%) (Fig. 1). Healthy users exhibited an increase from
74.7% to 85.5% (p < 0.0004), whereas users with T2D showed an
improvement from 49.7% to 57.4% (p < 0.0004) (Fig. 2). “Power users” also
demonstrated a statistically significant increase in TIR relative to the group
as a whole, from 75.5% to 85.6%. This suggests a correlation between
engagement and glycemic control.

Weight management
Of the 944participants, 702 users (74.4%) had completeweight data (logged
their bodyweightmore than once) andwere included in theweight analysis.
For other variables of interest, missing data were minimal (< 1%) and
participants with missing data for a specific outcome were excluded from
that particular analysis.

On average, users experienced weight reduction of 3.3 lbs over an
average period of 33 days, reflecting the time between their first and last

weight entries. The most significant weight loss was observed in the pre-
diabetes cohort (4.0 lbs, p < 0.0001) and among power users (4.0 lbs,
p < 0.0001), underscoring the potential for digital interventions in weight
management (Fig. 3).

To better understand the variability in users’ weight tracking
behaviors, we also examined the distribution of the number of days
between users’ first and last logs. Figure 4 shows that while the majority
of users logged their weights over periods closer to the study’s 33-day
average, there was considerable variation, with some users logging for
shorter or longer periods.

Glycemic events
Glycemic events were defined as instances where glucose levels excee-
ded 180 mg/dL (hyperglycemic) or fell below 70 mg/dL (hypogly-
cemic). The analysis of hyperglycemic events showed no significant
changes for the overall population. However, users with prediabetes
experienced a reduction from 1.14 to 0.95 events per day (p = 0.037).
Hypoglycemic events significantly decreased across all cohorts, parti-
cularly in healthy users (0.17 to 0.06 events per day, p < 0.0001), indi-
cating improved glycemic stability.

Effect of AI recommendations on glycemic control
To estimate the isolated effect of the AI feature beyond the benefits of food
tracking, physical activity, sleep tracking, and CGM,we compared glycemic
metrics between the 5-day training period (pre-AI recommendations) and
the subsequent 9-day intervention period (post-AI recommendations).

During the training period, the average TIR for all users was 80.2%.
After the introduction ofAI recommendations, the averageTIR increased to
85.6% (p < 0.0002). Among “power users,” the TIR improved from 81.0%
during the training period to 88.2% during the intervention period
(p < 0.0001).

This significant improvement suggests that theAI-driven personalized
recommendations contributed additional benefits to glycemic control
beyond the initial effects of self-monitoring and logging during the training
period.

Fig. 1 | TIR Start vs TIR End by Health Condition, TIR < 90%. Comparison of
Time in Range (TIR) at Start and End of Intervention for Users with TIR < 90%
(n = 307), Stratified by Health Condition. Each dot represents an individual user;

dots above the diagonal line indicate improvement. Green dots represent healthy
users. Yellow dots represent prediabetes users. Red dots represent type 2
diabetes users.
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Glucose management indicator
We evaluated the Glucose Management Indicator (GMI) at two different
time points to assess changes in glucose management over the intervention
period.TheGMIat the beginningof the studywas recorded at 5.734%,while
at the end of the study period, it slightly decreased to 5.718%. This minor
reduction indicates a small improvement in average blood glucose levels
and, by extension, potentially better glucose management by the end of
the study.

To determine the statistical significance of this change, a paired t-test
was conducted. The resulting p-value was 0.042, which is below the con-
ventional alpha level of 0.05, suggesting that the observed change in GMI
was statistically significant. This implies that the intervention had a positive
effect on the glucose management of the participants.

To further assess the significance we calculated the critical t-value for a
two-tailed test at the 95% confidence level which was found to be 1.96,
further supporting the significance of the findings. It is important to note

Fig. 2 | TIR Start vs TIR End by Health Condition. Comparison of Time in Range
(TIR) at Start and End of Intervention for All Users (n = 944), Stratified by Health
Condition. Each dot represents an individual user; dots above the diagonal line

indicate improvement. Green dots represent healthy users. Yellow dots represent
prediabetes users. Red dots represent type 2 diabetes users.

Fig. 3 | Starting vs ending weight by disease type.
This figure shows the mean starting and ending
weights for each disease group. Error bars represent
confidence level. All user groups lost weight over the
course of the observational period, with the most
significant weight loss observed among the pre-
diabetes cohort. For Healthy (n = 630): p < 0.0001, t-
test = 13.22. For prediabetes (n = 46), p < 0.0001, t
test = 11.92. For T2D (n = 26), p = 0.001, t test = 5.90.
For all groups, the critical t value (two tailed) was 2.0.
The statistical significance refers to thewithin-group
weight loss from start to end, assessed by paired t-
tests. Although the confidence intervals overlap, the
paired analysis demonstrates significant weight loss
within each group.
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that while the change inGMI is statistically significant, the clinical relevance
of such a small difference in GMI values needs careful consideration and
further discussion, particularly in terms of real-world implications for dia-
betes management strategies.

Last meal sleep gap
LastMeal SleepGapwas defined as the time elapsed between the last logged
meal of the day and the reported bedtime. Eating closer to bedtime is often
associated with poorer sleep and worse metabolic outcomes17, and one
recommendation from the App is to avoid eating three hours prior to
bedtime. In our study the average lastmeal sleep gap increased slightly from
2.80 h to 3.06 h across all users (p < 0.0001). This shift was consistent across
cohorts, except for T2D users, who showed no significant change. The shift
in non-T2D groups indicates a broader behavioral trend that could have
positive implications for sleep quality and metabolic health. However, the
lack of significant change among T2D users highlights that this particular

group might have different habits, needs, or challenges when it comes to
managing meal timing relative to sleep.

Calorie and macronutrient intake
A major goal of our program is to reduce carbohydrate and sugar intake
while increasing protein and fiber intake per calorie. This was achieved
across all groups (Table 1).

Fat intake per calorie declined in most groups except for those with
Type 2 Diabetes, who exhibited a slight increase, likely due to the sub-
stitution of carbohydrate rich “spiking foods” for foods with higher fat
content. Notably, the T2D group also showed the highest increases in both
protein and fiber intake, suggesting amore significant dietary adjustment in
this population (Fig. 5).

Discussion
The results of this study underscore the potential of digital health inter-
ventions, such as the January V2 platform, in improving glycemic control
and supporting weight management in individuals with varying stages of
metabolic health. This study builds upon our previous research on struc-
tured digital health programs16. Relative to a previous study that used a
structured program with specific daily regimented tasks, the current study
employed amore flexible and self directed approach inwhich users engaged
with the platformat their ownpace, and explored andutilized features based
on their unique needs and preferences. The results presented here
demonstrate that, even in a less structured environment, digital interven-
tions can effectively support glycemic control and weight management.
While this study lacks a control group—a limitation inherent to real-world
studies—ourfindings build uponprevious controlled studiesdemonstrating
the effectiveness of digital interventions in metabolic health18. Similar to
other real-world implementation studies, our data are based on changes
from baseline to end-of-program and thus could represent a ‘placebo’ effect
from enrollment alone. Future randomized controlled trials would help
confirm and extend these findings. Nevertheless, the magnitude of
improvements observed, particularly in TIR and weight loss metrics, align

Fig. 4 | The distribution of number of days between the first and last weight logs.
This histogram illustrates the distribution of the number of days between the first
and last weight entries logged by users who participated in the study. The x-axis
represents the number of days between logs, while the y-axis represents the

percentage of users. The majority of users logged their weights over periods near the
33-day average, but the distribution reveals variability, with some users logging over
shorter or longer timeframes.

Table 1 | Percent change in macronutrient intake

% Change

Carb/
kcal

Sugar/
kcal

Protein/
kcal

Fat/kcal Fiber/
kcal

All −3.5% −16.7% 6.9% −9.9% 13.8%

Healthy −4.7% −22.6% 6.9% −11.6% 8.8%

Pre-
diabetes

−2.2% −22.4% 3.3% −13.0% 11.1%

T2D −2.2% −4.5% 12.1% 1.8% 14.1%

Percent change was expressed relative to total calorie intake to clarify how adjustments in
macronutrient consumption, specifically protein and fiber, affected users’ overall dietary
composition. Although the app recommended reducing net calories for weight loss, it also
encouraged increasing protein and fiber intake. By using this approach, we ensured that shifts in
macronutrient balance were highlighted without being confounded by changes in total calorie
intake, allowing for a more accurate assessment of dietary patterns and their impact on weight loss
and health outcomes.
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with outcomes from controlled studies of similar digital health
interventions19.

A notable feature of the present research is the stratification of users
based on engagement levels (“power users”). Our analysis shows a clear
correlation between user engagement and improved outcomes, with power
users demonstratingmore significant improvements inTIR andweight loss,
versus their less engagedpeers. ForTIR improvementbasedonengagement,
Pearson correlation was 0.53 (p = 0.05). For weight improvement based on
engagement, Pearson correlation was 0.15 (p = 0.34). This result under-
scores the critical role of user engagement, especially in a self-directed
setting.

The significant improvements in Time in Range (TIR) observed in this
study, particularly amonguserswith lower baselineTIRvalues (TIR < 90%),
highlight the effectiveness of the JanuaryV2platform in enhancingglycemic
control. The increase in TIR from74.7% to 85.5% among healthy users with
low TIR (n = 225) and from 49.7% to 57.4% among T2D with low TIR
(n = 50), is noteworthy. For individuals with Type 1 and Type 2 diabetes,
optimal TIR is > 70%; each additional 5% increase in TIR is associated with
clinically significant benefits for those populations20,21. These results align
with existing literature that emphasizes the clinical benefits of higher TIR,
including reduced complications and improved overall health outcomes for
individuals with diabetes19,22–24.

The correlation between high user engagement and improved TIR
further underscores the importance of sustained interaction with digital
health platforms. The “power users” in this study, who demonstrated the
highest levels of engagement, exhibited more significant improvements in
TIR, suggesting that consistent use of the platform’s features is crucial for
achieving optimal glycemic control. This finding is consistent with previous
research that has highlighted the role of continuous engagement in the
effectiveness of digital health interventions25–27.

The study also revealed significant weight loss among users, particu-
larly in the prediabetes cohort and among power users. The average weight
reduction of 3.3 lbs over the 33-day period, with the most significant loss
observed in the prediabetes cohort (4.0 lbs), indicates that digital health
interventions can be effective in supporting weight management. This is

particularly relevant given the well-established relationship between weight
and glycemic control, where weight reduction is often associated with
improved insulin sensitivity and reduced risk of diabetes progression28,29.

The success in weight management observed in this study may be
attributed to the personalized recommendations provided by the January
V2 platform, which likely encouraged healthier dietary and physical activity
choices. Nonetheless, the increase in protein and fiber intake, alongwith the
reduction in carbohydrate and sugar consumption, particularly in the T2D
cohort, suggests that users were able to make meaningful adjustments to
their diet, likely contributing to their weight loss and improved glycemic
control.

The reduction in glucose events below 70mg/dL across all cohorts,
particularly among healthy users, was another observed outcome of the
study. The decrease from 0.17 to 0.06 events per day suggests that the
January V2 platform helps usersmanage their blood glucose levels andmay
stabilize them. However, in healthy individuals, glucose levels below 70mg/
dL are not necessarily dangerous and can be part of normal physiology.
Therefore, the clinical significance of this reduction in healthy users is
uncertain.However, the lack of significant changes in hyperglycemic events,
except in the prediabetes cohort, suggests that while the platform is effective
in preventing lowblood glucose levels, itmay be less impactful in preventing
spikes in certain populations.

The slight increase in the last meal sleep gap across most cohorts,
except for T2D users, may suggest a positive shift towards better dietary
habits, such as earlier meal times, which can contribute to better glycemic
control during sleep. However, the lack of significant change in this metric
among T2D users may indicate the need for more tailored interventions to
address their specific challenges. McCurley30 showed that culturally tailored
interventions were modestly successful for Hispanics in lowering risk of
T2D, as measured by weight reduction or improvement in glucose regula-
tion. Sahin31 examined the use of text messaging in 13 clinical trials and
showed that personalized text messaging interventions could improve gly-
cemic control inpatientswithT2D.Nevertheless, bothgroupsof researchers
cite theneed formore rigorous interventionswith largerpatient samples and
longer time horizons to confirm their findings; indeed, Radhakrishnan32

Fig. 5 | Macronutrient Intake.Across all groups, there was a general trend towards
reducing relative carbohydrate and sugar intakewhile increasing relative protein and
fiber intake per calorie. Specifically, relative carbohydrate intake decreased by 3.5%,
relative sugar by 16.7%, relative protein increased by 6.9%, and relative fiber
increased by 13.8%, while fat intake decreased by 9.9%. When broken down by

health condition, the healthy group showed the largest reduction in relative sugar
(−22.6%) and fat intake (−11.6%), while the T2D group saw the highest increase in
relative protein (12.1%) and fiber (14.1%). The pre-diabetic group demonstrated a
similar reduction in relative sugar (−22.4%) but a larger decrease in relative fat
(−13.0%) compared to the healthy group.
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examined10 studies and showed that, after accounting for cost and resource
utilization, the efficacy of tailored interventions may not exceed that of
standard interventions in the improvement of disease self-management. It is
notable that research into the use of AI for the delivery of personalized
recommendations is sparse33, and thatAI candramatically reduce the cost of
offering personalized recommendations34,35 while increasing the level of
personalization through integration with wearables36.

While the findings of this study are promising, several limitationsmust
be considered. First, thiswas a real world study and did not include a control
group. The observed improvements in glycemic control and weight man-
agement could potentially be attributed to the placebo effect or other
nonspecific effects of participating in a study. Without a control group, it is
difficult to definitively attribute the observed changes to the intervention
itself. Future randomized controlled trials with appropriate comparator
groups are necessary to confirm these findings and to isolate the specific
effects of the digital health intervention.

Second, the sample may be subject to selection bias, as participants
were individuals who opted to purchase and use the app. These users may
have higher levels ofmotivation, health literacy, or self-efficacy compared to
the general population, potentially leading to better engagement and
outcomes37. This could limit the generalizability of the findings to broader
populations, including those less motivated or with limited access to such
technologies. Future studies should aim to include a more diverse and
representative sample, possibly through randomized recruitment strategies
or offering the intervention at no cost to participants.

Third, the duration of the intervention was relatively short (14 days for
primary glycemic outcomes and 33 days for weight loss). This limited time-
frame restricts our ability to assess the long-term efficacy, adherence, and
sustainability of the intervention. Previous studies of lifestyle interventions for
diabetes prevention, such as the Diabetes Prevention Program, have
demonstrated sustainedbenefits over 2.9 to6years,with continuedprotection
of27–43%forup to15years38.Our shorter timeframecannot addresswhether
the improvements in glycemic control andweight loss will persist beyond the
intervention period. It is possible that the observed improvements may
diminish over time without continued use of the app or additional support.
Long-term studies with extended follow-up periods of at least 12 months are
needed to evaluate whether the benefits are maintained and whether the
intervention can lead to lasting behavior change and clinical outcomes.
Moreover, future studies should assess whether periodic CGMuse combined
with ongoing app engagement could maintain improvements over time.

Fourth, we did not collect data on participants’ concurrent use of
weight loss ordiabetesmedications, nor their participation inother glycemic
control or weight management programs. It is possible that some observed
improvements may be partially attributable to these external factors rather
than solely to the intervention. Adjusting for such variables in future
research by collecting comprehensive data on concurrent interventions
could help better isolate the specific effects of the digital health tool. Thiswill
also allow researchers to assess potential synergies or conflicts between the
app’s recommendations and other treatments participants may be using.

Fifth, the reliance on self-reported data, such as food intake and health
status, introduces the potential for recall bias. Participants may not accu-
rately remember or report their dietary habits or health conditions, which
could affect the accuracy of the findings. Future studies could incorporate
more objectivemeasures, such as biomarkers or electronic health records, to
validate self-reported data.

Additionally, the study did not account for potential unmeasured
confounding variables that could influence both the exposure (app use) and
the outcomes (glycemic control, weight loss). While we adjusted for known
confounders like age, sex, and baseline health status, other factors such as
socioeconomic status, education level, or access to healthcare could play a
role. Future research should aim to collect and adjust for a more compre-
hensive set of potential confounders to better isolate the true effect of the
intervention.

Examination of users’ time-in-range compared to their weight led to
observation of several individuals who self-reported as “healthy” but

nonetheless exhibit lower TIR, which is typically more characteristic of
individuals with prediabetes or T2D; a feature noted previously19. The
individuals in this group tended to have higher body weight, raising the
question of whether these are missed diagnoses given the correlation of
higher body weight with insulin resistance.

This raises the fascinatingpossibility that the current diagnostic criteria
used for classification might not fully capture underlying health conditions
like early insulin resistance. Alternatively, this result could reflect variability
in the accuracy of self-reported health status; indeed, most people with
prediabetes are unaware that they have this condition3 (Fig. 6).

These findings suggest several important directions for clinical trans-
lation and larger trials. First, healthcare systems might implement pilot
programs to test the integration of flexible digital interventions into stan-
dard care programs. This would be particularly valuable for resource-
constrained settingswhere continuous in-personmonitoring is challenging.
Future clinical trials should include multi-center randomized controlled
studies comparing standard care to digital intervention, with stratification
by baseline metabolic health status and longer follow-up periods (12-24
months) to assess the durability of improvements and their impact on
clinical outcomes such as HbA1c levels, incidence of diabetes, and cardio-
vascular events. Second, studies examining cost-effectiveness compared to
traditional caremodels and trials focused specifically on populations at high
risk for developing T2D would help establish the broader utility of this
approach.

The broader implications of this study suggest that digital health
platforms like January V2 have the potential to play a crucial role in the
future of chronic disease management. By providing continuous, perso-
nalized support, these tools have the potential to reduce the burden of
diabetes and prediabetes on both individuals and healthcare systems. As
digital health continues to evolve, it will be essential to refine these inter-
ventions to maximize their efficacy and accessibility. This study provides
evidence that digital health interventions can effectively improve glycemic
control and support weight loss, particularly in individuals with lower
baseline health metrics. Future research should explore the long-term sus-
tainability of these improvements through controlled trials with follow-up
periods of 12–24 months. Such studies should examine whether periodic
CGM use (e.g., 2 weeks every 3–6 months) combined with ongoing app
engagement could maintain improvements in glycemic control and weight
management. Additionally, research should investigate strategies to main-
tain user engagement over extendedperiods and identify factors that predict
long-term success with digital health interventions. Cost-effectiveness
analyses comparing this approach to traditional diabetes prevention pro-
grams would help determine optimal implementation strategies for differ-
ent populations.

Overall, this study demonstrates that digital health interventions can
lead to significant improvements in TIR, weight, and glycemic stability,
particularly among users with lower baseline metrics. The enhanced out-
comes among power users highlight the importance of user engagement in
achieving health goals. These findings align with previous research39,40,
underscoring the potential for digital tools in managing chronic conditions
and providing a foundation for future innovations in this field.

Methods
Study design and participants
The goal of this study was to determine if an advanced user App and AI
framework can improve metabolic health and whether improvement cor-
related with user engagement. Nine hundred and forty-four participants
were enrolled in the January V2 digital health program. The participants
wore a CGM for “AI training” for 5–14 days followed by a 15–90 day period
without a CGM. The participants also wore a smart watch for resting heart
rate monitoring, and using a mobile App, the participants logged food, and
received feedback about their dietary and physical activity habits. The
participants received recommendations tominimizeglucose excursions and
increase time-in-range. Unlike our prior study, in which participants fol-
lowed a structured program with specific tasks to complete daily over a
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certain timeframe, the current study employed a more flexible and self
directed approach. Users engaged with the platform at their own pace, and
explored and utilized features based on their unique needs and preferences.
Time of range improvement and the frequency of glucose excursion events
were scored throughout users’ participation in the program and weight was
scored at the beginning and end of the study of a subset of participants.

The cohort was 83% normoglycemic (“healthy”), 10.4% with pre-
diabetes and6.5%withdiabetes through self reporting. 46.3%weremale and
53.7% were female. (Fig. 7)

Participants
Participants were users of the January V2 app who purchased and used the
app between January 2022 and December 2023. The study includes data
collected during this period. Userswere located across theUnited States and
participated remotely by using the app and associated devices in their own
environment.

This retrospective cohort study analyzed data from 944 users who
utilized a digital health platform incorporating CGM (“January V2”). The
sample size of 944 participants was determined by the number of users who
met the inclusion criteria during the study period (see below). Given the
observational nature of this retrospective study, no formal power analysis
was conducted. However, the large sample size is sufficient to detect sig-
nificant changes in the primary outcomes.

Eligibility criteria included adults aged 18 or older who purchased and
used the January V2 app during the study period, provided informed
consent for data collection and analysis, and completed at least 5 days of
CGMuse for AI training. Participants were self-selected users who opted to
use the app, and data were collected retrospectively from the app’s database.
The recruitment period coincided with the app usage period. The exposure
periodwas defined as the 14 days ofCGMuse, and the follow-up periodwas
defined as the durationof appusage, duringwhichparticipants continued to
interact with the app.

The cohort was comprised of healthy (n = 785) and those with pre-
diabetes (n = 98) and type 2 diabetes (T2D) (n = 61) as assessed by users’
self-reporting.

To assess the impact of user engagement on outcomes, the study fur-
ther stratified users into “power users” (those with top quartile engagement
or higher) and “others”. User engagement was quantified based on the
average number of foods logged perday during the intervention period after
theAI training period. ‘Power users’were defined as those in the top quartile
of engagement, logging an average of three or more foods per day. This
metric was chosen because it correlates with overall app use and reflects
active participation indietary tracking, a key component of the intervention.
Quartiles were chosen to create a distinct group of highly engaged users for
comparison with the rest of the cohort.

The January V2 app
Mobile applications can significantly increase distribution potential of
digital health interventions, and the implementation of artificial intelligence
(AI) can provide highly personalized guidance. We built a mobile app that
incorporated AI with the goal of improving glycemic control in individuals
with and without T2D. Participants paid to use the App and wear a CGM
(Abbott Freestyle Libre 2) aswell as aHRmonitor (AppleWatch or Fitbit or
Oura Ring). The mobile app integrated CGM and HR data (HR data was
pulled automatically from the HR monitor) with user-entered diet data to
create a “digital twin,” a personalized virtual model that simulates their
metabolic and physiological responses to food and activity. (Details of
January V2’s machine learning algorithms are available in Dehghani
Zahedani16) Users wore the CGM for 14 days, 5 of which were utilized to
create their “digital twins” and required users to have 16 h of HR monitor
coverage, 20 h of CGM coverage, and logs of all foods detected by January
AI’s “Food Detect” algorithm. Though the AI training period required only
5 complete days of data, a number of users completed their AI training over
non-consecutive days, during which they continued to wear their CGM,
which has a 14-day usage indication.

TheFoodDetect algorithm functionedwhile userswore bothheart rate
monitor (HRM)––Apple Watch, Fitbit, or Oura ring––and CGM. The
algorithm identified potential food intake events by detecting concurrent
fluctuations in blood glucose and heart rate. Specifically, a rise in blood
glucose accompanied by a corresponding increase in heart rate within a

Fig. 6 | TIR Start vs TIR end by health condition.This plot displays the relationship
between weight and TIR for users among three cohorts: T2D, healthy, and pre-
diabetes. Black lines connect data points, highlighting variations within individuals.

Green dots represent healthy users. Yellow dots represent prediabetes users. Red
dots represent type 2 diabetes users.
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specific time window was flagged as a likely meal event. Users were then
prompted to log their food intake. While the precise accuracy of the Food
Detect algorithm has not been formally validated in a separate study,
internal testing suggests a reasonable level of accuracy in identifying meal
events based on physiological signals. The algorithm’s primary purpose was
to encourage timely food logging rather than to provide a precisemeasure of
food intake.

Following this “AI training period,” users were able to remove CGM
and continue to receive insights related to blood glucose. The app provided
users with personalized recommendations for nutrition and physical
activity, based on users’ data and preferences collected during app
onboarding and training.Userswere able to search foods using a database of

32MM food items, and see the projected glucose impact without wearing
CGM. This food database was purchased from three separate vendors and
enriched with January AI’s proprietary glycemic index/glycemic load (GI/
GL) data layer.

Importantly, users were provided personalized, semantically similar
food alternatives with lower glucose impact. Users could also track and
account for their nutrition, physical activity, and sleep. Resting heart rate
was measured using the user’s chosenHRmonitor (AppleWatch, Fitbit, or
Oura Ring) and was automatically synced with the app. The app used the
manufacturer’s algorithms tocalculate restingheart rate fromthe rawsensor
data. Physical activity was either entered manually by the user or auto-
matically synced from the user’sHRmonitor. The appused the activity data,

Fig. 7 | Participant demographics Demographic information was self-reported
and captured during participant onboarding. a Diabetes status was classified into
“Healthy,” “Prediabetes,” and “T2D.”b Sexwas “Male” and “Female.” cActivity level
was classified into “Sedentary” (little to no physical activity); “Lightly Active” (Light
exercise or sports 1–3 days per week); “Moderately Active” (Moderate exercise or
sports 3–5 days per week); and “Very Active” (Hard exercise or sports 6−7 days a

week). (seeMethods) (d)Agewas self-reported,with themean andmedian ages 46.8,
46.0, and the standard deviation 12.2. e BMI was self-reported, with the mean BMI
being 26.9, the median BMI being 25.5, and the standard deviation being 6.32.
f Weight was self-reported, with the mean weight (kg) being 78.0, the median age
being 75.7, and the standard deviation being 18.8.
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along with the user’s profile information (e.g., age, weight, height), to esti-
mate the metabolic impact of exercise. Finally, they received daily and
weekly reports that showed how they were tracking against their health and
wellness goals.

Nutrition was tracked via the App’s food tracking system, through
which users could search through a database of 32MM foods across generic
food items, branded foods, and restaurant items (chain and local). Users
could log via text search, voice, or camera-based barcode scanning. Users
were prompted to log foods at specific times of daymost correspondentwith
typicalmeal times (9AM, 1PM, and7PM), orwhen food intakewasdetected
via January’s “Food Detect” algorithm. Activity or sleep could either be
entered manually, or automatically synced from the user’s HRM (Apple
Watch, Fitbit, or Oura ring) (Fig. 8).

Glycemic and nonglycemic measures
Time inRange isdefinedas “the time spent in the target rangebetween70and
180mg/dL”41. For individualswithType1andType2diabetes, optimalTIR is
> 70%; each additional 5% increase in TIR is associated with clinically sig-
nificant benefits for those populations20,21. For individuals without diabetes, a
TIRof 90%orhigherhas been considerednormal42.Weightwas self reported.

Data collection and analysis
Data was collected over a 14-day period, during which users were wearing
continuous glucose monitors (CGM). The initial 5 days served as a baseline
period, with 1 day excluded for CGM calibration. The remaining 9 days
served as the interventionperiod.Outcomesmeasuredwere changes inTIR,
bodyweight, frequency of hyperglycemic and hypoglycemic events, and last
meal time before sleep (meal time sleep gap). Exposures included the use of
the January V2 app features such as food logging, activity tracking, and
engagement with AI recommendations. Predictors and potential con-
founding considered were age, sex, baseline health status (healthy, pre-
diabetes, T2D), baseline TIR, BMI, and user engagement level (power users
vs. others). Diagnostic criteria for health conditions were based on self-
reported medical history.

To estimate the isolated effect of the AI feature, we compared the
outcomes during the AI training period (days 2–6) with those during the
post-training intervention period (days 7-14). During the training period,
users wore the CGM and HR monitor and logged food intake but did not
receive AI-generated recommendations. In the post-training period, users
continued to use the app with AI recommendations based on their perso-
nalized “digital twin”models.

Statistical analyses were performed using Python version 3.8 with
libraries such as SciPy (version 1.5.2) and Pandas (version 1.1.3). Paired t-
testswere conducted to assess the significance of changeswithin each cohort
frombaseline to end-of-study. To control for potential confounders, such as
age, sex, baseline health status, and engagement level, we conducted mul-
tivariate regression analyses where appropriate. Specifically, we used linear
regressionmodels to assess the association between app use and continuous
outcomes (TIR, weight change), adjusting for the aforementioned con-
founders. For categorical outcomes (e.g., presence or absence of hypergly-
cemic events), we used logistic regression models. Confounders were
included in the models based on their clinical relevance and potential to
influence both the exposure and outcome.

This study involved retrospective analysis of de-identified data col-
lected from users who consented to data collection and analysis for research
purposes upon signing up for the January V2 App. This dataset complies
with the HHS Safe Harbor method for de-identification under the HIPAA
Privacy Rule, as it excludes all identifiers and cannot be linked back to
individuals. While the company may collect sensitive information for
operational purposes, such datawere not included in the research dataset or
made available to researchers. Therefore, the dataset used for this study is
de-identified and qualifies as exempt from IRB oversight according to the
U.S. Department of Health and Human Services regulations (45 CFR
46.104), which states that research involving de-identified data may be
exempt from requiring formal Institutional Review Board (IRB) approval.
Nonetheless, the study was conducted in accordance with the principles
outlined in the Declaration of Helsinki and adhered to all applicable data
protection and privacy laws.

Fig. 8 | Use of “January V2”. A comprehensive overview of users experience at
January AI. aUsers complete an onboarding during which they provide information
about their demographics. Following onboarding, (b) users complete a 5-day “AI
training period,” during which they wear a continuous glucose monitor (Freestyle
Libre 2), a smart watch (Apple Watch or Fitbit), and provide detailed food logs.

c This information is used to construct a “digital twin” that simulates the users’
metabolic responses to different permutations of macronutrients and/or physical
activity. The user continues to receive health insights after their CGMuse concludes,
and they continue to wear a smartwatch.
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Missing data were addressed through a complete case analysis
approach. Participants with missing data for key variables were excluded
from the respective analyses. The extent ofmissing datawasminimal (< 1%)
for primary outcomes. We did not employ imputation methods due to the
low rate of missingness and to maintain data integrity.

As this was a retrospective analysis of app usage data, loss to follow-up
was defined as participants discontinuing app use before completing the 14-
dayCGMperiod. Participantswhodidnot complete theminimumrequired
days were excluded from the analysis. User retention rates were high due to
the short duration of the study period.

Data availability
Thedata that support thefindings of this study arenot publicly available due
to privacy, commercialization, and/or ethical restrictions. However, data
can be made available upon request from the corresponding author.

Code availability
The underlying code for this study is not publicly available for proprietary
reasons.
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