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Uterine Corpus Endometrial Carcinoma (UCEC) represents a common malignant neoplasm in women, 
with its prognosis being intricately associated with available therapeutic interventions. In the past few 
decades, there has been a burgeoning interest in the role of mitochondria within the context of UCEC. 
Nevertheless, the development and application of prognostic models predicated on mitochondrial-
related genes (MRGs) in UCEC remains in the exploratory stages. This study utilized RNA sequencing 
data and clinical information from the TCGA database to identify differentially expressed MRGs 
(DEMRGs) between UCEC and normal groups that are associated with overall survival (OS). Patients 
were randomly assigned to training and testing cohorts in a 1:1 ratio. In the training cohort, a risk 
model based on DEMRGs was developed using Lasso Cox regression analysis. Subsequently, patients 
in both cohorts were stratified into high-risk and low-risk groups based on their median risk scores. 
The prognostic performance of the model was validated through Kaplan-Meier survival analysis, ROC 
curves, and nomograms. Additionally, further analyses including functional enrichment, immune 
landscape assessment, prediction of response to ICB therapy, mutation profiling, and drug sensitivity 
analysis elucidated biological distinctions between the identified risk groups. We established a risk 
model incorporating eight MRGs. Patients classified within he high-risk group exhibited significantly 
poorer prognoses relative to those in the low-risk group. Functional enrichment analysis identified 
substantial differences in biological processes and signaling pathways between the high-risk and 
low-risk cohorts. Immune landscape analysis showed that patients with elevated risk scores exhibited 
significant immunosuppressive and immune evasion mechanisms. Conversely, low-risk patients 
exhibited higher expression of human leukocyte antigen (HLA) family members and immune 
checkpoint genes (ICGs) compared to their high-risk counterparts.Consequently, low-risk patients 
showed greater responsiveness to immunotherapy and potential small molecule drugs, whereas high-
risk patients were more susceptible to chemotherapy. The mitochondrial-related risk model formulated 
in this study demonstrates efficacy in predicting both prognosis and response to immunotherapy in 
patients with UCEC, thereby providing a scientific basis for personalized treatment strategies. Future 
research endeavors should focus on further validating the clinical utility of this model and investigate 
the specific mechanisms of the identified MRGs in UCEC.
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Uterine corpus endometrial carcinoma (UCEC) is one of the most common malignant tumors within the 
female reproductive system. According to statistical data, the number of new cases of UCEC in 2022 surpassed 
420,0001, and the global incidence rate during the period from 2007 to 2016 was approximately 1.3%2. UCEC 
is responsible for approximately 97,000 female deaths globally each year, and it has a five-year survival rate 
of approximately 80%1,2. Owing to early detection and intervention, the five-year survival rate for patients 
diagnosed with stage I UCEC can approachreach approximately 95%3. However, individuals diagnosed with 
advanced stages, recurrent conditions, or distant metastasis of UCEC encounter a markedly poor prognosis, 
with a five-year survival rate falling of less than 20%4. The principal risk factors for UCEC are complex and 
multifactorial, including age, endocrine influences, genetic predispositions, and lifestyle choices5. Notably, 
diseases related to energy metabolism abnormalities, such asinsulin resistance, obesity, and diabetes emerge 
as pivotal metabolic factors that significantly elevate the risk of developing UCEC6. Over the past few decades, 
the intricate relationship between aberrant energy metabolism and cancer has emerged as a pivotal focus in 
oncological research. The earliest identified tumor-specific metabolic alteration is the reprogramming of energy 
metabolism, also known as the Warburg effect, wherein cancer cells tend to metabolize glucose into lactate even 
under aerobic conditions7. This phenomenon underscores a fundamental shift in cellular energy production 
pathways, favoring glycolysis over oxidative phosphorylation despite the presence of oxygen, thus facilitating 
rapid tumor growth and proliferation7. The metabolic processes of cancer cells exhibit significant deviations from 
those of normal cells. This metabolic reprogramming not only underpins the rapid proliferation of malignant 
cells but also furnishes the requisite energy and molecular substrates essential for tumor growth and metastasis.

However, despite glycolysis being the primary energy source, the mitochondria of cancer cells remain active 
and participate in metabolic reprogramming to support cell survival and growth8. Furthermore, the disruption 
of Ca2 + homeostasis within mitochondria, the increased levels of reactive oxygen species (ROS), alterations 
in mitochondrial dynamics, and mitochondrial genetic defects collectively impair mitochondrial functionality, 
thereby fostering the initiation and progression of tumors9–11. As research into the mechanisms of tumorigenesis 
linked to mitochondrial dysfunction advances, the role of mitochondria in UCEC has garnered considerable 
attention. Research has shown that the expression of MCU and VDAC1 is significantly upregulated in UCEC 
tissues, and MCU-induced mitochondrial calcium uptake plays a crucial role in UCEC progression through its 
interaction with VDAC112. Additionally, research has reported that FBXO7, as a novel tumor suppressor factor 
in UCEC, inhibits the occurrence and development of UCEC by negatively regulating the INF2-DRP1 axis-
related mitochondrial fission13. This provides a new theoretical basis for the pathogenesis and clinical treatment 
of UCEC.

Throughout the evolution of research on UCEC, it is evident that prognosis and treatment decisions were 
predominantly based on staging in the past. However, staging alone is insufficient for prognosis, as distinct 
molecular subtypes significantly influence both prognosis and therapeutic choices. Bokhman categorized UCEC 
into two types based on endocrine and metabolic functions, with Type I estrogen-dependent tumors having a 
significantly better prognosis than Type II non-estrogen-dependent tumors14. This method, however, suffers 
from high subjectivity and low reproducibility, posing substantial limitations. With advancements in molecular 
medicine, The Cancer Genome Atlas (TCGA), by considering tumor mutation burden (TMB) and multi-omic 
characteristics, more precisely classified UCEC into four categories15. This advancement has provided crucial 
insights for prognosis assessment and adjuvant therapy in endometrial cancer. Despite significant strides in 
molecular typing, numerous challenges persist. For example, integrating molecular typing with immunotherapy 
and refining molecular classifications to address the specific needs of different patients remain unresolved issues. 
In this study, leveraging the TCGA database, we constructed a novel risk model closely associated with the 
prognosis of UCEC patients using eight mitochondrial-related genes (MRGs). We stratified patients into high-
risk and low-risk groups based on their prognostic characteristics, and conducted a comprehensive analysis 
between these groups. In summary, our mitochondrial-related risk model has proven effective in predicting the 
prognosis and immunotherapy responsiveness of UCEC patients, thereby offering a foundation for prognosis 
assessment and personalized treatment strategies.

Methods
Data collection and processing
We obtained RNA-seq data (FPKM) and clinical information from the TCGA (http://cancergenome.nih.gov/) 
database. After excluding patients with ambiguous prognostic information, we included 543 UCEC samples 
and 35 normal samples. The list of MRGs was collected from the MitoCarta 3.0 database ​(​​​h​​​​t​t​​p​s​:​/​/​w​w​​w​​.​b​r​o​a​​d​i​n​
s​​t​​i​t​u​t​​e​​.​o​r​g​​​/​m​i​t​o​c​​a​​r​t​a​/​​​m​​i​t​o​c​a​r​t​a​3​0​-​i​n​v​e​n​t​o​r​y​-​m​a​m​m​a​l​i​a​n​-​m​i​t​o​c​h​o​n​d​r​i​a​l​-​p​r​o​t​e​i​n​s​-​a​n​d​-​p​a​t​h​w​a​y​s​​​​​) and Gene Set 
Enrichment Analysis (http://www.gsea-msigdb.org/gsea/index.jsp)16 (Supplementary Table S1). Subsequently, 
we utilized the “limma” package to identify differentially expressed MRGs (DEMRGs) between UCEC and 
normal tissues, using criteria of |Log fold change| >1 and adjusted P-value < 0.05. Furthermore, we conducted 
univariate COX regression analysis to screen for DEMRGs associated with overall survival (OS). Finally, for risk 
model construction and validation, we used stratified random sampling to divide the 543 UCEC samples into a 
training set and a testing set in a 1:1 ratio.

Construction of mitochondrial-related risk model
Based on the Cox regression model, we utilized the R package “glmnet” to implement LASSO regression for 
variable selection in the training set17–19. We conducted 10-fold cross-validation to determine the optimal 
regularization parameter, identifying variables with non-zero coefficients. These selected variables are regarded 
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as having a significant impact on survival outcomes. Ultimately, we established a risk model based on MRGs, 
and the risk score for each UCEC sample was calculated using the following formula: Risk score = (Coef1 * 
expression mRNA1) + (Coef2 * expression mRNA2) + … + (Coefn * expression mRNAn). Coef represents the 
coefficient index of the LASSO regression coefficient for each mRNA. Then We divided the UCEC patients from 
the training and testing cohorts into high-risk and low-risk groups based on the median value of the risk score.

Survival and clinical characteristics analyses
We evaluated the differences in OS and disease specific survival (DSS) between high-risk and low-risk patient 
groups using Kaplan-Meier (KM) survival curves and the log-rank test. We utilized the “survival” and “timeROC” 
packages to plot receiver operating characteristic (ROC) curves to assess the model’s predictive value for 1-year, 
3-year, and 5-year survival rates. Furthermore, we analyzed the relationship between the risk score and clinical 
characteristics by categorizing patients based on various clinical features.

Nomogram model construction
Based on the risk score and various clinical characteristics, we evaluated whether the risk score is an independent 
prognostic factor for predicting OS through univariate and multivariate regression analyses. Subsequently, using 
the “rms” R package, we constructed a nomogram model by integrating risk scores and clinical characteristics, 
assigning values to these variables within the model. The total score for each patient was obtained by summing the 
scores of the included predictive factors. Finally, the 1-year, 3-year, and 5-year OS probabilities for patients were 
predicted based on the total score and survival outcome probabilities. The nomogram model’s discrimination 
and accuracy were assessed using ROC curves and calibration curves.

Functional enrichment analysis
In this study, we employed the “clusterProfiler” and “org.Hs.eg.db” R packages20–24 to perform Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses on DEMRGs 
between the UCEC group and the normal group, as well as differentially expressed genes (DEGs) between the 
high-risk and low-risk groups, with a corrected P-value threshold of less than 0.05. DEGs between the high-risk 
and low-risk groups in the training cohort were screened using “limma” package, applying criteria of |Log fold 
change| >1 and adjusted P-value < 0.05. Furthermore, we conducted Gene Set Enrichment Analysis (GSEA)25 for 
differential pathway expression analysis between the high-risk and low-risk groups to explore enriched pathways.

Immune landscape analysis and prediction of immunotherapy response
We presented the infiltration abundance of 24 immune cell types in UCEC samples with the single sample 
GSEA (ssGSEA) method, which assesses immune cell infiltration by quantifying the relative enrichment of 
specific immune cell gene sets within each sample’s gene expression profile26. Subsequently, we scrutinized the 
disparities in immune infiltration between high-risk and low-risk groups, as well as the differential expression 
of human leukocyte antigen (HLA) family members and immune checkpoint genes (ICGs). The ESTIMATE 
algorithm analyzes transcriptomic data to assess the infiltration levels of immune and stromal cells in malignant 
tumors27. Using the ESTIMATE algorithm, we calculate the Stromal Score and Immune Score for each sample, 
and combine them to generate the ESTIMATE Score. A higher score indicates a greater proportion of these 
components in the tumor microenvironment. Additionally, the Tumor Immune Dysfunction and Exclusion 
(TIDE, http://tide.dfci.harvard.edu/login/) score and Immunophenoscore (IPS) were leveraged to predict the 
response of UCEC patients to immune checkpoint blockade (ICB) therapy. The TIDE algorithm assesses tumor 
immune escape potential by analyzing gene expression profiles, incorporating T cell dysfunction and exclusion 
mechanisms to predict responses to ICB28. The IPS evaluates a patient’s likely responsiveness to immunotherapy 
based on the expression of specific immune-related genes29. The IPS of each UCEC sample was obtained from 
The Cancer Immunome Atlas (TCIA, https://tcia.at/home) database.

Mutation analysis
Somatic mutation data were sourced from the TCGA database. Utilizing the “maftools” package, we generated 
waterfall plots to depict the mutational landscape in high-risk and low-risk patient groups, and computed the 
TMB score for each sample. Additionally, we employed the " DEPTH” package to determine the intratumor 
heterogeneity (ITH) score for each sample. Furthermore, the microsatellite instability (MSI) status of each UCEC 
sample was obtained from TCIA database. We then analyzed the variations in TMB, ITH, and MSI between 
high-risk and low-risk groups, as well as the correlations between the risk score and TMB, ITH, and MSI.

Drug sensitivity analysis
We employed the R package “pRRophetic” to predict the 50% inhibitory concentration (IC50) values for 
common chemotherapeutic and small molecule drugs in each UCEC sample. Comprehensive information on 
the drugs was sourced from the Genome of Drug Sensitivity in Cancer (GDSC, ​h​t​t​p​s​:​/​/​w​w​w​.​c​a​n​c​e​r​r​x​g​e​n​e​.​o​r​g​
/​​​​​)​​​3​0​​​. Subsequently, we examined the differences in drug sensitivity between the high-risk and low-risk groups.

Cell culture
The human endometriosis cell line (hEM15A) and UCEC cell lines (Ishikawa, HEC-1-A, and RL95-2) were 
obtained from the American Type Culture Collection (ATCC). All cell lines were cultured in DMEM/F12 
medium supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin. The cells were 
incubated at 37 °C in a humidified atmosphere containing 5% CO2.
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Tissue collection
We obtained UCEC tissue samples, along with paired adjacent non-cancerous tissues, from 16 patients treated 
at the Cancer Hospital of Shantou University Medical College. All patients had not received prior radiotherapy 
or chemotherapy. The study involving human participants was conducted in accordance with the Declaration of 
Helsinki and relevant institutional and national guidelines and regulations. Ethical approval for this study was 
granted by the Ethics Review Committee of the Cancer Hospital of Shantou University Medical College. Written 
informed consent was obtained from all patients prior to their participation in the study.

Quantitative real-time PCR (qRT-PCR)
Total cellular RNA was isolated with TRIzol reagent (Invitrogen, USA) according to the manufacturer’s 
instructions. The extracted RNA was then reverse transcribed into cDNA using HiScript RT Mix (Vazyme, 
Nanjing, China). Quantitative real-time PCR (qRT-PCR) was performed using SYBR Green Master Mix 
(Vazyme, Nanjing, China), and the relative expression levels were calculated using the 2-∆∆CT method, with 
GAPDH as the internal reference gene. All primers are listed in Supplementary Table 2.

Statistical analysis
All statistical analyses were conducted using R software (version 4.2.1). The Wilcoxon test was used to compare 
differences in variables between two groups, while the Kruskal-Wallis test was employed for comparisons among 
more than two groups. Correlation analysis was performed using Spearman’s rank correlation. Differences in 
clinicopathological characteristics between the training and testing cohorts were assessed using the chi-square 
test. In this study, a P-value of less than 0.05 was considered statistically significant.

Results
Differential gene expression and function analyses between UCEC and normal groups
The analytical process methodology employed in this study is illustrated in Fig. 1. We analyzed the differential 
expression of 2030 MRGs between UCEC and normal groups, ultimately identifying 442 DEMRGs 
(Supplementary Table S3). The heatmap illustrates the expression patterns of some of the most significantly 
DEMRGs (Fig. 2A). The results of the differential analysis are presented using a volcano plot (Fig. 2B). A total 
of 303 DEMRGs were up-regulated and 149 were down-regulated in UCEC samples compared with normal 
samples. Principal component analysis (PCA) demonstrates that these MRGs can effectively distinguish between 
tumor and normal samples (Fig. 2C). Additionally, we performed GO and KEGG pathway enrichment analyses 
based on the DEMRGs (Supplementary Table S4). A bubble chart displays the primary results of the functional 
enrichment analysis (Fig.  2D), and an enrichment map shows the interrelationships among the enrichment 
results (Fig.  2E). GO analysis indicates that these MRGs are mainly involved in energy production and 
metabolism, particularly ATP production through aerobic respiration and the electron transport chain, which 
are essential for the survival of cancer cells. KEGG pathway enrichment analysis underscores the carcinogenic 
effects triggered by ROS accumulation resulting from mitochondrial dysfunction.

Fig. 1.  The flowchart graph of this study.
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Fig. 2.  Differential gene expression and function analyses between UCEC and normal groups. (A) Heatmap 
illustrates the expression patterns of some of the most significantly DEMRGs between UCEC and normal 
groups. (B) Volcano plot of DEMRGs between UCEC and normal groups. (C) PCA demonstrates that these 
DEMRGs can effectively distinguish between tumor and normal samples. (D) Bubble chart displays the 
primary results of the GO and KEGG pathway enrichment analyses based on the DEMRGs between normal 
and UCEC groups. (E) Enrichment map shows the interrelationships among the GO and KEGG pathway 
enrichment analyses results.
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Mitochondria-related risk model construction
Through univariate regression analysis, we identified 89 DEMRGs associated with OS (Supplementary Table 
S5). From these, we selected the ten DEMRGs most closely related to prognosis and visualized the results of 
the univariate regression analysis using a forest plot (Fig. 3A). Using these ten MRGs, we conducted Lasso Cox 
regression analysis in the training set to construct a risk model. The distribution of LASSO coefficients and 
the regression penalty plot are illustrated in Fig. 3B and C, respectively. Ultimately, we developed a risk model 
based on eight MRGs, with the risk score calculation formula for each UCEC sample as follows: Risk score = 
(0.267 * ACACB) + (0.017 * FZD9) + (− 0.210 * PTPMT1) + (0.018 * STXBP1) + (− 0.003 * EYA2) + (0.492 * 
FAM72A) + (0.986 * UBL4B) + (− 0.123 * PET100). Based on the median value of the risk score, we categorized 
the samples from both the training and test sets into high-risk and low-risk groups. We employed heat maps to 
illustrate the expression levels of these eight MRGs in the high-risk and low-risk groups within both the training 
and validation sets (Fig. 3D,E).

Differential expression analysis of the eight MRGs between UCEC and normal groups
We conducted an analysis of the differential expression of the eight MRGs between the UCEC group and the 
normal group (Supplementary Figure S1A,B). The results indicated that FZD9, PTPMT1, EYA2, FAM72A, and 
PET100 were significantly up-regulated in the UCEC group compared to the normal group, whereas ACACB, 
STXBP1, and UBL4B were down-regulated (all p < 0.01). Furthermore, we validated the differential expression 
of these eight MRGs in cell lines (Supplementary Figure S1C). Compared to the human endometriosis cell 
line hEM15A, FZD9, PTPMT1, EYA2, FAM72A, and PET100 were up-regulated in UCEC cell lines, whereas 
ACACB, STXBP1, and UBL4B were down-regulated (all p < 0.05). Additionally, we validated the differential 
expression of the eight MRGs in paired UCEC tumor tissues and corresponding adjacent non-cancerous tissues 
(Supplementary Figure S1D). Furthermore, the correlation of the expression of the eight MRGs in UCEC is 
depicted in Supplementary Figure S2.

Survival analysis between risk groups
In the training cohort, the survival rate was 71.9% for high-risk patients and 91.9% for low-risk patients. In the 
testing cohort, the survival rates for high- and low-risk patients were 81.6% and 87.5%, respectively. Through 
KM survival analysis, we discovered that both OS and DSS were markedly shorter in high-risk patients compared 
to low-risk patients in both the training and testing cohorts (Fig. 3F-I, all p < 0.01). Moreover, time-dependent 
ROC analysis demonstrated the model’s prognostic predictive capability. In the training cohort, the risk score 
predicted 1-year, 3-year, and 5-year OS with AUCs of 0.741, 0.845, and 0.823, respectively (Fig. 3J). For DSS, 
the AUCs for 1-year, 3-year, and 5-year predictions were 0.816, 0.893, and 0.853, respectively (Fig. 3K). These 
results were validated in the testing cohort (Fig. 3L and M). Furthermore, we collected UCEC tissues along with 
matched adjacent non-cancerous tissues from 16 patients who underwent surgery. Among these, the survival 
rate in the high-risk group was 50%, compared to 87.5% in the low-risk group. KM survival analysis revealed 
significantly poorer prognosis in the high-risk group compared to the low-risk group (Supplementary Figure 
S3).

Survival analysis of the eight MRGs
Kaplan-Meier survival analysis was performed on the eight MRGs incorporated into the risk model. As 
demonstrated in Supplementary Figure S4, higher expression levels of ACACB, STXBP1, and FAM72A were 
associated with reduced overall survival (OS) and disease-specific survival (DSS), whereas PTPMT1, EYA2, and 
PET100 showed a positive correlation with these outcomes (all p < 0.05). 

Clinical characteristics analysis
As demonstrated in Table  1, the Chi-square test results reveal no statistically significant differences in the 
clinicopathological characteristics of UCEC patients between the training and testing cohorts. Heatmaps were 
employed to distinctly illustrate the clinicopathological attributes of patients within the training and testing 
cohorts (Fig. 4A,B). In the training cohort, it was observed that patients over the age of 60 exhibited higher risk 
score compared to those aged 60 or younger (Fig. 4C, p < 0.05). Patients with endometrioid UCEC presented 
lower risk score than those with serous or mixed UCEC (Fig.  4D, p < 0.001). Additionally, higher risk score 
correlated with advanced stage (Fig. 4E, p < 0.001), while no association was found between risk score and grade 
(Fig. 4F). These findings were corroborated in the testing cohort (Fig. 4G–J).

Nomogram model construction
To discern potential prognostic factors, we conducted univariate and multivariate COX regression analyses, 
incorporating variables such as age, histological type, stage, grade, and risk score. The results from both univariate 
and multivariate COX regression analyses indicated that the risk score was a significant prognostic factor for 
predicting OS in the training cohort (Fig.  5A,B, both p < 0.001). Similarly, the risk score was identified as a 
prognostic factor in the testing cohort (Fig. 5C,D, both p < 0.01). Subsequently, by integrating the risk score with 
clinical characteristics, we constructed a nomogram model in the training cohort to predict the 1-year, 3-year, 
and 5-year OS of UCEC patients (Fig. 5E). The calibration curves demonstrated satisfactory consistency between 
the predicted and observed values (Fig. 5F). The time-dependent ROC curves revealed that the AUC values for 
predicting 1-year, 3-year, and 5-year OS were 0.819, 0.876, and 0.881, respectively (Fig. 5G), highlighting the 
nomogram model’s exceptional prognostic performance. We also constructed a nomogram model in the testing 
cohort and validated these findings (Fig. 5H–J).
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Fig. 3.  Risk model construction and survival analysis. (A) Univariate Cox regression analysis of the ten 
DEMRGs most closely related to OS. (B) The LASSO coefficient profiles of the eight MRGs used to construct 
the risk model. (C) Penalty plot for the LASSO regression model. (D,E) Heatmaps illustrate the expression 
patterns of the eight MRGs between low-risk and high-risk groups in the training (D) and testing (E) cohorts. 
(F,G) KM survival analysis for the OS (F) and DSS (G) between two risk groups in the training cohort. (H,I) 
KM survival analysis for the OS (H) and DSS (I) analysis between two risk groups in the testing cohort. (J,K) 
Time-dependent ROC analysis for predicting 1-year, 3-year, and 5-year OS (J) and DSS (K) in the training 
cohort. (L,M) Time-dependent ROC analysis for predicting 1-year, 3-year, and 5-year OS (L) and DSS (M) in 
the testing cohort.
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DEGs identification between risk groups and functional enrichment analysis
In the training cohort, we identified 4,594 differentially expressed genes (DEGs) between high-risk and low-risk 
groups (Supplementary Table S6), with 3830 upregulated in the low-risk group and 764 in the high-risk group 
(Fig. 6A). Utilizing these DEGs, we conducted GO and KEGG pathway enrichment analyses (Supplementary 
Table S7). The principal findings were depicted through a bubble chart (Fig. 6B) and their correlations were 
illustrated via an enrichment map (Fig.  6C). These functional enrichment analyses unveiled significant 
differences in various biological processes between the high-risk and low-risk groups, notably in pathways related 
to cell movement, signal transduction, metabolism, and ion channel activity. These insights provide a deeper 
understanding of UCEC’s biological mechanisms. We also performed GSEA to analyze differential pathway 
expression between the high-risk and low-risk groups (Supplementary Tables S8 and S9). The GSEA results 
revealed that pathways enriched in the high-risk group were predominantly associated with the regulation of 
cell death, DNA repair, protein synthesis, molecular transport, and body fluid regulation (Fig. 6D), whereas the 
low-risk group’s critical signaling pathways and pathogenic infections might collectively disrupt normal cell 
functions, thereby facilitating cancer development and progression (Fig. 6E).

Immune landscape analysis and immunotherapy response prediction
Considering the intricate relationship between the immune microenvironment and tumor progression, we 
conducted an analysis of the correlation between the risk score and the infiltration levels of 24 common immune 
cells. Our findings revealed that, in both the training and testing cohorts, the risk score was predominantly 
negatively correlated with the majority of immune cells, particularly NK CD56bright cells, iDC, Th17, Treg, 
and NK cells (Fig. 7A,B). In contrast, the risk score exhibited a positive correlation with Th2, aDC, Tgd, and 
macrophages. Additionally, we observed a negative correlation between the risk score and both the immune 
score and ESTIMATE score in the training cohort, with a similar trend observed in the testing cohort, albeit 
without statistical significance (Fig. 7C,E). No significant correlation was detected between the risk score and 
the stromal score (Fig.  7D). These results suggest that a higher risk score is associated with tumor immune 
suppression and immune evasion within the tumor microenvironment. A further examination of the differential 
expression of HLA family members and ICGs between high-risk and low-risk groups revealed that, in both the 
training and testing cohorts, the majority of HLA family members and ICGs were expressed at lower levels in 
high-risk patients compared to low-risk patients (Fig. 7F,I). These findings underscore significant differences in 
the immune landscape between high-risk and low-risk patients, implying potential variations in their responses 
to immunotherapy. Subsequently, we utilized the TIDE algorithm to predict the response of UCEC samples to 
ICB therapy. In both the training and testing cohorts, the high-risk group displayed higher TIDE and Exclusion 
scores, but lower Dysfunction score compared to the low-risk group (Fig. 7J,O). Moreover, we evaluated tumor 
immunogenicity using the IPS, where higher scores indicate a greater potential response to ICB therapy. The 
results demonstrated that, regardless of statistical significance, the low-risk group exhibited higher IPS in 
all states of CTLA4 and PD1 compared to the high-risk group (Fig. 7P,W). These findings indicate that our 
mitochondrial risk model can effectively predict the immunotherapy response in UCEC patients, with those 
having a lower risk score being more likely to benefit from immunotherapy.

Clinical Characteristics Training cohort Testing cohort P value

No. 271 272

Age

 ≤ 60 103 (38.0%) 104 (38.2%)
0.956

 > 60 168 (62.0%) 168 (61.8%)

Histological type

 Endometrioid 200 (73.8%) 207 (76.1%)

0.644 Serous 58 (21.4%) 56 (20.6%)

 Mixed 13 (4.8%) 9 (3.3%)

Stage

 I 160 (59.0%) 179 (65.8%)

0.255
 II 30 (11.1%) 22 (8.1%)

 III 63 (23.2%) 60 (22.1%)

 IV 18 (6.6%) 11 (4.0%)

Grade

 G1 45 (16.6%) 54 (19.9%)

0.778
 G2 61 (22.5%) 59 (21.7%)

 G3 160 (59.0%) 153 (56.3%)

 G4 5 (1.8%) 6 (2.2%)

Table 1.  Clinical characteristics of UCEC patients in training and testing cohorts.
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Mutation analysis
We delineated the mutational landscape of the top 20 most frequently mutated genes in high-risk and low-
risk UCEC patients using a mutation map. Our analysis revealed that the frequency of PTEN mutations was 
markedly elevated in the low-risk group, surpassing 80% in both the training and validation cohorts (Fig. 8A 

Fig. 4.  Clinical characteristics analysis of the risk score. (A,B) Heatmaps illustrate the clinical characteristics 
attributes of patients in the training (A) and testing (B) cohorts. (C–F) Correlation between risk score and 
clinical characteristics in the training cohort. (G–J) Correlation between risk score and clinical characteristics 
in the testing cohort. NS indicates no statistical difference, *P < 0.05, **P < 0.01, ***P < 0.001.
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Fig. 5.  Nomogram model construction. (A,B) Univariate (A) and multivariate (B) Cox regression analysis of 
the risk score and clinical characteristics in the training cohort. (C,D) Univariate (C) and multivariate (D) Cox 
regression analysis of the risk score and clinical characteristics in the testing cohort. (E) Nomogram model 
construction for predicting 1-year, 3-year, and 5-year OS in the training cohort. (F,G) Calibration curve (F) 
and time-dependent ROC curves (G) of the nomogram model in the training cohort. (H) Nomogram model 
construction for predicting 1-year, 3-year, and 5-year OS in the testing cohort. (I,J) Calibration curve (I) and 
time-dependent ROC curves (J) of the nomogram model in the testing cohort.
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Fig. 6.  DEGs identification between risk groups and functional enrichment analysis. (A) Volcano plot of DEGs 
between high-risk and low-risk groups. (B) Bubble chart displays the primary results of the GO and KEGG 
pathway enrichment analyses based on the DEGs between high-risk and low-risk groups. (C) Enrichment map 
shows the interrelationships among the GO and KEGG pathway enrichment analyses results. (D,E) GSEA 
enriched pathways in high-risk (D) and low-risk (E) groups.
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and C). Notably, the most significantly mutated gene in the high-risk group was TP53 (Fig. 8B,D), which did 
not show a significant mutation rate in the low-risk group. Furthermore, we discovered that the TMB in the 
low-risk group was higher than that in the high-risk group in the training cohort (Fig. 8E), and there was a 
negative correlation between risk score and TMB (Fig. 8G), although this was not corroborated in the test cohort 
(Fig. 8F). We also examined the differences in ITH between the high-risk and low-risk groups and investigated 
the correlation between risk score and ITH score, but no significant differences or correlations were identified 
(Fig. 8H,J). Additionally, the distribution of MSI status between the two risk groups in the training and testing 
cohorts is illustrated in Fig. 8K,L, respectively. We observed that the risk score of microsatellite stable (MSS) 

Fig. 7.  Immune landscape analysis and immunotherapy response prediction (A,B) Correlation between risk 
score and infiltration Levels of 24 immune cells in the training (A) and testing (B) cohorts. (C–E) Correlation 
between risk score and immune score (C), stromal score (D) and ESTIMATE score (E). (F,G) HLA family 
members expression between high-risk and low-risk groups in the training (F) and testing (G) cohorts. 
(H,I) ICGs expression between high-risk and low-risk groups in the training (H) and testing (I) cohorts. 
(J–O) Differences of TIDE, Exclusion and Dysfunction scores in the training and testing cohorts. (P–W) 
Differences of IPS in the training and testing cohorts. NS indicates no statistical difference, *P < 0.05, **P < 0.01, 
***P < 0.001.
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Fig. 8.  Mutation analysis in two risk groups. (A–D) Mutational landscape of the top 20 most frequently 
mutated genes in high-risk and low-risk groups in the training and testing cohort. (E,F) Diffecences of TMB 
between high-risk and low risk groups in the training (E) and testing (F) cohorts. (G) Correlation between risk 
score and TMB. (H,I) Diffecences of ITH score between high-risk and low risk groups in the training (H) and 
testing (I) cohorts. (J) Correlation between risk score and ITH score. (K,L) Distribution of MSI status between 
the two risk groups in the training (K) and testing (L) cohorts. (M,N) Differences in risk score among groups 
with different MSI statuses in the training (M) and testing (N) cohorts. NS indicates no statistical difference, 
*P < 0.05, **P < 0.01.
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patients was higher than that of microsatellite instability-high (MSI-H) patients in both the training and test 
cohorts (Fig. 8M,N).

Drug sensitivity analysis
Chemotherapy and small molecule drugs are prevalent treatments for UCEC cancer. By leveraging the GDSC 
database, we assessed the IC50 differences of frequently used chemotherapeutic and small molecule drugs 
between two risk groups. Our findings indicated that in both the training and testing cohorts, the IC50 values 
for Paclitaxel, Cisplatin, and GNF-2 were significantly lower in the high-risk group. Conversely, the IC50 values 
for Mitomycin-C, PD-0332991, PD-0325901, Roscovitine, and LFM-A13 were markedly lower in the low-risk 
group (Fig. 9, all p < 0.05).

Discussion
Mitochondria, fundamental organelles within cells, are pivotal not only in energy metabolism but also in the 
onset and advancement of cancer. The significance of mitochondria in cancer has been increasingly recognized, 
with research demonstrating that MRGs are crucial for prognostic evaluation and predicting therapeutic 
responses across diverse cancer types31–33. In the past few decades, research has elucidated the pivotal role of 
MRGs in the pathogenesis and progression of UCEC. For instance, mutations in the FBXO7 gene lead to excessive 
mitochondrial fission, thereby inducing UCEC, which underscores the critical impact of the disequilibrium 
between mitochondrial fission and fusion on the onset and advancement of UCEC13. Additionally, aberrantly 
expressed MRGs in UCEC present promising avenues for novel therapeutic targets. For example, IMT1, a newly 
identified POLRMT-specific inhibitor, has demonstrated efficacy in curbing UCEC progression by impairing 
mitochondrial function34. At present, research investigating the correlation between MRGs and both the 
prognosis and immunotherapy of UCEC remains in its exploratory phase. Consequently, the development of 
prognostic models based on MRGs possesses substantial clinical application potential.

In this study, we leveraged transcriptional data of MRGs along with clinical information from the TCGA-
UCEC dataset to pinpoint MRGs significantly associated with prognosis. Consequently, we developed a 
prognostic risk model for UCEC patients based on eight MRGs, which were ACACB, FZD9, PTPMT1, STXBP1, 

Fig. 9.  Analysis of the IC50 differences of frequently used chemotherapeutic and small molecule drugs 
between two risk groups in the training and testing cohorts. NS indicates no statistical difference, *P < 0.05, 
**P < 0.01, ***P < 0.001.
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EYA2, FAM72A, UBL4B, PET100. Although these eight MRGs are pivotal in the development and progression 
of various cancers, their mechanistic roles in UCEC remain undocumented. The ACACB gene encodes acetyl-
CoA carboxylase beta, a crucial enzyme in fatty acid synthesis, and its expression in colorectal cancer promotes 
tumor growth and drug resistance35. FZD9, a member of the Frizzled protein family, is significantly upregulated 
in numerous malignancies, regulating cell proliferation and invasion through the Wnt pathway activation36,37. 
PTPMT1, belonging to the PTEN family, primarily catalyzes phosphatidylation modifications and is highly 
expressed in various cancers38. STXBP1, essential for neurotransmitter release, has seldom been studied in 
tumor progression, but studies show its high expression in lung adenocarcinoma is linked to poor prognosis39. 
EYA2, a member of the eyes absent protein family, promotes cancer progression by inducing TGF-β, epithelial-
mesenchymal transition in cancer cells, or downregulating PTEN40,41. FAM72 is a protein-coding gene specific 
to neural stem cells, implicated in cancer cell division, proliferation, and differentiation. Additionally, elevated 
levels of FAM72 are associated with hypomethylation and influence the prognosis of various cancers42,43. As 
a member of the ubiquitin-like protein family, UBL4B plays a significant role in protein metabolism and the 
maintenance of cellular homeostasis44. However, current research on the mechanisms of UBL4B in cancer 
remains limited. Further investigations are warranted to elucidate the potential role of UBL4B in tumor biology. 
Additionally, the PET100 gene PET100 gene is crucial for the maturation of cytochrome coxidase and the 
overall functionality of mitochondria45. Although research on the specific role of PET100 in cancer remains 
limited, mutations in this gene may be linked to cancer development. Based on the outcomes of the risk model 
construction, the prognosis for patients in the high-risk group was markedly worse than that for those in the 
low-risk group. Utilizing both univariate and multivariate COX regression analyses, we identified the risk score 
as an independent prognostic indicator for predicting OS in UCEC patients. By integrating the risk score with 
the clinical features of the patients, we subsequently developed a nomogram model. Time-dependent ROC 
analysis revealed that this model exhibits outstanding predictive accuracy for 1-year, 3-year, and 5-year OS. The 
development of the mitochondria-related risk model provides a novel approach to assessing the prognosis of 
UCEC patients. This model not only elucidates the potential mechanistic roles of these genes in UCEC but also 
establishes a scientific foundation for crafting personalized treatment strategies.

To elucidate the potential mechanisms underlying the prognostic disparities between high-risk and low-
risk groups, we identified DEGs and conducted a functional enrichment analysis between the two cohorts. 
Our analysis revealed significant distinctions in the expression of DEGs associated with cellular biological 
functions and signaling pathways. In the high-risk group, pathways related to DNA repair and protein synthesis 
were enriched, suggesting that these genes may play a pivotal role in tumor cell survival and genomic stability 
maintenance46,47. Furthermore, the enrichment of cancer-related pathways such as MAPK in the low-risk group 
is closely linked to the progression of UCEC48. Based on our extensive analysis of the immunological landscape, 
we identified a significant association between elevated risk score and the presence of immunosuppressive and 
immune-evading mechanisms within the tumor microenvironment. A clear negative correlation was identified 
between the risk score and the infiltration levels of various antitumor immune cells, particularly NK CD56bright 
cells and immature dendritic cells (iDCs). Under normal conditions, CD56bright NK cells are primarily engaged 
in immunoregulatory activities. However, studies have shown that upon specific activation, these cells can exhibit 
potent antitumor effects49. Tumor cells frequently employ multiple mechanisms to inhibit the maturation and 
function of dendritic cells. IDCs are essential for continuously capturing and processing tumor antigens, thereby 
maintaining a level of immune surveillance to prevent tumor immune evasion50. Conversely, we observed 
that risk scores positively correlate with the infiltration of pro-tumor immune cells. For instance, Th2 cells 
facilitate tumor growth and progression by secreting cytokines such as IL-451. Macrophage infiltration promotes 
angiogenesis through various mechanisms, thereby supporting tumor growth and progression52. In high-risk 
patients, the expression levels of HLA family members and ICGs are generally diminished. HLA molecules 
are pivotal in antigen presentation and immune recognition, while ICGs are crucial in modulating immune 
responses53,54. Therefore, this reduced expression implies that high-risk patients may exhibit compromised 
immune function, thereby diminishing the efficacy of tumor immune surveillance.

The differences in the immune landscape between the two groups suggested a variance in the potential 
sensitivity of UCEC patients to immunotherapy. The extensive implementation of molecular subtyping in 
UCEC has greatly advanced the application of immune checkpoint inhibitors55. Research has demonstrated 
that PD-1 inhibitors possess significant efficacy in the treatment of advanced or recurrent endometrial cancer. 
Nevertheless, prior studies reveal that most cancer patients exhibit insensitivity to ICB therapy56. Accurately 
predicting sensitivity to ICB treatment is essential for identifying patient populations suitable for precision 
therapy. In this study, the high-risk group exhibited elevated TIDE and Exclusion scores, but a lower Dysfunction 
score compared to the low-risk group. These findings suggested that UCEC samples in the high-risk group are 
more likely to evade immune system attacks through T cell exclusion rather than T cell dysfunction, potentially 
resulting in a poorer response to ICB therapy. IPS analysis revealed that the low-risk group score higher, 
signifying that low-risk patients have greater immunogenicity. Moreover, high TMB levels are often linked to 
increased tumor immunogenicity, indicating a higher presence of mutated antigens within the tumor that can be 
identified and targeted by the immune system, thus enhancing immunotherapy effectiveness57. Our subsequent 
analysis demonstrated that the low-risk group in the training cohort exhibited higher TMB levels than the 
high-risk group. In summary, our risk model not only reflects the immune microenvironment status of UCEC 
patients but also effectively predicts their responsiveness to immunotherapy. Patients classified as low-risk are 
more likely to benefit from ICB therapy, offering valuable guidance for personalized immunotherapy approaches 
in UCEC. The further application of this model could aid in identifying patients who are particularly well-suited 
for immunotherapy, thereby enhancing treatment outcomes. This work not only deepens our understanding 
of tumor immune mechanisms in UCEC but also serves as a crucial reference for developing immunotherapy 
strategies in precision medicine. Moreover, through an analysis of drug sensitivity to commonly utilized 
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chemotherapy agents and potential small molecule drugs in UCEC, it was discovered that the high-risk group 
demonstrates increased sensitivity to Paclitaxel, Cisplatin, and GNF-2, while the low-risk group exhibits greater 
sensitivity to Mitomycin-C, PD-0332991, PD-0325901, among others. These insights provide a foundational 
basis for the personalized and precision treatment of UCEC patients.

Nonetheless, our study is subject to several limitations. Primarily, it represents a retrospective analysis 
based on a single-source dataset, the TCGA database, which predominantly comprises patients from Western 
regions. The relatively limited sample size and regional bias may affect the model’s generalizability across diverse 
populations. Consequently, further validation of the model’s applicability requires in East Asian populations and 
other geographic regions is necessary through independent datasets. Furthermore, the biological mechanisms 
underlying the identified MRGs require additional elucidation through cellular and animal experiments. To 
address these limitations, our future research will concentrate on multi-center, large-scale prospective studies to 
validate the predictive capabilities of this model for prognosis and immunotherapy response in UCEC patients. 
Additionally, further investigation into the underlying mechanisms of MRGs in UCEC development will be 
essential to identify potential therapeutic targets.

Conclusion
In conclusion, we have developed a risk model based on eight MRGs, which demonstrates substantial efficacy 
in predicting the prognosis of UCEC patients and their responsiveness to ICB therapy. This model provides 
a scientific basis for personalized and precise treatment strategies in clinical practice, suggesting that low-
risk patients may derive greater benefits from immunotherapy. By differentiating patients with varying risk 
profiles, this model offers clinicians a tool to make more informed decisions on therapy options, potentially 
improving patient outcomes. Future research should focus on prospectively validating these findings across 
diverse populations and exploring the underlying mechanisms associated with the identified MRGs in UCEC 
progression.

Data availability
The data used in this study were obtained from The Cancer Genome Atlas (TCGA) database, which is publicly 
available at https://www.cancer.gov/tcga.
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