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Deep sequencing-derived 
Metagenome assembled Genomes 
from the gut microbiome of liver 
transplant patients
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Recurrence of metabolic dysfunction-associated steatotic liver disease (MaSLD) after liver 
transplantation (Lt) is a continuing concern. the role of gut microbiome dysbiosis in MaSLD initiation 
and progression has been well established. However, there is a lack of comprehensive gut microbiome 
shotgun sequence data for patients experiencing MaSLD recurrence after Lt. In this data descriptor, 
we describe a dataset of deep metagenomic sequences of a well-defined LT recipient population. 
Community-based analysis revealed a high abundance of Akkermansia muciniphila, consistently 
observed in most patient samples with a low (0–2) MASLD Activity Score (NAS). We constructed 357 
metagenome-assembled genomes (MAGs), including 220 high-quality MAGs (>90% completion). 
The abundance of different species of Bacteroides MAGs dominated in patient samples with NAS > 5 
(“definite MASH”). In contrast, the MAGs of A. muciniphila, Akkermansia sp., and Blutia sp. dominated 
in samples from patients without MASH (NAS = 0–2). In addition, the phylogenetic analysis of A. 
muciniphila and Akkermansia sp. MAGs identified two new phylogroups of Akkermansia that are distinct 
from the previously reported three phylogroups.

Background & Summary
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver 
disease (NAFLD), encompasses a wide range of liver disorders, and its escalating prevalence has become a global 
concern1. Estimates indicate that the prevalence of MASLD was approximately 25.5% in 2005, which increased 
to 38.7% in 20162. The disruption of the gut-liver axis due to an imbalance in the gut microbial community can 
have a negative impact on energy homeostasis, leading to the development of various metabolic syndromes 
such as obesity and MASLD3,4. Intestinal health is a crucial aspect of MASLD, and consequently, various studies 
have assessed the makeup of the gut microbial community and its abundance using sequence-based metagen-
omic approaches3–6. For microbiome analysis, deep shotgun sequencing (with more than 10 million reads/
sample) provides several advantages over shallow sequencing (<10 million reads/sample) and 16S rRNA ampli-
con sequencing-based approaches, such as identifying rare microbial taxa (at species levels), classification of 
uncultivated bacteria, metabolic profiling, host-microbe interactions, novel gene discovery, identification of 
gene clusters responsible for secondary metabolite production, and for constructing metagenome-assembled 
genomes (MAGs)7–9. The significance of gut microbiota composition and its functions in MASLD warrants the 
use of deep shotgun metagenomic sequencing. To the best of our knowledge, as of the current time, there is no 
publicly available ultra-deep shotgun sequencing dataset (with sequencing depth >20 million reads/sample) 
from patients who have undergone liver transplantation (LT) and subsequently developed MASLD recurrence.

In our previous prospective observational study, the gut microbial community status of LT patients with 
varying pathologies of metabolic dysfunction-associated steatohepatitis (MASH), formerly known as nonalco-
holic steatohepatitis (NASH), recurrence was reported by utilizing the 16S rRNA amplicon sequencing-based 
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approach4. As mentioned before, data generated from deep shotgun sequencing of the metagenomic samples 
is essential for comprehensive community-based functional analyses and constructing draft MAGs, enabling a 
deeper understanding of the disease outcomes10. In this study, we employed a deep shotgun sequencing approach 
(that generated over 20 million reads per sample) to investigate the gut microbial flora and construct MAGs from 
liver transplant (LT) patients manifesting varying degrees of MASH recurrence, as illustrated in Fig. 1.

Based on the NAS score, all samples have been categorized into three groups according to conventional clini-
cal practices11,12: “no MASH” (NAS 0–2), “borderline MASH” (NAS 3-4), and “definite MASH” (NAS ≥ 5) sam-
ples. Patient-level demographic and clinical data at the time of stool sample collection are provided in Table S1. 
At the phylum level, we observed variations in the abundance of three phyla — Fusobacteria, Euryarchaeota, and 
Verrucomicrobiota — across these three sample groups. Remarkably, our findings align with our previous research 
involving 16S rRNA sequencing of the same samples. In this study, we observed a substantial increase in the abun-
dance of A. muciniphila and Akkermansia sp. in the majority of samples from patients with low NAS (0–2), reaffirm-
ing our earlier observations4. The species-level functional profiling indicated that the elevated abundance of three 
amino acid biosynthesis pathways positively correlates with samples from patients with no MASH outcomes [NAS 
(0–2)]13,14. Additionally, we constructed and taxonomically classified the MAGs from all these samples (Fig. 2) 
and estimated their abundance using a mapping-based approach. The abundance of MAGs of A. muciniphila and 
Blautia sp. were very high in most patient samples with low or no MASH activities [NAS (0–2)]. We also have 
analyzed and compared the MAGs of A. muciniphila and Akkermansia sp. to explore the phylogenetic groups. This 
exploration led to identifying two potentially new phylogenetic clusters within A. muciniphila and Akkermansia 
sp. The information regarding pathway abundance, in conjunction with the MAGs, may contribute significantly to 
enhancing our understanding of the underlying disease mechanisms during the progression of MASLD.

Methods
Study location, ethical clearance, and sample collection. The study was conducted at James D. Eason 
Transplant Institute of Methodist University Hospital, affiliated with the University of Tennessee Health Sciences 
Center, Memphis, TN. Adult LT recipients (age >18) with MASH as an indication for LT, who had a liver biopsy 
one-year post-transplant, were recruited for this study4. The signed consent of all the participants had been taken 
prior to enrollment in the study. The protocol and the study design were approved by the University of Tennessee 
Institutional Review Board (Study Protocol # 15-03891-XP UM). The stool samples from each participant were 
collected in accordance with the specified methodology described previously4.

Fecal microbiota DNA extraction and quality check. The genomic DNA was extracted following the 
protocol described in the PowerFecal DNA extraction kit (MO BIO Laboratories, Carlsbad, CA). Initially, the 

Fig. 1 The detail workflow from DNA extraction to bioinformatics analysis. Every step and their associated 
software packages are given for better understanding of the analysis.
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quality and the quantity of the extracted DNA were checked on 0.8% agarose gel and NanoDrop spectrophotom-
eter (Thermo Scientific, Wilmington, DE), respectively.

Shotgun library preparation and sequencing. The library preparation for shotgun sequencing was done 
following the protocol of the Kapa Hyper Stranded kit (Roche). Subsequently, the quality of the prepared libraries 
was assessed using the 5200 Fragment Analyzer (Agilent Technologies, USA). The libraries were then pooled; 
quantitated by qPCR and subjected to sequencing (NovaSeq. 6000) on one SP lane for 151 cycles from both ends of 
the fragments. The sequencing was done using paired-end reads (2 × 150 bp), yielding more than 25 million reads 
per sample on average, ensuring a robust coverage for subsequent analysis and interpretation of the genomic data.

Host contamination removal. To enhance the accuracy of the downstream analysis, it is crucial to remove 
host DNA contamination from metagenomic reads. Here, we employed a mapping based method using bowtie2 
v2.5.015 to remove human DNA contamination. In brief, bowtie2 index command was used to index the human 
reference genome (GRCh38) obtained from the NCBI database (https://www.ncbi.nlm.nih.gov/data-hub/
genome/GCF_000001405.26/), followed by an alignment step. Any reads that were successfully mapped to the 
human genome were identified as host DNA and subsequently removed from the dataset.

Fig. 2 The phylogenetic tree of high-quality MAGs constructed using maximum likelihood method 
(completeness >90% and contamination <5%) prepared by PhyloPhlAn 3.0 and visualized by iTOL. The 
different colors in the tree represented a separate cluster of MAGs and their close relatives. The red colored 
cluster shows the A. muciniphila group.
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Microbial diversity and community analysis. The clean microbial reads obtained from bowtie2 were 
subjected to assign taxonomic composition using Kraken2 package v2.0.816. The mapping of clean reads was done 
against Kraken2 standard database (https://benlangmead.github.io/aws-indexes/k2) (accessed on 11/02/2022). 
The output file (Kraken.report) generated in Kraken2 was further used as input in Bracken v2.817 to produce 
accurate phylum and species level abundance (Fig. 3). Results indicated that Firmicutes (also known as Bacillota) 
and Bacteroidetes were the most abundant phyla across all samples (Fig. 3a). Interestingly, our analysis revealed 
notable differences in the presence of the Euryarchaeota and Verrucomicrobia phyla among the sample groups. 
Specifically, these phyla were detected in the majority of “no MASH” (NAS 0–2) samples but were largely absent in 
the “borderline MASH” (NAS 3-4), and “definite MASH” (NAS ≥ 5) samples (Fig. S1). Furthermore, the relative 
abundance at the genus level was calculated, and the top 20 genera are presented in Fig. 3b. The results indicated 
that the genus Akkermansia was highly abundant in samples from the NAS 0–2 and NAS 3-4 groups, with abun-
dances ranging from 0.43 to 0.79 (Fig. 3b). However, in patients with NAS ≥ 5, the abundance of Akkermansia was 
either low or absent in most samples. A. muciniphila is generally considered a next-generation probiotic, and its 
high abundance in the gut is associated with various positive health outcomes, including MASLD18. To identify 
the differential abundance of the key genera in the MASLD sample groups, we performed Linear Discriminant 
Analysis (LDA) using LEfSe19,20 with a threshold of p < 0.05 and an LDA score of 2.0. Although the abundance 
of Akkermansia was high in samples from the NAS 0–2 and NAS 3-4 groups, it was not significantly enriched in 
these groups., and thus its abundance cannot be correlated with MAFLD outcome. The results indicated that the 
genera Proteus (LDA 4.35) and Raoultella (LDA 2.66) were enriched in the NAS 3-4 group (Fig. 3c). In contrast, 
the genera Prevotella (LDA 3.49) and Vescimonas (LDA 3.28) were enriched in the NAS 0–2 group. Interestingly, 
no significant differential effects were observed in the NAS ≥ 5 group.

Species level diversity was further analyzed and visualized using the Pavian platform through Sankey flow 
diagrams (Fig. 4)21. The high abundance of A. muciniphila was consistently observed in samples from patients 
without MASH outcomes [NAS (0–2)] (Fig. 4r,t,u).

Furthermore, the alpha diversity indices (Table S2) strongly support our diversity findings. For example, 
sample N1191 (Fig. 4u) is highly dominated by a single species A. muciniphila, and thus its overall species 
diversity is low which is indicated by high Berger Parker’s dominance value (0.78571) and lower Simpson’s index 
value (0.3798).

Functional profiling of gut microbial community. Functional profiling was done to gain a deeper 
understanding of the functional potential of the microbial communities and how it may relate to the observed 
pathologies associated with MASLD progression. In brief, the paired-end clean reads of each sample (r1 and r2) 
were first merged with Cat command in the Linux platform. The merged file was then used in MetaPhlAn v4.022  
to generate the taxonomy file. The merged clean read file and the corresponding taxonomy file were used as input 
in HUMAnN v3.023 to generate three files: gene_families, pathway_abundance, and pathway_coverage using 
ChocoPhlAn database v201901b (accessed on 04/23/2023). All pathway_abundance files obtained from 21 samples 

Fig. 3 Bracken report based microbial diversity and community in each sample. (a) The distribution and 
abundance of top 20 phyla based on sample groups (b) heatmap representing the relative abundance of top 
20 genera in different MASLD samples. (c) LDA enrichment of significant genera in different MASLD groups 
calculated using LEfSe considering g p < 0.05 and LDA score 2.0.
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were merged, normalized in HUMAnN v3.0 using humann_renorm_table command, and plotted using humann_
barplot command (Fig. 5). Several pathways like the folate transformations (Fig. 5b), L-isoleucine biosynthe-
sis (Fig. 5d), and L-methionine biosynthesis (Fig. 5e) exhibited higher abundance in “no MASH” (NAS 0–2)  
samples compared to “definite MASH” (NAS ≥ 5) samples, and interestingly, all these pathways were domi-
nated by A. muciniphila. Similarly, the abundance of the other two microbial pathways: L-arginine biosynthesis 
(Fig. 5a) and glycogen degradation (Fig. 5c) were also high in low NAS (NAS 0–2) samples compared simples 

Fig. 4 The snakey diagram of the top 20 species generated from the Pavian platform and their absolute 
abundance in terms of read counts.

Fig. 5 The functional profile of the top 10 species in each sample. (a-f) Here we have demonstrated six 
important pathways that might directly correlate with MASLD outcome. The important pathways were either 
dominated by A. muciniphila or Blautia sp.
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with NAS ≥ 5 (definite MASH), and dominated by the probiotic bacteria Blautia sp14. Previous research high-
lighted that an abundance of these pathways are associated with normal liver function13,14,24–26.

Fig. 6 The distribution of meta genome assembled genome (MAGs) in each sample. (a) Indicated the 
completeness and contamination of 220 high-quality MAGs. Each color represented a single MAG, and the 
attached line indicated the percentage of contamination. (b) Represent the top known species level genome bins 
or MAGs in different samples. Here, red and white blocks mean the presence and absence, respectively. (c) Along 
with species-level MAGs, several genus-level and other lineage MAGs were also constructed and presented here. 
The color density bar on the right side indicated the number of specific level MAGs in different samples.

Fig. 7 The comparison of A. muciniphila MAGs constructed from different samples. (a) Represented the 
average nucleotide identity among different MAGs. (b) demonstrate the phylogenetic tree of A. muciniphila 
showing different phylogenetic groups. Escherichia coli was taken as an out-group.
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Metagenomic assembly, contig generation, and quality check. Metagenome assembly is the first 
step in metagenome assembled genome (MAG) construction27. Here, we used SPAdes v3.15.528 to construct long 
contigs from the clean reads using a de novo approach using –meta option. The quality and length of these assem-
bled contigs were assessed by MetaQUAST29.

Binning and refinement of MAGs. Binning is the most critical step in the construction of MAG and 
here we used MetaWRAP30 for binning the contigs obtained from metaSPAdes. MetaWRAP is a wrapper of 
three binning packages: MaxBin2, MetaBAT2, and CONCOCT. The bins obtained from MetaWRAP were often 

Sample 
ID

Raw reads 
count

Trimmed reads 
(q > 25)

% removal after 
initial trimming

Human DNA  
removed (clean reads)

% removal of host 
contamination

N1153 25424028 25281010 0.562530847 25026660 1.006091

N1154 34717232 34525330 0.552757201 34431878 0.270677

N1155 41353794 41044262 0.748497224 40816658 0.554533

N1156 25341390 25187138 0.608695892 25184750 0.009481

N1157 20468100 20339394 0.62881264 20334194 0.025566

N1158 23389134 23251812 0.587118788 23212412 0.169449

N1161 21739642 21568308 0.788117854 21543746 0.11388

N1162 23113510 22965722 0.639400939 22962290 0.014944

N1163 20194568 20065904 0.637121824 20061580 0.021549

N1164 29329826 29179320 0.513149993 29171336 0.027362

N1165 25934688 25766786 0.6474032 24149980 6.274768

N1166 20228664 20118430 0.544939597 20103872 0.072362

N1167 21321082 21191406 0.608205531 21171620 0.093368

N1168 19026784 18924362 0.538304319 18840866 0.441209

N1169 18455136 18339154 0.628453781 18334706 0.024254

N1170 34380902 34123660 0.7482119 34102748 0.061283

N1171 22904742 22745032 0.697279192 22723724 0.093682

N1173 30135136 29913668 0.734916212 29790838 0.410615

N1174 25592112 25417010 0.684203008 25414844 0.008522

N1175 20839126 20723470 0.554994485 20681918 0.200507

N1191 34750680 34520478 0.662438836 34492538 0.080937

Table 1. Sequencing reads processing statistics of each data set based on FastQC result.

Sample ID Classified reads (%) Microbial reads (%) Bacterial reads (%)

N1153 61.3 61.3 60.8

N1154 56.8 56.8 54.8

N1155 77.6 77.4 77.4

N1156 81.6 81.5 80.9

N1157 71.6 71.6 71.5

N1158 51.9 51.8 50.5

N1161 82.7 82.4 82.3

N1162 92.6 92.5 91.8

N1163 86.6 86.5 82.5

N1164 80.5 79.9 78.8

N1165 63 62.6 62.6

N1166 86.7 86.3 86.3

N1167 57.7 57.5 56.9

N1168 39.6 39.4 39.4

N1169 48.8 48.8 48.7

N1170 52.3 52.2 52.2

N1171 54.8 54.7 54.7

N1173 70.9 70.7 69.7

N1174 86.1 85.8 85.8

N1175 82 81.9 81.9

N1191 90.3 90.3 89.5

Table 2. Mapping percentage of clean reads using Kraken 2 standard database.
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fragmented due to uneven coverage and inter-species overlapping; thus, bin refinement is also recommended. 
The metawrap bin_refinement command was used to refine the bins generated from MaxBin2, MetaBAT2, and 
CONCOCT using -c 50 -x 5 option, which has generated a total of 357 draft genomes or MAGs.

Completeness, contamination, and taxonomy of MaGs. The completeness and contamination of 
MAGs were further assessed by using CheckM v1.1.331, and the result of high-quality MAGs (>90% completeness 
and <5% contamination) was tabulated accordingly (Table S3, Fig. 6a). We have documented the most abundant 
species-level MAGs, providing insights into the specific microbial species that are abundant within the samples 
(Fig. 6b). The overall distribution of high-quality MAGs, categorizing them at different taxonomic levels, including 
species, genus, and other taxonomic ranks was illustrated in Fig. 6c. The high-quality MAGs were annotated with 
Prokka v1.14.632 using a default command. The taxonomic classification of annotated MAGs was performed in 
Phylophlan 3.033, and the generated tree file was visualized in iTOL online platform (https://itol.embl.de/) (Fig. 2).

abundance of MaG. The abundance of each MAG in respective samples was calculated following the 
method described by Zorrilla et al.34. In brief, fasta files of each MAGs generated in Prokka were merged (each 
sample separately) using Cat command, followed by mapping in bwa v0.7.1735 to generate sam files. The Samtool_
view and samtools_ sort commands36 were used to convert the sam file to the sorted bam file. The samtools flagstat 
command was finally employed to calculate the mapping reads, and the relative abundance of each MAG was 
calculated as the total number of mapped reads divided by the total number of reads in the corresponding sample 
(Table S4). Interestingly, in all “definite MASH” samples (NAS ≥ 5) except one sample (N1167), the dominant 
species level MAGs belong to Bacteroides ovatus (N1155, 36.58%), and Bacteroides vulgatus (N1158, 15.11%), and 
Bacteroides dorei (N1165, 10.8%) (Table S4). However, in most of the samples from patients without MASLD or 

Sample ID N50 Contigs
Contigs 
(≥1000 bp)

Contigs 
(≥5000 bp)

Contigs 
(≥50000 bp)

Largest 
contigs Total length

N1153 6227 48041 18566 2489 258 746854 105729105

N1154 9909 45466 15502 2647 254 564156 103691738

N1155 8925 47210 21537 3309 316 430385 124325910

N1156 5041 33399 10654 1195 140 494532 62771082

N1157 6482 49291 16145 2586 203 658334 101152500

N1158 6622 60260 26331 4621 254 344279 144792077

N1161 3570 51603 16760 2121 158 426442 91504015

N1162 3324 38157 12526 1298 124 622898 67759276

N1163 10804 36485 17629 2633 268 551962 101588829

N1164 2291 69590 21598 1771 209 432752 111061798

N1165 7099 32105 13663 2319 142 539170 76610458

N1166 11262 23907 10892 1786 169 916721 67927401

N1167 13388 28346 8822 957 179 1001980 60863485

N1168 5012 31015 12414 2033 90 305683 64411737

N1169 2728 95554 32177 3148 256 518380 162005710

N1170 7415 73343 26590 4400 353 690106 163873475

N1171 2931 71052 27683 2504 230 416246 129883700

N1173 3562 48745 18083 2057 146 444211 91532050

N1174 3557 16091 6867 747 51 368322 31960148

N1175 9015 20302 9222 1596 136 383053 54938244

N1191 2642 48936 18965 2083 99 503892 83493951

Table 3. Assembly statistics of each data set assessed through MetaQuast.

Samples bin ID N50 Contigs
Contigs 
(≥5000 bp)

scaffold gap  
ext. mis. GC (%) N’s

N1157.9 124433 37 31 0 55.41 0

N1164.13 113582 36 36 0 55.59 0

N1167.9 177866 39 30 0 55.84 0

N1170.24 177913 26 23 0 55.34 0

N1173.3 227844 33 24 0 58.13 0

N1174.3 179887 39 33 0 55.96 0

N1175.9 110625 41 41 0 56.8 0

N1191.18 113537 14 13 0 55.6 0

Table 4. Genome statistics of Akkermansia MAGs taking A. muciniphila ATCC BAA-835 as reference.

https://doi.org/10.1038/s41597-024-04153-8
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MASH (NAS 0–2) the abundant MAGs belong to the species Blautia obeum (ranges between 12.41% to 41.46%)), 
A. muciniphila (ranges between 25.31% to 72.49%) (and Akkermansia sp. (54.38%) (Table S4).

average nucleotide identity and phylogenetic analysis of Akkermansia MaGs. Most of the “no 
MASH” (NAS 0–2) samples have a high abundance of A. muciniphila, which indicates a positive correlation with 
MASLD status. Therefore, we calculated the average nucleotide identity (ANI) among these A. muciniphila and 
Akkermansia sp. MAGs using OrthoANI tool v0.93.137 (Fig. 7a). Interestingly, A. muciniphila MAGs obtained 
from samples with low NAS (0–2) such as AK_N1157.9, AK_N1164.13, AK_N1191.18 clustered together which 
indicates that the A. muciniphila strains from different samples with favorable NAS scores share a high degree 
of genomic similarity. In order to check the phylogenetic group of the constructed A. muciniphila MAGs, we 
selected a few A. muciniphila strains randomly representing different phylogenetic clusters (AmI, AmII, and 
AmIII)38. The fasta files of these strains were downloaded from the NCBI genome database, followed by anno-
tation in Prokka using the default command. The 16S rRNA gene sequences were then extracted and aligned in 
MEGA 6 software39 to generate the phylogenetic tree to compare the phylogenetic position of A. muciniphila 
MAGs and Akkermansia sp. MAGs (Fig. 7b). A. muciniphila MAG obtained from the N1173 sample (NAS 0) 
and N1167 (NAS 6) clustered with AmII and AmI, respectively. Furthermore, A. muciniphila MAGs constructed 
from “borderline MASH” (NAS 3–4) sample (N1157) and “no MASH” (NAS 0–2) samples (N1164, N1170, and 
N1191) clustered together and formed a new phylogroup AMV (Fig. 6B). However, genus level Akkermansia 
MAGs obtained from N1174 and N1175 exhibited an new phylogroup AMIV, along with previously described 
phylogenetic groups (AmI, AmII, AmIII)38. This phylogenetic analysis can shed light on the genetic diversity and 
adaptation strategies of A. muciniphila within the context of MASLD and its correlation with disease outcomes.

Data Records
The Illumina NovaSeq sequencing reads are available in the NCBI Sequence Read Archive (SRA) under 
BioProject identifier PRJNA97082040, with accession number SRP43822141. High quality MAGs (n = 220) are 
available at SAMN36703611- SAMN36703829 and SAMN36726309 under the same BioProject identifier40. The 
information regarding patient fat percentage and NAS score (Supplementary Table 1), microbial alpha diversity 
(Supplementary Table 2), MAG quality assessment (Supplementary Table 3), MAG abundance in each sam-
ple set (Supplementary Table 4), and differential abundance of three phyla in all sample sets (Supplementary 
Figure 1) were deposited to figshare42 with https://doi.org/10.6084/m9.figshare.27730911.

technical Validation
Here, we have explored the microbial diversity and abundance of MAGs in stool samples of LT patients using 
deep shotgun Illumina sequencing. Microbial community assessment and construction of MAGs underwent 
a series of quality control processes, including removing host contamination (Fig. 1, Table 1). The sequencing 
platform generated a total of 538.6 million reads. Following quality filtering with a threshold of q < 25, 535.1 
million reads were retained (Table 1). This stringent quality filtering process ensures that only high-quality reads 
are included in downstream analyses, enhancing the reliability and accuracy of the results obtained from the 
sequencing data. The mapping percentage of classified clean reads of most of the sample is above 60% (Table 2), 
confirming the reading quality and depth.

A total number of 968898 contigs were prepared from clean reads during the MAGs construction process 
(Table 3), which varies from 95554 (highest) to 16091 (lowest). The number of long contigs ≥5000 bp and very long 
contigs ≥50000 bp varies from 4621 (highest) to 747 (lowest) and 316 (highest) to 51 (lowest), respectively, which 
indicates the high quality and depth of the sequencing reads, as well as the effectiveness of the assembler. To increase 
the accuracy of binning and construction of MAGs, we have excluded the contigs ≲2,500 bp to avoid high contamina-
tion and low completeness. The MAGs were validated following the standards defined by the Minimum Information 
about a Metagenome-Assembled Genome (MIMAG) of bacteria and archaea consortium43. In brief, CheckM v1.1.331 
was used to calculate the completeness and contamination of each MAG using CheckM marker gene list. Only the 
high-quality MAGs (completeness >90% and contamination <5%) showing single-copy genes within a phyloge-
netic lineage31 were considered and deposited in the NCBI genome database (BioProject number PRJNA970820). 
Furthermore, the quality of Akkermansia MAGs was assessed considering the type strain of A. muciniphila (ATCC 
BAA-835) (Table 4). The lower number of contigs (varies from 39 to 14), along with scaffold-gap at extensive misas-
semblies (0) and a number of uncalled bases or N’s (0), confirmed the accuracy of assembly and draft genome quality.

Code availability
We used all open-source software or packages to analyze our data and did not use any custom codes. The version 
of each package was provided with non-default parameters when required.
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