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Tunneling nanotubes between bone marrow stromal cells
support transmitophagy and resistance to apoptosis in
myeloma
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Multiple myeloma (MM) flourishes within the bone marrow (BM), a
metabolically unique microenvironment with pronounced spatial
oxygen-glucose gradients [1].
Hypoxia and glucose deprivation drive metabolic reprogram-

ming in MM cells [2], reducing mitochondrial activity [3] while
enhancing their reliance on glycolysis via the Warburg effect. This
metabolic shift fuels rapid ATP production and lactate buildup,
creating an acidic niche that supports cancer progression.
Targeting oxidative phosphorylation and glycolysis pathways
may overcome the disease evolution, inhibiting tumor growth in
critical ecosystems [4, 5].
Consistently, it is known that a cell can transfer functional or

non-functional mitochondria to other cells, contributing to
mitochondrial quality control, thereby sustaining cellular plasticity
[6–8]. Intercellular mitochondrial transfer in MM, supporting
malignant cell survival, was previously investigated in normoxic
co-culture systems, where the transfer of healthy mitochondria
from BM stromal cells (BMSCs) to MM cells was observed [9, 10].
However, intercellular mitochondrial dynamics occurring under

nutrient starvation and hypoxic conditions mimicking the MM
microenvironment remain unexplored.
Here, we set up a new co-culture system mirroring the MM

niche by co-culturing MM cells and BMSCs in a hypoxic and
glucose-serum-deprived environment (0.2% O2; OGD), identifying
a new mechanism involved in the survival of MM cells.
We found that MM cell survival is sustained by the transcellular

degradation of unfunctional mitochondria, or transmitophagy
[11], that are transferred from MM cells to BMSCs, along with an
intercellular transfer of MM cells mitochondria in post-fission state
between BMSCs via Tunneling Nanotubes (TNTs). Notably, when
TNTs between BMSCs are destroyed, BMSCs fail to support MM
survival in OGD, highlighting the pivotal role of homotypic TNTs
between BMSCs for MM progression.
JJN3 MM human cell line and BMSCs were cultured under

normoxic control conditions (Nx) or in OGD. Mitochondrial
membrane potential (ΔΨ), apoptosis, and TNTs were analyzed
(Fig. 1A). The ΔΨ of JJN3 cells was higher compared to that
measured for BMSCs, and under OGD conditions, the ΔΨ of JJN3
cells strongly decreased, while the ΔΨ of BMSCs remained
unaffected (Fig. 1B). To mimic the hypoxic MM microenviron-
ment, JJN3 cells were co-cultured with BMSCs under both
normoxic and OGD conditions, and apoptotic cells were
measured. We found that OGD did not affect BMSC survival,
and BMSCs were able to rescue JJN3 cells from OGD-induced
apoptosis (Fig. 1C). Nx and OGD co-cultures were stained for

F-actin and specifically analyzed for TNTs [12]. It was found that
OGD triggers homotypic TNT formation between BMSCs
(Fig. 1D), while heterotypic TNTs between JJN3 cells and BMSCs
were extremely rare. These homotypic TNTs were observed to be
detached from the substrate (Fig. 1E), capable of transferring
cargo between BMSCs, and were highly dynamic (Fig. 1F;
Supplementary Videos 1 and 2).
To trace the intercellular dynamics of JJN3 mitochondria, JJN3

cells were stained for mitochondria using the fixable Mito-
tracker Deep Red (JJN3 Mito), washed extensively overnight to
ensure removal of excess dye, and co-cultured with BMSCs
under Nx or OGD conditions. The cells were then analyzed by
confocal microscopy to determine JJN3 mitochondrial localiza-
tion (Fig. 2A). Confocal microscopy revealed the presence of
JJN3 mitochondria inside BMSCs. Under OGD conditions, the
intercellular transfer of mitochondria increased, and the size of
the transferred mitochondria was smaller compared to Nx,
indicating that OGD triggers the transfer of mitochondria from
JJN3 cells to BMSCs and that in OGD JJN3 mitochondria inside
BMSCs were in a post-fission state (Fig. 2B). Transwell-based co-
culture experiments showed no passive dye diffusion (Supple-
mentary Fig. 1). Analysis of gap junction protein Connexin 43
(CX43) localization revealed that JJN3 cells were in direct
contact with BMSCs via CX43 junctions, and JJN3 mitochondria
appeared to be internalized by BMSCs through these CX43
junctions (Fig. 2C), suggesting a CX43-dependent intercellular
mitochondrial transfer [7]. Heterotypic TNTs between JJN3 cells
and BMSCs were extremely rare, and no mitochondria were
found inside them.
We further analyzed the co-culture for lysosomal-associated

membrane protein 1 (Lamp1). Confocal microscopy clearly
showed JJN3 mitochondria inside BMSCs interacting with Lamp1,
with enhanced colocalization under OGD conditions. A more
detailed analysis of JJN3 mitochondrial and Lamp1 localization
and morphology in BMSCs revealed that, under OGD conditions,
large masses of JJN3 mitochondria appeared to be internalized by
BMSCs within an actin cage, surrounded by Lamp1, which is
typical of damaged mitochondria destined for mitophagy [13]
(Fig. 2D, central panel).
Once inside BMSCs, multiple mitochondria-Lamp1 contacts

were observed, and fission points were identified in JJN3
mitochondria (Fig. 2D, bottom panel, white arrows). Notably,
lysosomal contacts mark the sites of mitochondrial fission [14].
Since JJN3 mitochondria lose membrane potential under OGD, a
well-known trigger for mitophagy [15], and various signs of fission
appear in BMSCs for JJN3 mitochondria, we conclude that JJN3-to-
BMSCs transmitophagy [11, 13] occurs under OGD conditions.
We analyzed TNTs between BMSCs under OGD conditions for

the presence of JJN3 mitochondria and Lamp1 localization. The

Received: 4 November 2024 Revised: 13 December 2024 Accepted: 2 January 2025

www.nature.com/bcjBlood Cancer Journal

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41408-025-01210-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41408-025-01210-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41408-025-01210-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41408-025-01210-2&domain=pdf
https://doi.org/10.1038/s41408-025-01210-2
https://doi.org/10.1038/s41408-025-01210-2


Fig. 1 BMSCs rescue JJN3 from OGD-induced and mitochondrial-dependent apoptosis and generate an extensive homotypic TNTs
intercellular network. A Schematic representation of the Oxygen-Glucose Deprivation (OGD) co-culture model used here. JJN3 cells were co-
cultured with BMSCs under normoxic control conditions (Nx) or in the absence of serum, glucose, and in a hypoxic environment (0.2%O2;
OGD). The co-culture was analyzed for mitochondrial membrane potential (ΔΨ), cell apoptosis, TNT structure (confocal microscopy), and TNT
dynamics (live-cell microscopy). B OGD strongly affects mitochondrial membrane potential (measured through JC-1; ΔΨ) in JJN3 cells, while
BMSCs preserve ΔΨ under OGD conditions. ****p < 0.0001. C JJN3 cells become apoptotic under OGD, while BMSCs are largely unaffected.
When co-cultured with JJN3 cells, BMSCs rescue JJN3 cells from OGD-triggered apoptosis. ****p < 0.0001; **p= 0.0068. D–F. OGD induces the
formation of homotypic tunneling nanotubes (TNTs) between BMSCs cells (Nx vs OGD ***p= 0.002). The diameters of small (S) and large (L)
TNTs were measured (full width at half maximum, FWHM. ****p < 0.001) (D). These TNTs were found to be detached from the surface (E) and
transported cargo between BMSCs cells (F; Supplementary Video 1–2). In (D) and (E), asterisks indicate JJN3 cells.
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analysis revealed that the homotypic TNTs network between
BMSCs contains small JJN3 mitochondria in a post-fission state,
along with Lamp1 (Fig. 2E, inset a), and punctate JJN3
mitochondria interacting with Lamp1 (Fig. 2E, inset b).

To assess whether TNTs between BMSCs can transfer these
mitochondria between BMSCs, we co-cultured BMSCs with JJN3
mitochondria under OGD for 24 h and washed out JJN3
cells, generating donor BMSCs(JJN3 Mito). Subsequently, donor
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BMSCs(JJN3 Mito) were incubated with acceptor BMSCs stained with
DiI under OGD conditions. We found that donor BMSCs(JJN3 Mito)

were connected to acceptor BMSCs via TNTs containing JJN3
mitochondria in a post-fission state and these mitochondria
localize in acceptor BMSCs. These findings demonstrate that TNTs
between BMSCs can transfer small JJN3 mitochondria in a post-
fission state between BMSCs (Fig. 2F).
To test whether TNTs between BMSCs play a functional role in

protecting JJN3 cells from OGD-triggered apoptosis, we disrupted
the TNTs network between BMSCs in OGD using 0.5 μM
Cytochalasin-D (CytoD) for 24 h. At this concentration and
incubation time, this drug disrupts TNTs between BMSCs while
preserving BMSCs viability (Supplementary Fig. 2). After washing
out CytoD, we co-cultured CytoD pre-treated BMSCs with JJN3
cells under OGD conditions. Analysis of TNTs and cell apoptosis
revealed that pre-treatment with CytoD destroys the TNTs
network between BMSCs (Fig. 2G) and prevents the rescue of
JJN3 cells from OGD-triggered apoptosis (Fig. 2H). Taken together,
our data show that the TNTs network between BMSCs allows the
intercellular transfer of post-fission JJN3 mitochondria, supporting
JJN3-to-BMSCs transmitophagy and contributing to the survival of
JJN3 cells in the hypoxic MM niche (Fig. 2I).
Our findings uncover a crucial metabolic adaptation in MM: we

show that in a co-culture system mimicking the hypoxic MM
milieu, the ΔΨ of MM cells is strongly affected and, most
interestingly, these mitochondria are transferred to BMSCs for
fission (transmitophagy). This mechanism has primarily been
described in the central nervous system and has not been shown
before in cancer [11]. Furthermore, in this context, BMSCs support
MM cell survival by generating an active.
TNTs network among themselves for the transfer of MM

mitochondria in a post-fission state, facilitating efficient transmi-
tophagy within the BMSCs population. To the best of our
knowledge, this is the first evidence of a concerting role for
transmitophagy and a TNTs network in the OGD MM microenvir-
onment. Undeniably, treatments targeting oxidative phosphoryla-
tion, such as proteasome inhibitors are known to induce
endoplasmic reticulum stress and apoptosis in MM cells. Hence,
resistance mechanisms driven by mitochondrial adaptations
highlight the importance of metabolic plasticity. The quiescent
MM cells, which are resistant to standard and novel agents, could
correlate with metabolic shift sustaining the minimal residual
disease in OGD [16].
Overall, preventing TNTs-mediated intercellular mitochondrial

exchange could weaken the protective environment that BMSCs
provide to MM cells. This could represent a new frontier in MM
therapy focused on metabolic vulnerabilities.
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