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This research aimed to identify novel indicators for sepsis by analyzing RNA sequencing data from 
peripheral blood samples obtained from sepsis patients (n = 23) and healthy controls (n = 10). 5148 
differentially expressed genes were identified using the DESeq2 technique and 5636 differentially 
expressed genes were identified by the limma method(|Log2 Fold Change|≥2, FDR < 0.05). A total of 
1793 immune-related genes were identified from the ImmPort database, with 358 genes identified in 
both groups. Next, a Biological association network was constructed, and five key hub genes (CD4, 
HLA-DOB, HLA-DRB1, HLA-DRA, AHNAK) were identified using a combination of three topological 
analysis algorithms (MCC, Closeness, and MNC) and four machine learning algorithms (Random 
Forest, LASSO regression, SVM, and XGBoost). immune cell distribution showed that the key genes 
correlated with multiple immune cell infiltrations. Gene Set Enrichment Analysis (GSEA) revealed that 
the key genes involved multiple immune response and inflammation-related signaling pathways. 
Subsequently, diagnostic models were constructed using four machine learning algorithms (Logistic 
regression, AdaBoost, KNN, and XGBoost) based on the identified key genes. Models with the highest 
performance were then selected. Ultimately, single-cell sequencing data revealed that the identified 
key genes were expressed in various immune cells, while Quantitative PCR (qPCR) tests confirmed their 
reduced expression in the sepsis group.
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Sepsis, a systemic inflammatory response triggered by infection, is associated with substantial morbidity and 
mortality1. Despite advancements in sepsis diagnosis and treatment over the past few years, current diagnostic 
markers and therapeutic strategies remain limited due to the complex and variable nature of its underlying 
pathophysiology2. Identifying novel biomarkers to enhance early diagnosis and therapeutic efficacy in sepsis has 
become a focal point of contemporary research.

Recent advancements in high-throughput sequencing technology have provided novel opportunities 
for identifying sepsis-related biomarkers through the differential analysis of gene expression profiles. RNA 
sequencing technology enables comprehensive and precise quantification of gene expression across diverse 
conditions, serving as a valuable tool for elucidating the molecular underpinnings of sepsis3.

Disruptions of the immune system are known to significantly contribute to the initiation and progression 
of sepsis4. Key pathological hallmarks of sepsis include cytokine storm, hyperactivation of immune cells, and a 
resulting imbalance in immune function5. Consequently, investigations focused on immune-related genes can 
offer deeper insights into the immunopathogenic mechanisms underlying sepsis and potentially lead to novel 
avenues for clinical intervention. Herein, we leveraged an immune gene database to identify sepsis-associated 
immune genes. Subsequently, we performed functional annotation and pathway analysis to elucidate potential 
diagnostic markers and therapeutic targets.

Analysis of Biological association network and the application of machine learning techniques are critical 
steps in biomarker identification6. Biological association network elucidate interactions among proteins, 
facilitating the pinpointing of key genes involved in disease mechanisms. Machine learning algorithms, trained 
and validated on large datasets of gene expression data, can efficiently identify feature genes that exhibit strong 
correlations with disease states. In summary, this study employs a comprehensive and systematic approach 
to screen and validate novel sepsis biomarkers. This approach integrates various techniques, including high-
throughput RNA sequencing, Biological association network construction, machine learning-based screening, 
single-cell sequencing, and immune cell distribution. These methods offer valuable insights and pave the way for 
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developing novel strategies for early diagnosis and personalized treatment of sepsis. Figure 1 provides a visual 
representation of the research workflow.

Methods
Clinical sample collection
This study utilized data from the Emergency Intensive Care Unit (ICU) of the Affiliated Hospital of Southwest 
Medical University. Peripheral blood samples were collected from 23 sepsis patients and 10 healthy volunteers 
between February 2019 and December 2020. Sepsis diagnosis was based on the most recent Sepsis 3.0 guidelines, 
and blood samples were obtained within the first 24 h of hospital admission. Control samples were collected 
from healthy volunteers during routine physical examinations conducted during the same period. Participants 
with severe organ failure, immune or hematological disorders, or those who were pregnant or lactating were 
excluded. Informed written consent was obtained from all participants, and the study was approved by the 
Hospital Ethics Committee (Ethics Approval No. ky2018029, Clinical Trial No. ChiCTR1900021261). All 
procedures adhered to the Declaration of Helsinki.

RNA-seq
Total RNA was extracted from blood samples using TRIzol reagent, and its quality and quantity were assessed 
using an Agilent 2100 Bioanalyzer (Thermo Fisher Scientific, MA, USA). Ribosomal RNA was depleted using 
the Enzyme H reagent, specifically targeting oligonucleotide and nucleoside sequences. The purified RNA 
was fragmented into smaller segments through incubation with SPRI beads and divalent cations at elevated 
temperatures. First-strand cDNA synthesis was performed using reverse transcriptase and random primers. 
Second-strand cDNA was subsequently generated with DNA polymerase I and RNase H. The size distribution of 
cDNA fragments was evaluated using an Agilent 2100 Bioanalyzer. Library quantification was performed using 
Quantitative PCR (qPCR). Qualified libraries, as determined by manufacturer’s guidelines, were sequenced on 
a BGISEQ-500/MGISEQ-2000 platform (China Huada Genetics Shenzhen). Raw sequence data underwent 
quality control to remove adapter sequences, low-quality reads (defined as quality value < 10 and > 20% bases 
with a quality score below 10), and reads containing more than 5% undetermined bases (N). The processed data, 
in FASTQ format, was aligned to the reference genome using HISAT and Bowtie2 software.

Differential gene screening and immune gene acquisition
Preprocessing of raw RNA sequencing data was performed using the online iDEP96 tool  (   h t t p : / / b i o i n f o r m a t i c 
s . s d s t a t e . e d u / i d e p 9 6 /     )   7   . This process involved an initial quality control step, followed by data normalization to 
ensure consistency and comparability between samples. Principal component analysis (PCA) was conducted 
on the cleaned data to assess sample differentiation and data integrity. Differential expression analysis was 
performed on the refined dataset using the DESeq2 technique, applying a threshold of |Log2 Fold Change| ≥ 
2 and FDR < 0.05 to identify significantly differentially expressed genes (DEGs). In addition, we also used the 
limma method for differential expression analysis, which is applicable to RNA sequencing data through voom 
transformation and is particularly suitable for Fold Change estimation of small sample data(|Log2 Fold Change| 
≥ 2 and FDR < 0.05). Volcano plots were generated using R version 4.4.1 to visualize the distribution of DEGs. 
Furthermore, hierarchical clustering analysis was conducted on the identified DEGs using the pheatmap package 
in R 4.4.1. This analysis resulted in heatmaps that depicted the expression profiles of these genes, highlighting 
differences in expression between sepsis patients and healthy individuals. To identify immune-related genes with 
significant expression changes, we utilized the ImmPort database, a public resource containing a comprehensive 
collection of immune-related genes and datasets8. We performed an intersection analysis between the identified 
DEGs and the list of immune-related genes from ImmPort. The resulting overlap of significantly altered immune 
genes was visualized using Venn diagrams.

Network analysis
To construct a Biological association network, the identified differentially expressed genes were uploaded to the 
STRING database (https://string-db.org/)9. The search criteria were set to include only interactions within the 
same species (“Homo sapiens”) and a minimum interaction score of 0.9. Unconnected nodes were excluded to 
maintain network simplicity. The resulting Biological association network was then imported into Cytoscape 
software (version 3.7.1) for further analysis. Three topological analysis algorithms, namely Maximal Clique 
Centrality (MCC), Closeness Centrality, and Maximal Neighborhood Component (MNC), were applied via 
the cytoHubba plugin to identify key hub genes within the network. Each algorithm identified the top 10 most 
central genes. These sets of genes were subsequently compared using a Venn diagram to identify the genes 
identified as central by all three algorithms.

Machine learning screening of core genes
In order to find the key immune genes that are closely related to sepsis, we try to use machine learning methods 
to screen from gene expression data. This approach helps us to process high-dimensional data and identify 
the gene features that are most important for the disease state. This study employed four machine learning 
algorithms—random forest, support vector machine (SVM), Lasso regression, and XGBoost—to identify key 
genes associated with sepsis. Random forest, an ensemble learning method, constructs multiple decision trees 
and aggregates their predictions to enhance model accuracy and robustness10. SVM, a supervised learning 
algorithm, seeks the optimal hyperplane to maximize the margin between classes. Feature selection is performed 
through cross-validation to optimize model performance11. LASSO regression is a linear regression model 
incorporating L1 regularization to induce sparsity and feature selection12. XGBoost is a gradient-boosting-based 
ensemble method known for its efficiency and performance13. In this study, we used screened differentially 
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Fig. 1. Workflow of the study. RNA sequencing was performed on peripheral blood samples from sepsis 
patients and healthy controls. Differentially expressed genes (DEGs) were identified using DESeq2. Immune-
related genes were retrieved from the ImmPort database. Overlapping genes between DEGs and immune genes 
were used for downstream analyses. Biological association network was constructed and analyzed using MCC, 
Closeness, and MNC algorithms. Four machine learning techniques (Random Forest, LASSO regression, 
SVM, and XGBoost) were used to identify key genes. Immune infiltration and GSEA enrichment analyses were 
conducted on these key genes. A diagnostic model was developed to predict sepsis. Single-cell sequencing was 
used to determine the cellular localization of the key genes. Finally, qPCR validated the expression levels of 
these genes.
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expressed immune-related genes as input to the machine learning algorithm. The screened gene expression data 
were normalized to ensure comparable data. Next, we constructed a feature matrix, where each row represents 
a sample, each column represents the expression value of a differential gene, and each sample is assigned a 
corresponding label (0 for healthy controls and 1 for septic patients) for the training of the machine learning 
model. Subsequently, the aforementioned machine learning algorithms were implemented using R language 
(version 4.4.1) to identify potential sepsis-associated core genes. The core genes identified by each algorithm 
were subjected to intersection analysis, and the overlapping genes were visualized using Venn diagrams.

Immune cell distribution
This study utilized CIBERSORTx, a deconvolution algorithm based on linear support vector regression, 
to estimate the relative abundance of various immune cell types within the mixed cell populations of sepsis 
patients14. RNA sequencing data was uploaded to the CIBERSORTx platform (https://cibersortx.stanford.edu/) 
to evaluate the presence and proportions of different immune cell types. The analysis employed the official LM22 
signature matrix, encompassing the reference gene expression profiles for 22 human immune cell types. To 
enhance the reliability of the results, “Absolute Mode” was selected with 1000 permutations. To further investigate 
the relationship between the identified key genes and immune cell populations, the CIBERSORTx analysis 
results were imported into the R environment (version 4.4.1) for additional analysis. Spearman’s rank correlation 
coefficients were calculated using the cor.test function to assess the strength and direction of the correlations 
between each core gene and each immune cell type. The significance of these correlations was evaluated using 
p-values. Finally, the CIBERSORTx analysis results were visualized using the ggplot2 and pheatmap libraries 
within R version 4.4.1.

Expression of key genes and GSEA enrichment analysis
To explore the potential functions and associated signaling pathways of key genes identified in sepsis, we 
performed single-gene GSEA and gene expression analysis.Gene Set Enrichment Analysis (GSEA) is a 
computational method for determining whether a predefined set of genes is significantly enriched at the 
extremes of a list of sequenced genes, and thus for hypothesizing that the set of genes may be be involved in 
a biological process or signaling pathway. Specifically, single-gene GSEA is based on the principle of grouping 
samples according to the expression of a target gene (high and low expression groups), and then sorting the 
expression data of all genes to determine the expression patterns of other genes in samples with high or low 
expression of the target gene. Next, we performed enrichment analysis on predefined sets of functional genes 
(e.g., the KEGG gene set in the MSigDB database) to see whether these gene sets were significantly enriched at 
the top or bottom of the sequencing to hypothesize the biological pathways and functions that may be associated 
with this target gene15;16.

First, we entered the RNA sequencing data mentioned above as input data into R language 4.4.1, and then 
we targeted each key gene (CD4, HLA-DOB, HLA-DRB1, HLA-DRA, AHNAK) using the ‘Signal2Noise’ in R 
4.4.1 ' mode for GSEA analysis using 1,000 gene alignments and setting FDR q-value < 0.25 and p-value < 0.05 
as significance criteria to identify enriched signaling pathways, and finally generating enrichment Bubble 
Diagram using the enrichplot package to visualize the enrichment in different signaling pathways. In addition, 
we analyzed the expression levels of key genes using the DESeq2 package, while violin plots were drawn using 
the ggplot2 package to demonstrate the differential expression of key genes between the normal control (NC) 
and sepsis groups (SEPSIS).

Construction and screening of diagnostic models
This study employed four machine learning algorithms implemented in Python to construct and evaluate a 
sepsis detection model: logistic regression, AdaBoost, K-Nearest Neighbors (KNN), and XGBoost. The RNA 
sequencing data were first loaded and transposed. Labels were then added to each sample based on group 
assignment, with “0” representing the NC group and “1” representing the SEPSIS group. To ensure balanced 
and randomized training and testing sets, the data was split in a 6:4 ratio. Four algorithms were used to build 
and train the model on the training set: logistic regression, AdaBoost, KNN, and XGBoost. Logistic regression, 
a linear model for binary classification, learns the relationship between features and labels to classify samples17. 
AdaBoost, an ensemble learning method, combines multiple weak learners (e.g., decision trees) to enhance 
model accuracy18. KNN, a nonparametric classification algorithm, assigns class labels based on distance metrics 
between samples. In this case, the K nearest neighbors determine the classification19. XGBoost, a distributed 
gradient boosting algorithm, builds and combines multiple weak learners to improve overall model performance 
and accuracy. Specific hyperparameters were defined for each algorithm: L2 regularization was applied in logistic 
regression, AdaBoost used a decision tree base learner with 100 iterations, KNN employed 5 neighbors for 
classification, and XGBoost utilized a learning rate of 0.3 with a maximum tree depth of 6. Following training, 
each model’s performance on the test set was evaluated using precision-recall curves, ROC curves, AUC values, 
and calibration curves. Calibration curves assess whether predicted probabilities correspond to actual outcomes. 
To further evaluate the robustness and generalization ability of the constructed machine learning models 
on external datasets, we selected the public dataset GSE65682 for external validation. Training and internal 
validation of the models were done on a previous training set, while independent testing was performed on an 
external dataset. Additionally, decision curve analysis evaluated the net benefit of each model across different 
classification thresholds. The DeLong test was used to compare the AUC values of all four models to determine 
the best-performing model. Finally, SHAP (SHapley Additive exPlanations) values were employed for the top 
model to interpret its decision-making process. SHAP values quantify the influence of each feature on the 
model’s output, allowing the identification of genes with the most significant impact on model predictions.
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Single-cell sequencing
To further explore the specific immune cell types and their expression patterns of the identified key genes in 
sepsis, we performed single-cell RNA sequencing analysis. This approach allowed us to understand the cellular 
context and heterogeneity of these key genes at the single-cell level, thereby revealing the potential role of 
each immune cell subtype in the immune response to sepsis. 10× Genomics single-cell RNA sequencing was 
performed on each sample. Cell Ranger, the proprietary software from 10× Genomics, was utilized to assess 
the quality of each sample. Quality control metrics, such as the number of high-quality cells, detected genes, 
and genome alignment rate, were generated by comparing raw data reads to the reference genome. Following 
this initial quality assessment, further filtering steps were implemented to remove multicellular, bicellular, and 
non-cellular events from the experimental data. Single-cell transcriptome sequencing was then performed. 
This technique utilizes unique molecular identifiers (UMIs) and cell barcodes alongside identified transcript 
sequences to determine the precise count of each transcript molecule within an individual cell. To visualize 
the dimensionality reduction results derived from the mutual nearest neighbors (MNN) method for clustering 
single-cell populations, the t-SNE algorithm was employed. This analysis ultimately identified the optimal cell 
clusters for further investigation. Marker genes are characterized by high expression within a specific cell type 
and minimal expression in other cell clusters. They are essentially up-regulated in a particular cell population 
compared to others. The bimod test was used to identify marker genes specific to each cell population by 
comparing the expression profiles of these populations to all remaining populations. Cell type annotation 
was performed using the SingleR package and the HPCA reference dataset20. This technique assigns cell types 
based on the strongest correlation with a reference dataset. It accomplishes this by calculating the correlation 
between the single-cell reference expression profiles and the expression profiles of the target cells. Following 
the gene expression analysis at the single-cell level within peripheral blood cells, a two-dimensional t-SNE map 
was generated to visualize the cellular distribution. These cell populations were initially classified based on 
established cell type markers, including monocytes, natural killer (NK) cells, T cells, and B cells.

LPS inflammatory cell modeling and q-PCR experiments
To validate the expression of key genes in a simulated sepsis model, we performed in vitro experiments using 
LPS-stimulated THP-1 human monocytic leukemia cells. THP-1 cells were seeded into 6-well plates (3.0 × 105 
cells/well) and cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum and 1% penicillin-
streptomycin. To induce macrophage differentiation, cells were treated with 50 ng/mL PMA for 24 h. Afterward, 
the medium was replaced with a fresh RPMI-1640 medium for maintenance. Transfection assays involved 
adding 125 µL Opti-MEM® medium without antibiotics or serum, followed by 100 pmol siRNA and 4 µL 
Lipo8000™ Transfection Reagent. The mixture was incubated at room temperature for 20 min before being added 
to the wells. After 24 h, cells were stimulated with 100 ng/mL LPS for 24 h to mimic a sepsis model. Following 
cell processing, total RNA was extracted using RNAiso Plus reagent and quantified using a Nanodrop 2000 
spectrophotometer. cDNA synthesis was performed by reverse transcription using the PrimeScript™ RT reagent 
Kit with gDNA Eraser (Perfect Real Time) following the manufacturer’s protocol (15  min at 37  °C, 5 sec at 
85 °C, hold at 4 °C). PCR was performed using the PerfectStart® Green qPCR SuperMix kit and the qTOWER 
3G Real-Time PCR System. The qPCR reaction mixture contained 3.6 µL water, 5 µL 2× SuperMix, 0.2 µL each 
of forward and reverse primers, and 1 µL template cDNA. The PCR program consisted of an initial denaturation 
step (94 °C for 30 s) followed by 40 cycles of denaturation (94 °C for 5 sec) and annealing/extension (60 °C 
for 30 s). Gene expression levels were assessed in triplicate biological replicates. Relative gene expression was 
calculated using the 2-ΔΔCt method. Data analysis and visualization were performed using R version 4.4.1. 
Violin plots were generated to depict the expression levels of key genes in both the NC and SEPSIS groups, with 
statistical significance determined by t-tests.

Results
Differential gene screening and immune gene acquisition
To explore the differences in gene expression between sepsis patients and healthy populations, we performed 
a differential gene screen to identify gene expression patterns that were significantly different between the two 
groups, which in turn identified immune genes associated with sepsis. PCA of gene expression data revealed 
a clear separation between the NC and SEPSIS groups along principal components 1 (PC1) and 2 (PC2), 
accounting for 58.1% and 8.2% of the variance, respectively (Fig. 2A). This indicates distinct gene expression 
patterns between the two groups. Querying the ImmPort database identified 1,793 immune-related genes. 
Differential expression analysis identified 5,148 genes with significant changes in expression levels, including 
822 upregulated and 4,326 downregulated genes (Fig. 2B). In addition, limma differential analysis identified 
a total of 5636 differentially expressed genes (890 up-regulated and 4746 down-regulated). The volcano plot 
(Fig. 2B) visualized the significance and fold change of differentially expressed genes. Notably, genes such as 
CD4, HLA-DOB, HLA-DRB1, HLA-DRA, and AHNAK exhibited significant downregulation, while CD177 
showed significant upregulation in the sepsis group. To identify immune genes associated with sepsis, a Venn 
plot (Fig. 2C) was constructed. This analysis revealed 358 genes potentially crucial for the immune response 
to sepsis and linked to sepsis-related immune functions. Finally, a heatmap (Fig. 2D) depicted the expression 
patterns of a subset of differentially expressed genes across different samples, providing a visual representation of 
their expression variation. In the analysis of key genes such as AHNAK, HLA-DOB, HLA-DRB1, HLA-DRA and 
CD4, we applied DESeq2 and limma methods respectively and compared the Fold Change (FC) and adjusted 
p-values of the two. The results showed that DESeq2 and limma were basically consistent in terms of p-value, 
and both could significantly differentiate these key genes between the sepsis and control groups. However, on FC 
estimation, limma had slightly higher FC values for these genes(Table 1).
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Network analysis
To understand the interactions between sepsis-related genes, we constructed a biological association network 
to identify core genes that may play key roles in the pathophysiological mechanisms of sepsis. After removing 
isolated nodes, the Biological association network consisted of 354 nodes and 339 edges, with CD4, HLA-DOB, 
HLA-DRB, HLA-DRB1, and AHNAK occupying central positions (Fig.  3A). To characterize the Biological 
association network topology in greater detail, three centrality algorithms—MCC, Closeness Centrality, and 
MNC—were employed to identify key network hubs (Fig. 3B-D). By integrating the results of these algorithms 

Gene

DESeq2 limma

log2 FC Adj.Pval log2 FC Adj.Pval

AHNAK -2.03910555 2.52E-05 -2.039382943 3.444E-05

HLA-DOB -2.214074852 7.96E-08 -2.144355931 3.43514E-05

HLA-
DRB1 -2.86628613 2.79E-04 -2.881323693 0.000410655

HLA-DRA -2.203148241 3.12E-02 -2.207214146 3.24509E-05

CD4 -2.70726075 1.55E-05 -2.716740548 2.33809E-05

Table 1. Key genes in DESeq2 and limma analyses.

 

Fig. 2. Identification of overlapping genes. (A) Principal component analysis (PCA) demonstrating distinct 
clustering of normal control (NC) and sepsis samples along PC1 and PC2 axes. (B) Volcano plot illustrating 
differentially expressed genes, with upregulated genes in red, downregulated genes in blue, and non-
significant genes in grey. (C) Venn diagram depicting the intersection of differentially expressed sepsis genes 
and immune-related genes from the ImmPort database. (D) Heatmap visualizing the expression patterns of 
differentially expressed genes across samples, with color intensity representing gene expression levels.
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using Venn plots (Fig. 3E), CD4, HLA-DOB, HLA-DRB, and HLA-DRB1 were identified as shared core genes, 
suggesting their consistent importance within the Biological association network. These core genes may play 
critical roles in the initiation and progression of sepsis, providing a strong foundation for further investigations 
into the underlying mechanisms. By identifying these core genes, we expect to be able to provide valuable gene 
candidates for future targeted therapy studies.

Machine learning screening of core genes
To further screen for key genes significantly associated with sepsis, we used four machine learning algorithms. 
By machine learning modeling of data from these differentially expressed immune genes, we expect to identify 
important genes that are significant in sepsis prediction or diagnosis. Each of the four machine learning 
algorithms identified genes with distinct biological characteristics (Table 2). The Random Forest model exhibited 
a gradual decrease in error rate during iterations, eventually stabilizing at a low level (Fig. 4A). Gene importance 
analysis revealed multiple key genes within this model (Fig. 4B). To optimize the SVM model, cross-validation 
was employed to assess the impact of varying feature numbers on model performance. Results indicated a 
significant increase in accuracy up to 96.7% with an increasing number of features (Fig. 4C). Conversely, the 
error rate assessment identified an optimal feature number of 10, corresponding to a minimum error rate of 
0.0333 (Fig. 4E). In the Lasso regression model, most of the regression coefficients gradually approach zero as the 
Log Lambda value increases, showing the effect of regularization(Fig. 4F).LASSO regression analysis determined 
optimal model parameters by adjusting the lambda value (Fig. 4G) and identified key genes. XGBoost analysis 
highlighted AHNAK as the most critical gene in sepsis (Fig. 4H). A Venn plot (Fig. 4D) was generated, illustrating 
the overlap in feature genes identified by the four algorithms. Notably, AHNAK was consistently identified by 

Random Forest SVM Lasso XGBoost

AHNAK
JAK2
SEMA4F
LGR6
PLXNA1
NRP1
TGFB3
CLCF1
FGFRL1
SEMA4C

HTR3A
CR2
AKT1
PDGFB
AHNAK
IL1R1
CD1C
TGFB3
ACKR2
CCR3

CCR3
CD1C
CD22
DES
AHNAK
HTR3A
INSL6
NR1D1
NRP1
PDGFB

AHNAK
CD4
ACKR3
ACVR2B
CCR3
HGF
PLXNA4

Table 2. Top10 genes screened by four algorithms.

 

Fig. 3. Biological association network and key gene identification. (A) Biological association network 
visualization, with nodes representing proteins and edges representing interactions. Isolated nodes are 
excluded. (B) Top 10 gene sub-networks identified by the Maximal Clique Centrality (MCC) algorithm. 
Node color indicates gene significance (red: high, yellow: low). (C) Top 10 gene sub-networks identified by 
Closeness Centrality. Node color indicates gene significance (red: high, yellow: low). (D) Top 10 gene sub-
networks identified by the Maximal Neighborhood Component (MNC) algorithm. Node color indicates gene 
significance (red: high, yellow: low). (E) Venn diagram illustrating the overlap of core genes identified by the 
MCC, Closeness, and MNC algorithms. Four genes are shared by all three methods.
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all models, suggesting its potential significance in sepsis pathogenesis. Through the screening of these machine 
learning algorithms, we hope to find key genes that can significantly differentiate between sepsis and healthy 
states, thus enhancing the possibility of early diagnosis and precise treatment of sepsis.

Immune cell distribution
In order to explore the composition of different immune cells and their association with key genes in blood 
samples from sepsis patients, we performed an immune cell distribution analysis. By this method, we hope 
to reveal the interactions between immune cells and key genes involved in the pathological process of sepsis. 
Immune cell distribution revealed distinct differences in immune cell composition between sepsis and control 
groups (Fig. 5B). Figure 5A illustrates a positive correlation between the HLA-DRB1 gene and immune cell types, 
including T-cell CD4 memory quiescence, NK cell activation, and M1 macrophages. Figure 5C and D depict the 
relationships between HLA-DRA, AHNAK, and immune cell subsets. HLA-DRA exhibited positive associations 
with resting memory CD4 T cells, activated NK cells, and M1 macrophages, and negative associations with γδ 

Fig. 4. Machine learning analysis and feature selection. (A) Error rate of the Random Forest model across 
increasing numbers of trees. (B) Gene importance scores determined by the Random Forest model. (C) 
Accuracy of the Support Vector Machine (SVM) model using 5-fold cross-validation with varying feature 
numbers. (D) Venn diagram illustrating the overlap of key genes identified by Random Forest, SVM, Lasso 
regression, and XGBoost. (E) Error rate of the SVM model using 5-fold cross-validation with varying feature 
numbers. (F) Changes in regression coefficients for different Log Lambda values in the Lasso regression 
model. (G) LASSO regression model performance with varying lambda values. (H) Gene importance scores 
determined by the XGBoost model.
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T cells. AHNAK primarily positively correlated with resting memory CD4 T cells and activated NK cells. The 
associations between HLA-DOB, CD4, and immune cell types are presented in Fig. 5E and F, respectively. HLA-
DOB exhibited strong positive correlations with dendritic cell and NK cell activation, while CD4 demonstrated 
positive associations with resting memory T cells and NK cell activation. These findings suggest that CD4, HLA-
DOB, HLA-DRB, HLA-DRB1, and AHNAK are significantly associated with immune cell distribution and may 
play crucial roles in the immunopathogenesis of sepsis, warranting further investigation into the underlying 
immune mechanisms.

Expression of key genes and GSEA enrichment analysis

Construction and screening of diagnostic models
In order to achieve early diagnosis of sepsis, we constructed diagnostic models based on four machine learning 
algorithms (AdaBoost, KNN, Logistic regression and XGBoost). By training and screening these models, we 
expect to find the best model that can predict sepsis with high accuracy. We employed four machine learning 
algorithms (AdaBoost, KNN, Logistic Regression, and XGBoost) to identify the optimal diagnostic model for 
sepsis. Performance metrics for each model are summarized in Table 3. Model performance was evaluated using 
ROC curves and AUC values for training and test data. Figure 7A-D depict the ROC curves for each model 
on the training set, with all models achieving an AUC of 1.00, suggesting perfect performance on training 
data. Figure 7E-H show the ROC curves for each model on the test set. Here, the KNN model achieved the 
highest AUC of 0.99, while AdaBoost, Logistic Regression, and XGBoost achieved AUCs of 0.88, 0.97, and 0.75, 
respectively. The classification performance of four machine learning models was evaluated on the external 
validation set GSE65682. The results show that the ROC curves of these models on the external dataset perform 
differently, but generally exhibit high AUC values, indicating that the models have some differentiation ability. 
Models with AUC values close to 1 perform better, indicating that their predictions on the external validation 
set are better, thus validating the robustness and generalization ability of the models(Figs.  7I-L). To further 
assess model generalizability and reliability, calibration and decision curve analyses were performed (Fig. 8A-
H). Calibration curves illustrate the agreement between predicted and actual probabilities. AdaBoost, KNN, 
and Logistic Regression models displayed closer agreement, while the XGBoost model showed slightly poorer 

Fig. 5. Immune cell distribution. (A) Bubble plot showing the correlation between HLA-DRB1 gene expression 
and immune cell type abundance. (B) Stacked bar plot illustrating the distribution of immune cell types in 
sepsis and control groups. (C) Scatter plot depicting the relationship between HLA-DRA gene expression and 
immune cell type abundance. (D) Bubble plot showing the correlation between AHNAK gene expression and 
immune cell type abundance. (E) Bubble plot showing the correlation between HLA-DOB gene expression 
and immune cell type abundance. (F) Bubble plot showing the correlation between CD4 gene expression and 
immune cell type abundance.
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Fig. 6. Gene Set Enrichment Analysis (GSEA) and gene expression. Figures A-E demonstrate the enrichment 
of key genes (AHNAK, CD4, HLA-DOB, HLA-DRA, HLA-DRB1) in different KEGG pathways. The horizontal 
coordinate is the GeneRatio, which indicates the proportion of target genes included in each pathway to the 
total number of genes, and a larger value indicates that the gene is more enriched in that pathway. The vertical 
coordinate is the name of the KEGG pathway enriched. The size of the point indicates the number of genes in 
the pathway (Count), the larger the point indicates that the pathway contains more relevant genes; the color 
shade indicates the corrected p-value (p.adjust), the darker the color indicates the higher the enrichment 
significance.(F) Violin plots comparing gene expression levels of key genes (AHNAK, CD4, HLA-DRA, HLA-
DRB1, HLA-DOB) between normal control (NC) and sepsis (SEPSIS) groups. Red: sepsis group; blue: normal 
control group. *** indicates p-value < 0.001.
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Fig. 8. Model calibration and clinical utility. (A-D) Calibration curves for AdaBoost, Logistic Regression, 
K-Nearest Neighbors, and XGBoost models, assessing the agreement between predicted and observed 
probabilities. (E-H) Decision curves for AdaBoost, Logistic Regression, K-Nearest Neighbors, and XGBoost 
models, evaluating the net benefit of using each model at different probability thresholds.

 

Fig. 7. Receiver Operating Characteristic (ROC) curves. (A-D) ROC curves for Logistic Regression, 
AdaBoost, K-Nearest Neighbors (KNN), and XGBoost models on the training dataset. (E-H) ROC curves for 
the same models on the test dataset. Solid lines represent model performance, while dashed lines represent 
random classifier performance. Figures (I-L) show the ROC curves of the four machine learning models on the 
external validation set (GSE65682) for evaluating the classification performance of the models on the external 
dataset.

 

Model Mean Accuracy CI Lower Accuracy CI Upper Accuracy

Logistic Regression 0.885571429 0.642857143 1

AdaBoost 0.961642857 0.785714286 1

KNN 0.971214286 0.857142857 1

XGBoost 0.957857143 0.785714286 1

Table 3. Bootstrap accuracy results.
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calibration. Decision curve analysis evaluates the net benefit of using a model at different probability thresholds. 
AdaBoost, KNN, and Logistic Regression models displayed higher net benefit across most probability ranges 
than XGBoost. We further evaluated statistical differences in AUC values using the DeLong test (Fig. 9A). The 
results revealed significant differences (p < 0.05) between AdaBoost and KNN, KNN and Logistic Regression, 
as well as between Logistic Regression and XGBoost. Based on these analyses, the KNN model emerged as the 
optimal choice with the highest AUC (0.99) on the test set, superior calibration and decision curve characteristics, 
indicating strong predictive performance and generalizability. Therefore, the KNN model was identified as the 
most reliable tool for early sepsis diagnosis with high accuracy and stability. Figure 9B depicts the distribution of 
SHAP values for each key gene in the KNN model. SHAP values represent the importance and influence of each 
gene on the model’s output. The figure highlights AHNAK as the gene with the most significant influence on the 
model’s predictions. By constructing and screening diagnostic models, we aim to provide a reliable tool for the 
clinical diagnosis of sepsis, which will help to improve the efficiency of early diagnosis of sepsis and reduce the 
morbidity and mortality.

Single-cell sequencing
To understand the expression characteristics and cell type specificity of key genes in the peripheral blood of 
sepsis patients, we performed single-cell RNA sequencing analysis. With this analysis, we expect to determine 
the distribution of these key genes in different immune cells in order to reveal their specific roles in sepsis 
immunomodulation. We successfully processed five single-cell transcriptome sequencing samples. Following 
dimensionality reduction and clustering, nine cell groups were identified, comprising five distinct cell types: 

Fig. 9. Model evaluation and interpretation. (A) Heatmap illustrating p-values from the DeLong test 
comparing the AUC values of four machine learning models. (B) SHAP value plot visualizing the impact of 
significant genes on model predictions (red: high impact, blue: low impact). (C) Cell type identification: Cells 
3 and 5 are macrophages, cell 4 is a natural killer cell, cells 1, 2, 6, and 8 are T cells, cell 7 is a B cell, and cell 9 is 
a platelet.
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macrophages (clusters 3 and 5), natural killer cells (cluster 4), T cells (clusters 1, 2, 6, and 8), B cells (cluster 7), 
and platelets (cluster 9) (Fig. 9C). Single-cell sequencing data revealed a broad expression pattern for HLA-DRB1 
and AHNAK across multiple immune cell types (Fig. 10A, E). In contrast, CD4 expression was predominantly 
observed in macrophages and T cells (Fig.  10C), while HLA-DOB and HLA-DRA were primarily expressed 
in macrophages and B cells (Fig. 10B, D). Violin plots illustrating the expression distribution of HLA-DRB1, 
HLA-DRA, CD4, HLA-DOB, and AHNAK across different immune cell types are presented in Fig. 10F. These 
findings indicate that the investigated key genes are actively expressed within various immune cell populations 
and may play critical roles in the pathophysiological mechanisms underlying sepsis. The results of the single-cell 
analysis complemented our overall RNA sequencing and machine learning results, revealing the distribution 
and expression levels of key genes in specific immune cell populations. This detailed cellular analysis helps 
validate the biomarkers we identified and provide a comprehensive understanding of the immune environment 
in sepsis, providing potential targets for future therapeutic interventions.

Validation of q-PCR experiments
To validate the expression patterns of key genes screened in sepsis patients, we performed qPCR experiments. 
With this experiment, we expect to confirm the down-regulation trend of the expression of these genes in sepsis 
patients to further support their potential diagnostic and therapeutic value in sepsis. Primer sequences are 
shown in Table 4. Gene expression was assessed in triplicate biological replicates, and statistical significance 
was determined using t-tests. qPCR analysis revealed significantly reduced mRNA levels of five key genes (CD4, 
AHNAK, HLA-DRB1, HLA-DRA, and HLA-DOB) in the sepsis group compared to the control group (p < 0.001 

Fig. 10. Single-cell gene expression and qPCR validation. (A-E) Single-cell gene expression patterns for 
key genes: HLA-DRB1 and AHNAK exhibit broad expression across multiple immune cell types, CD4 is 
primarily expressed in macrophages and T cells, while HLA-DOB and HLA-DRA are predominantly found 
in macrophages and B cells. (F) Violin plots illustrating gene expression distribution across different immune 
cell types. (G) Comparative gene expression analysis between sepsis and control groups, demonstrating 
significantly reduced expression of all key genes in the sepsis group (p < 0.001).
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for all genes). These findings corroborate the previously observed gene expression patterns, further supporting 
the potential significance of these genes in sepsis pathogenesis(Fig. 10G).

Discussion
This study aimed to elucidate the molecular underpinnings and critical genes implicated in sepsis through 
a comprehensive analysis of RNA sequencing, immune cell infiltration, machine learning, and single-cell 
sequencing data. Five key genes—CD4, HLA-DOB, HLA-DRB1, HLA-DRA, and AHNAK—were identified 
as significantly differentially expressed in sepsis patients. These genes were found to be integral components 
of signaling pathways associated with immune response and inflammation. Our findings suggest a strong 
association between the downregulation of these genes and immune dysfunction, as well as disease severity in 
sepsis. These results provide a foundation for further research exploring the potential of these genes as diagnostic 
and therapeutic targets for sepsis.

The CD4 gene exhibited significant downregulation in this study, particularly in qPCR validation, where 
its expression was markedly lower in the sepsis group compared to the normal control group (p < 0.001). CD4 
protein is a critical marker for helper T cells, which play a pivotal role in the immune response. Through 
cytokine release and paracrine signaling, CD4+ T cells enhance antibody production by B cells and stimulate 
macrophage-mediated pathogen clearance21. immune cell distribution demonstrated a strong correlation 
between CD4 and resting memory CD4+ T cells. These findings suggest that CD4 downregulation may impair T 
helper cell function, leading to a weakened immune response and increased susceptibility to infection and organ 
dysfunction. Moreover, GSEA revealed the enrichment of CD4 within T-cell receptor signaling and antigen 
presentation pathways, emphasizing its crucial role in immune response. Single-cell sequencing confirmed 
the predominant expression of CD4 in macrophages and T cells, aligning with its established role in immune 
regulation.

HLA-DOB and HLA-DRB1 genes were also significantly downregulated in sepsis patients. Single-cell 
sequencing revealed predominant expression of HLA-DOB in macrophages and B cells, while HLA-DRB1 
exhibited a broader distribution across multiple immune cell types. Both genes are integral to antigen 
presentation. HLA-DOB and HLA-DRB1 collaborate in the assembly and function of MHC class II molecules, 
facilitating the presentation of exogenous antigens to antigen-presenting cells and thereby initiating specific 
immune responses22;23. Downregulation of these genes may compromise antigen presentation, impairing 
the immune system’s ability to recognize and eliminate pathogens. immune cell distribution demonstrated 
a significant association between HLA-DRB1 and the inactivation of CD4 memory T cells, as well as the 
activation of NK cells and M1 macrophages, suggesting potential impacts on these cell types. Additionally, 
GSEA enrichment analysis confirmed the involvement of HLA-DOB and HLA-DRB1 in antigen processing, 
presentation, and immune system processes, reinforcing their critical role in immune regulation. qPCR analysis 
validated the significant downregulation of HLA-DOB and HLA-DRB1 in sepsis patients compared to healthy 
controls (p < 0.001), emphasizing their involvement in sepsis pathogenesis.

The HLA-DRA gene exhibited significant downregulation in sepsis patients, as confirmed by qPCR 
validation (p < 0.001). Single-cell sequencing localized HLA-DRA predominantly to macrophages and B cells. 
As a component of MHC class II molecules, HLA-DRA plays a critical role in antigen presentation. Research 
indicates that HLA-DRA enhances chemokine production (CCL5, CXCL9, CXCL10) within the tumor 
immune microenvironment, promoting an anti-tumor immune response by facilitating CD4+ and CD8+ 
T cell infiltration24. Furthermore, fluctuations in serum HLA-DRA levels can reflect the immune status in 
sepsis patients, with decreased levels potentially contributing to impaired T cell differentiation25. immune cell 
distribution revealed a strong association between HLA-DRA and the quiescence of CD4 memory T cells, the 
activation of NK cells, and the presence of M1 macrophages, suggesting its involvement in regulating these 
immune cell populations. GSEA confirmed the enrichment of HLA-DRA in immune system processes and 
antigen presentation pathways, emphasizing its critical role in immune function. These findings collectively 
suggest that HLA-DRA downregulation may profoundly impact immune function in sepsis patients.

The AHNAK gene exhibited significant downregulation in sepsis patients, as confirmed by qPCR validation 
(p < 0.001). Single-cell sequencing revealed a broad distribution of AHNAK expression across various immune 
cell types, with a particular abundance in macrophages and T cells. This gene encodes a large protein involved 

Primer Name Sequence(5’-3’) Product length

CD4-F  A T G C T G G C T C T G G A A A C C T C

CD4-R  C G A G A C C T T T G C C T C C T T G T 185

HLA-DRB1-F  A G A G A A G A C T G G G G T G G T G T

HLA-DRB1-R  T C C G A G G A A C T G T T T C C A G C 89

HLA-DOB-F  C C A C T C C T G C A C C A G C A T A A

HLA-DOB-R  C T G C C C A T T C A G G A A C C A C T 139

AHNAK-F  G G G A G C G A T G A T G A G A C A G G

AHNAK-R  A A A C T G A C A G C T C C A C C T C G 90

HLA-DRA-F  C C T G A C C A A T C A G G C G A G T T

HLA-DRA-R  G T T G G C C A A T G C A C C T T G A G 179

Table 4. Primer sequence.
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in crucial cellular processes such as cell signaling and cytoskeletal organization. Studies have demonstrated its 
critical role in calcium signaling and cytoskeletal remodeling26;27. Notably, the AHNAK gene was consistently 
identified by all four machine learning models employed, highlighting its potential as a diagnostic and prognostic 
marker for sepsis. immune cell distribution revealed a strong correlation between AHNAK expression and 
specific immune cell populations, including quiescent CD4 memory T cells and activated NK cells. These 
findings suggest that AHNAK plays a crucial role in modulating the function and structure of these immune cells. 
Furthermore, GSEA identified significant enrichment of AHNAK within pathways associated with cell signaling 
and cytoskeletal organization, suggesting a potential key role in cellular communication and maintaining 
structural integrity. The qPCR experiments confirmed the strong correlation between AHNAK expression and 
the quiescence of CD4 memory T cells and activation of NK cells observed in single-cell sequencing data. This 
qPCR validation further supports the downregulation of AHNAK in sepsis patients and suggests its potential 
involvement in disease progression.

This study investigated the expression and functional alterations of key genes in sepsis through a multi-
faceted approach encompassing RNA sequencing, immune cell infiltration, machine learning, and single-cell 
sequencing. The downregulation of identified key genes was found to be associated with sepsis pathogenesis, 
suggesting their potential as diagnostic and prognostic biomarkers. In contrast to previous conventional studies, 
this study integrated multiple advanced techniques to provide a comprehensive analysis of gene expression and 
function. Previous studies have revealed significant genetic differences between sepsis patients and healthy 
controls through comparative gene expression analysis, and these genes have value as potential diagnostic and 
therapeutic targets. For example, one study identified the critical role of FYN and CD247 in sepsis through a 
bioinformatics approach and demonstrated an association between these genes and patient survival28. However, 
these analyses failed to completely elucidate the potential functions of these genes in the pathomechanism of 
sepsis and remain deficient in the in-depth functional exploration of gene interactions. Our findings not only 
corroborate existing knowledge regarding immunosuppression in sepsis but also elucidate the mechanistic roles 
of specific genes. The systematic integration of cutting-edge technologies employed in this study offers a novel 
perspective on the molecular underpinnings of sepsis and provides a robust foundation for future diagnostic 
and therapeutic strategies.

While this study employed a multi-faceted approach utilizing cutting-edge technologies to reveal the 
expression and functional changes of key genes in sepsis, some limitations warrant consideration. Firstly, the 
relatively small sample size employed may limit the generalizability of the findings and the statistical power to 
detect significant associations. In particular, it will bring a certain risk of bias to the training of machine learning 
models. In order to minimize the potential bias due to sample imbalance, we adopt data augmentation and 
stratified sampling strategies in machine learning model construction. Through these methods, we ensure that 
each machine learning algorithm can be adequately trained based on its own features, and maintain a reasonable 
ratio between the training and test set division. Secondly, the study primarily relied on RNA sequencing and 
immune infiltration analyses. These techniques, while valuable, do not fully elucidate the intricate mechanisms 
of gene regulation and protein expression in sepsis. To definitively establish the clinical significance of the 
identified key genes, comprehensive multi-omics analyses encompassing DNA methylation, protein-protein 
interactions, and metabolomics data, along with large-scale clinical trials, are necessary.DESeq2 and limma 
methods each have their own characteristics in terms of their applicability to differential expression analysis.
DESeq2 has an advantage in correcting for between-sample variability, making it more reliable in calculating 
p-values for small sample data. However, as can be seen from the results of our comparisons, DESeq2 is slightly 
low in Fold Change (FC) estimation, e.g., the log2 FC of HLA-DRB1 is -2.87 in DESeq2, while it is -2.88 in 
limma. limma, by contrast, is more stable in FC estimation, which makes it particularly suitable for small-sample 
RNA sequencing data. To ensure the robustness of the results of this study, we retained the p-value calculations 
of DESeq2 and combined them with the FC estimation of limma for a more comprehensive assessment of the 
differential expression characteristics of key genes. Additionally, efforts to integrate these findings into the 
existing diagnostic framework for sepsis hold promise for improved patient outcomes.

Data availability
The datasets used in this study are stored in the CNGBdb database and can be accessed via the following link: 
https://db.cngb.org/search/project/CNP0002611/. The datasets are publicly available and do not require special 
permissions for access.
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