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Influenza A Virus H7 nanobody recognizes
a conserved immunodominant epitope
on hemagglutinin head and confers
heterosubtypic protection

Zhao-Shan Chen1,2, Hsiang-Chi Huang2,3,4, Xiangkun Wang1, Karin Schön2,
Yane Jia1, Michael Lebens2, Danica F. Besavilla 2, Janarthan R. Murti2,
Yanhong Ji1, Aishe A. Sarshad 3,4, Guohua Deng5, Qiyun Zhu 1 &
Davide Angeletti 2,6

Influenza remains a persistent global health challenge, largely due to the virus’
continuous antigenic drift and occasional shift, which impede the develop-
ment of a universal vaccine. To address this, the identification of broadly
neutralizing antibodies and their epitopes is crucial. Nanobodies, with their
unique characteristics and binding capacity, offer a promising avenue to
identify such epitopes. Here, we isolate and purify a hemagglutinin (HA)-spe-
cific nanobody that recognizes an H7 subtype of influenza A virus. The nano-
body, named E10, exhibits broad-spectrum binding, cross-group
neutralization and in vivo protection across various influenza A subtypes.
Through phage display and in vitro characterization, we demonstrate that
E10 specifically targets an epitope on HA head which is part of the conserved
lateral patch and is highly immunodominant upon H7 infection. Importantly,
immunization with a peptide including the E10 epitope elicits cross-reactive
antibodies and mediates partial protection from lethal viral challenge. Our
data highlights the potential of E10 and its associated epitope as a candidate
for future influenza prevention strategies.

Influenza A (IAV) and B viruses are responsible for seasonal epidemics,
leading to 290,000 to 650,000 human deaths globally each year1–3.
Despite vaccination efforts, the continuous circulation of these viruses
in humans, coupled with their ability to rapidly mutate, poses a sig-
nificant ongoing public health threat. In addition, the current spreadof
H5N1 among various animal species, including cattle, is causing
widespread concerns4. Similarly, avian influenza A (H7N9), circulating

in birds and poultry, has led to over a thousand laboratory-confirmed
human infectionswith a case-fatality rate of approximately 39% though
human-to-human transmission has not been reported yet5,6. The H7N9
virus was first identified in China in March 20137–9, with its the largest
outbreak during the 5th epidemic wave in 2016–201710,11 characterized
by antigenic drift in the hemagglutinin (HA) protein. H7N9 may even
possess greater pandemic potential than H5N1, highlighting the
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urgency of developing effective therapeutic strategies12. Currently, the
antiviral treatment for H7N9 are limited to neuraminidase (NA)
inhibitors13. Vaccination remains the most effective way of preventing
IAV14 reducing the risk of illness by 40–60%15,16. However, it is crucial to
identify conserved sites of vulnerability in both human and avian
influenza viruses to develop antibody therapy or novel vaccines.

Influenza HA is the immunodominant surface glycoprotein of IAV
and targets of most of the antibody (Ab) response. HA can be broadly
divided into globular head and stem domains17. Most of the Ab
response is targeting variable regions such as the canonical antigenic
sites in HA head18–21. On the other hand, stem-specific Abs exhibit
higher binding breadth and are often capable of neutralizing several
IAV strains22,23. Indeed, cross-neutralizing stem Abs can provide a fur-
ther line of defense against the virus17,24,25. Of note, while Abs to HA-
head are mostly strain-specific, several broadly neutralizing HA-head
Abs have also been identified26–28, underscoring the importance of
targeting conserved epitopes in the development of universal vac-
cines.AmongbroadlyneutralizingHA-headAbs are those targeting the
receptor-binding site (RBS) and the lateral patch onH129,30. Yet, there is
limited knowledge about lateral patch-binding Abs upon H7N9
infection5. In general, the characterization of the epitopes of broadly
neutralizing antibodies has greatly aided the development of several
universal influenza vaccine candidates28,31,32.

Beside Abs, nanobodies33, derived from camelids, offer a pro-
mising alternative due to the small size (15 kDa)34, strong physical35 and
chemical stability36, and ability to access cryptic viral sites and enhance
tissue permeability37–40. Furthermore, nanobodies are easier to pro-
duce and are poorly immunogenic in humans41,42. A broadly neu-
tralizing nanobody targeting multiple influenza subtypes could be a
valuable addition to our therapeutic arsenal, particularly in the event
of a new pandemic43–45.

However, immunodominance in B cell responses often steers Ab
away from these conserved regions46, directing them to variable areas
of HA head instead. Therefore, understanding the mechanisms of
immunodominance is essential for refocusing Abs responses to
desired targets within HA47. While HA immunodominance in H1N1 and
H3N2 is well-characterized18,48,49, it remains largely unexplored in
H7N9, especially regarding how antigenic drift redirects B cell and Ab
response to H7N950,51. Indeed, absence of strongly immunodominant
sites may be beneficial in allowing the Ab response to more equally
spread across several targets.

In this work, startingwithH7HA alpaca immunization, we identify
a broadly neutralizing and broadly protective nanobody targeting the
lateral patch region of HA. Furthermore, immunization, with a peptide
spanning the corresponding epitope, elicits a cross-reactive, protec-
tive response. Our results provide a potential therapeutic tool and a
blueprint for designing an effective universal vaccine against influenza
viruses with pandemic potential.

Results
Generation and characterization of H7-specific nanobodies
The H7N9 virus is a rapidly evolving virus with similar pandemic
potential as H5N15,52, making it a particularly attractive, but challen-
ging, target to study. Indeed, previous studies on nanobodies have
primarily focused on H1N1 and H3N2 HA proteins25,30. We selected
H7N9 virus A/Environment/Suzhou/SZ19/2014 (SZ19)53, previously
isolated in our laboratory, as a well-characterized strain with high
relevance to recent outbreaks, making it an ideal candidate for
studying the effectiveness of H7-specific nanobodies.

To identify SZ19 H7-specific nanobodies, we immunized alpacas
intramuscularly five times with inactivated H7N9 virus (Fig. 1a). After
14 days from the last immunization, we collected peripheral blood
mononuclear cells (PBMCs) and constructed a phage display library.
Using SZ19 H7-HA protein as the target, we performed three rounds of
bio-panning, leading to selection of 96 colonies. Among them, we

sequenced the top 20 binders and identified six unique nanobodies
(A11, C11, E10, F3, H10, and H12), and expressed them with Fc tags for
enhanced functionality (Fig. 1a and Supplementary Fig. 1A, highlighted
in yellow). As shown by the molecular model54 nanobodies have one
single-domain, and even after linking with Fc tag, the total size is only
about 40 kilodaltons (kDa) (in Fig. 1b and Supplementary Fig. 1B, C),
which is approximately three times smaller than a regular Ab
(150kDa)55. While F3 and H10 appeared closely related, all other
nanobodies, presumably came from different precursors; E10 stood
out as it had the longest CDR3, of 17 amino acids, and for the presence
of several negatively charged amino acids (Supplementary Fig. 1F). To
test their ability to recognize folded viral HA, we performed immu-
nofluorescence assay (IFA) aswell aswestern blotting (WB) at different
time points after infection of A549 cells (Fig. 1c, d and Supplementary
Fig. 1D, E). All six nanobodies were able to recognize HA when linear-
ized in WB (Fig. 1d and Supplementary Fig. 1E) and the cytoplasm of
SZ19 virus-infected A549 cells (Fig. 1c), suggesting that they all target a
linear epitope which is also present on nascent HA.

Neutralizing Abs can block viral spread by preventing
infection56, and it is indeed desirable for nanobodies to be
neutralizing57. To test neutralization, we incubated various con-
centrations of nanobodies with H7N9 viruses at 37 °C for 1 h
before adding them to Madin-Darby Canine Kidney (MDCK) cells.
Thereafter, we measured viral replication using two methods.
First, we took the supernatant after 72 h and measured 50%
neutralization titer (NC50) using hemagglutination assay (Fig. 1e).
Alternatively, we waited for 20 h and subjected infected MDCK to
cell-based ELISA using an NP-specific Ab (Fig. 1f). Both methods
showed similar results, indicating that four nanobodies were
neutralizing (A11, E10, H10, F3), while H12 and C11 were not.
Calculation of 50% inhibitory concentration (IC50) by cell-based
ELISA demonstrated that A11, E10 and F3 had similar potency,
while H10 had an approximately 4–7-fold better neutralization
potency (Fig. 1f).

To further explore the characteristics ofnanobodies, we sought to
map out the nanobodies binding site and see whether they bind close
to HA-head or stalk. As a first rough indication we used hemaggluti-
nation inhibition test58. All neutralizing nanobodies (A11, E10, H10, F3)
were able to inhibit hemagglutination (Fig. 1g) with a high HI titer.
Surprisingly, even the non-neutralizing nanobody H12 demonstrated
HI activity, albeit at a lower level compared to the other nanobodies.
Indeed, the reasons behind this discrepancy are unclear and will be
elucidated in future studies. Overall, the results suggested that all
nanobodies, except C11, bind to HA-head.

Nanobody E10 exhibits cross-group binding and cross-
neutralization capacity
Following the identification of four potent nanobodies capable of
neutralizing the homologous H7N9 virus, we expanded our analysis
to determine if any of these could also recognize and neutralize other
IAV strains. HA is phylogenetically divided into two major groups:
group one, including circulating H1, and group two, comprising cir-
culating H3 and avian H7 strains59. Typically, antibodies targeting the
HA head are strain-specific60, however, some can recognize con-
served epitopes across multiple subtypes, offering cross-group
neutralization61. Nanobodies, due to their unique prolate (rugby
ball-shaped) structure and compact variable heavy-chain
domain (VHH), form a convex paratope surface33, with higher pos-
sibility to access antigen cavities that are often hidden from con-
ventional antibodies, increasing their potential to recognize
conserved epitopes invisible to human Abs.

First, to evaluate the binding capacity of the six nanobodies, we
performed ELISA on plates coated either with either UV-inactivated
virus or recombinant HA proteins. We tested not only H7 HA but also
A/Puerto Rico/8/1934 (PR8, H1N1) and A/Hong Kong/1968 (X31, H3N2)
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viruses and their respective HA proteins. The nanobodies displayed
varying binding ability across different viral subtypes and HA proteins.
Nanobody E10 consistently demonstrated strong binding to all viruses
and HA proteins tested, suggesting broad binding capacity (Fig. 2a–f).

We further examined the neutralization capacity of E10 using the
methodology described for Fig. 1e, and it demonstrated effective
neutralization of H1N1 and H3N2 (Fig. 2g). These results highlighted
how E10 was better than other nanobodies, demonstrating cross-
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Fig. 1 | Generation and characterization of H7-specific nanobodies. a Schematic
illustration of alpaca immunization process and subsequent nanobody selection.
Alpacas were immunized with the H7N9 virus, and after four boosts, peripheral
blood mononuclear cells (PBMCs) were collected to generate a phage display
library. Created with BioRender.com. b Structural model of a nanobody-Fc created
using ImmuneBuilder and AlphaFold 2. (Nanobody: orange. Fc tags: gray).
c Immunofluorescence assay (IFA) showing the recognition of SZ19 H7N9 virus by
different nanobodies. A549 cells were infected with SZ19 (MOI = 0.1) for 24h and
stained with primary nanobodies, followed by secondary goat anti-human IgG Fc
Alexa Fluor™ 488 (A11: red, E10: orange, H10: yellow, F3: blue, H12: dark blue, C11:
black.). Scale bar, 10μm. d Western blot (WB) analysis of A549 cells infected with
SZ19 H7N9 (MOI = 1) for 24h. Cell lysate was probed with respective nanobodies
and detected using goat anti-human IgG-Fc HRP. Data are representative of at least

two independent experiments. e Graph showing 50% neutralization endpoint
(NC50) of different nanobodies against the SZ19 H7N9 virus. Virus was incubated
with serially diluted nanobodies before cell infection. After 72 h, viral replication
was measured by the ability of supernatant to hemagglutinate red blood cells
(RBCs). Data are representative of at least two independent experiments. Shown
are the mean values of three replicates. f Neutralization assay results for the
nanobodies on SZ19 H7N9 virus using a cell-based ELISA. Half-maximal inhibitory
concentrations (IC50) are shown for each nanobody. Data represent the mean
values ± SD from four technical replicates of three independent experiments.
g Hemagglutination inhibition assay (HAI) with the nanobodies against SZ19 H7N9
virus (A11: red, E10: orange, H10: yellow, F3: blue, H12: dark blue, C11: black.). HI titer
shown as µg/mL. Data are the average of three independent experiments.
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group binding and neutralization capabilities. Given these promising
findings, the rest of the study focused primarily on unraveling the
mechanisms behind E10’s broad efficacy.

The life cycle of influenza virus can be divided into key stages:
attachment, entry, internalization and fusion, genome replication, and
viral release.Most antibodies targeting theHAheadprevent viral entry
by blocking attachment56. Likewise, E10 blocked attachments, as
detected by HAI. We therefore wanted to determine whether other
mechanisms were also involved in E10 effect. First, we tested its ability
to block early entry. We pre-incubated E10 with SZ19 at 37 °C for 1 h,
then added themixture to A549 cells for 1 h to allow binding and entry
(Fig. 2h). The results clearly showed that E10 efficiently blocked viral
attachment and/or early entry. Next, to verify E10 ability to block viral
internalization and gene replication, we followed the same protocol
but added a 4 h (internalization) or 8 h (gene replication) incubation at
37 °C, after adding it to cells (Fig. 2i, j). Finally, to check whether E10
could inhibit viral release, we added the nanobody after allowing viral
infection for 10 h (Fig. 2k). The most pronounced effect of E10 was on
attachment and entry, with some effect on viral internalization but no
influence on viral release, thus establishing its function in inhibiting
attachment and entry.

E10 treatment protects mice against homo- and heterosubtypic
IAV challenge
Following the in vitro demonstration of E10’s capacity to neutralize
multiple influenza strains byblocking viral attachment to host cells, we

proceeded to evaluate its efficacy in vivo. For prophylactic assessment,
we administered 10mg/kg of E10 to mice intraperitoneally, followed
by infection, after 24 h, with 106 EID50 of SZ19 H7N9 virus (Fig. 3a). In
parallel, we assessed the therapeutic potential by administering 25mg/
kg of E10 2 h post IAV infection (Fig. 3b). Micewere either sacrificed on
day 3 to check for lungs pathology and viral titers in various organs, or
theirweightwasmonitoredover 14days,with a 25%weight loss used as
a cutoff.

E10 treatment significantly prevented weight loss and mortality,
both when administered before and after infection (Fig. 3c). In
untreated mice, H7N9 spread to multiple organs, including the liver,
spleen, and kidneys (Fig. 3f). However, E10 treatment completely
abolished viral replication in most organs, including the lungs, with
only a few mice showing viral titers in nasal tissues, indicating that
E10 effectively protects various organs in vivo (Fig. 3f). As expected,
therapeutic administration did not entirely prevent viral replication
in the lungs, but it did reduce viral loads by 5 logs compared to
untreated mice (Fig. 3f). Lung pathology analysis further confirmed
the protective effect of E10, regardless of timing of administration.
While H7N9 infected, untreated mice exhibited obvious lung lesions
and granulocyte infiltration by day 3 post-infection, mice treated
with E10, either prophylactically or therapeutically, showed normal
lung tissue architecture with no visible signs of immune cell infil-
tration (Fig. 3g).

Given E10’s cross-neutralization ability in vitro, we tested het-
erosubtypic protection in vivo.We usedmouse adapted versions of
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H1 and H3 IAV subtypes, belonging to two distinct phylogenetic
groups. Animals were infected with either PR8 (H1N1) or X31
(H3N2), with E10 administered before or after infection and their
weights monitored (Fig. 3d, e). All untreated, infected mice suc-
cumbed to infection by day 9 (H3N2) or day 10 (H1N1). However,
consistent with its in vitro activity, E10 was able to convey protec-
tion against both strains, reducing mortality to zero, despite some
weight loss, even in animals which received the nanobody
(Fig. 3e–j). Likewise, E10 administration also significantly reduced
viral titers and lung pathology in heterosubtypic infections (Sup-
plementary Fig. 2A, B).

E10 recognizes a conserved epitope located on HA-head
lateral patch
To identify the binding site of nanobodies, we generated escape virus
variants using 10-days-old specific pathogen-free (SPF) eggs (Fig. 4a
and Supplementary Fig. 3A). This approach takes advantage of the
error-prone polymerase of IAV to determine the Ab-epitopes62. Dif-
ferent dilutions of each nanobody were mixed with H7N9 virus and
injected into the eggs. After three to four rounds of selection,
hemagglutination inhibition-positive supernatants were submitted for
next-generation sequencing (NGS). E10-selected escape mutants at
residues K166T and S167L (H3 numbering, used throughout the
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manuscript), A11-selected escapes at K140N, while H10 at residues
S167L and G205E.

Furthermore, we repeated the selection process for E10 using cell
culture, and obtained the same escape mutants, thus confirming its
binding site (Fig. 4a and Supplementary Fig. 3A). Cell culture escape
selection results for A11 and H10 were comparable to those obtained in
eggs, with H10 additionally selecting for a mutation at residue S167,
whileH12 now selected formutants. Furthermore, we constructed anH7
fragment library for phage display selection, utilizing 20-mer peptides
overlapping by 15 amino acids. We panned phages using all nanobodies
(Supplementary Fig. 3B) and identified binding sites which were in
agreement with those selected in cells and egg. Of note, E10 selected for
three overlapping peptides, one of them including the K166 and S167
residues (Fig. 4b) and the others in close proximity. Altogether, by
combining the three different methods we mapped all the nanobodies
epitopes on a molecular model of H7 HA (Fig. 4c and Supplementary
Fig. 3C, D). Interestingly, E10, A11 and H10 bound in a similar, but not
overlapping, region near the lateral patch of HA while the F3 epitope
localized to the stem of HA. As wewere unable to select escapemutants
using F3, we could not confirm this mapping with other methods; fur-
thermore, since F3 hasHAI and neutralizing activity, the precise location
of its epitope remains unclear and should be investigated further.

Conservation analysis of the E10 mutated residues showed that
both K166 and S167 are highly conserved across H7-HA proteins
(Fig. 4d), suggesting limited immunepressure on this site or lower viral
fitness of escapemutants.While these residues were fully conserved in
the currently circulating pandemic H1N1, some variation was observed
within H1N1-HA (PR8) and H3N2-HA (X31) (Fig. 4e). However, the ~20
amino acids close to that region showed a good degree of conserva-
tion, suggesting that the nanobody footprint may also include nearby
residues, as also suggested by the phage display selection. To verify
this, we modeled the interaction between E10-Fc and H7-HA: indeed,
most of the suggested contact surface of HA with the nanobody
included conserved β-sheet structures on the lateral patch of HA
(Fig. 4f). In summary, our combined mutation and epitope mapping
analyses demonstrated that the broadly reactive E10 nanobody
recognizes a highly conserved epitope on the lateral patch of H7 HA.

H7-HAK166T, S167L mutant virus has reduced viral fitness
To confirm that the selected escapemutations were indeed part of the
E10 binding site, we employed multiple experimental approaches.
First, we verified E10-Fc recognition on H7-infected A549 cells and
while E10 readily stained H7N9-infected cells (thereafter referred as
WT virus), we could not detect any binding in H7N9K166T, S167L-infected
cells (referred to as MUT virus) (Fig. 5a). Likewise, escape mutants
obtained by A11 selection failed to recognize their respective mutated
virus (H7HAK140N) (Supplementary Fig. 4A). Since E10 recognizes a
linear epitope, we further verified the escape of MUT virus by WB.
Here, we incubated WT or MUT virus with E10 prior to infecting cells
and detected productive infection by NP antibody and HA recognition
by E10.WTviruswithout E10pre-incubation readily infectedA549 cells
and HA was detected by the nanobody. Conversely, pre-incubation
with E10 blocked infectivity of WT but not MUT virus and E10-
nanobody was not able to react with MUT-HA (Fig. 5b and Supple-
mentary Fig. 4B, C). Further confirming escape, E10 was not able to
neutralize MUT virus infection in vitro (Fig. 5c). Finally, we expressed
H7 HA from WT and MUT viruses as recombinant HA proteins
(thereafter referred to as WT-HA protein and MUT-HA protein) (Sup-
plementary Fig. 4D) and tested nanobody reactivity. As expected, E10
lost all reactivity towards MUT-HA while F3 control nanobody recog-
nized both proteins equally (Fig. 5d).

Finally, to test the in vivo ability of E10 to protect against MUT
virus we conducted the same experiments as in Fig. 3 and determined
its prophylactic and therapeutic activity upon lethal viral challenge
(Fig. 5e and Supplementary Fig. 4E). Again, mice were either sacrificed

onday 3 to check for lungpathology and viral titers in different organs,
or their weight monitored for 14 days (Fig. 5f, g and Supplementary
Fig. 4E). The in vivo results confirmed the loss of efficacy of E10 on the
MUT virus, cautioning that an escape to this broadly neutralizing
nanobody is possible. However, MUT virus showed a slightly
decreased pathogenicity in vivo, including a longer survival and lower
lung viral titer, when compared toWT. These results suggest thatMUT
may have a less virulent phenotype, thus raising hopes for the tar-
geting of this epitope. To confirm this, we compared the in vitro
growth kinetics of WT and MUT viruses: WT grew rapidly and reached
peak titer by 36 h post infection where it killed out most cells. Con-
versely MUT virus grew slower and to a peak over two logs lower than
WT (Fig. 5h), demonstrating a reduced viral fitness. Overall, while the
emergence of escapemutants in response to E10nanobody ispossible,
their viral fitness was reduced both in vitro and in vivo.

E10-epitope is immunodominant upon H7-IAV infection
Little is known about H7 B cell immunodominance. Previous research
suggested that single amino acid differences may alter the establish-
ment of broadly neutralizing B cells63. Additionally, studies on immu-
nodominance in humans have shown that antibody responses can be
highly focused on specific epitopes, and that a single amino acid
mutation can allow the virus to escape immunity in some
individuals48,64–66.We reasoned thatwith our current tools wewouldbe
able to dissect the immunodominance of the B cell responses to the
E10 epitope upon infection.

To this end we infected mice with either WT or MUT virus and we
carried out B cell staining of lungs, the drainingmediastinal lymph node
(mln) and the spleen by flow cytometry67. Beside classical markers to
distinguish germinal center (GC) and memory (MBC) B cells, we also
included a multiple HA staining to define epitope specificity (Fig. 6a, c
and Supplementary Fig. 5A). All cells were stained with WT-HA labeled
with two distinct fluorophores and MUT-HA with other two fluor-
ophores: forWT-infectedmice,we gatedfirst onWT-HAdouble positive,
as this was the only protein seen by the animals. Thereafter we used the
stainingwith theMUT-HA todiscriminate howmanyB cellswere specific
for the E10 epitope (Fig. 6b, d): indeed, if WT-HA positive cells lost the
recognition when stained with MUT-HA this suggested a specificity for
the E10 epitope. Likewise, for mice infected with MUT virus, we first
gated onMUT-HA and thereafter only the ones not recognizing theWT-
HA were defined as specific for the mutated E10 epitope (Fig. 6b, d).

Surprisingly, ~50% of the HA-directed GC and almost 100% of the
MBC response in WT-infected mice was specific for the E10 epitope in
mln (Fig. 6e), lungs and spleen (Supplementary Fig. 5B–E). This is a case
of immunodominance where the response was very focused; indeed,
the majority of the B cells was responding to a very small antigenic
surface of H7 HA. Importantly, we did not detect any gross differences
in GC size between WT and MUT after infection with the two viruses
(Supplementary Fig. 5F). However, in mice infected with MUT virus,
this immune focusing was lost, with only approximately 10% of B cells
recognizing themutated E10epitope (Fig. 6e). The results here suggest
a very strong immune focusing on the E10 epitope upon WT virus
infection, which was however lost after nanobody-driven mutations.

To verify whether the immunodominance in WT-infected mice
extended to the antibody secreting cells (ASC) and the Ab compart-
ments, we performed ELISPOT and ELISA. Consistent with B cell
results, ASC immunodominance was very pronounced in WT-infected
but not in MUT-infected mice (Fig. 6f), a result that was further con-
firmed when analyzing serum Abs (Fig. 6g and Supplementary Fig. 5G).
Here, more than half of the Ab reactivity was lost when testing WT-
infected sera on the MUT HA protein, confirming the strong immu-
nodominance of the E10 epitope. In our study, we have not investi-
gated the immunodominance to this epitope in different animal
species, indeed existing data on species specificity of antibody
immunodominance is scarce and contradictory66,68. However, it is
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plausible to think that this site may be under selection pressure in its
natural host, and despite that, it continues to show conservation,
possibly because of the lower fitness of MUT virus (Fig. 5h).

H7-HA166-186 peptide immunization confers partial in vivo pro-
tection from lethal H7N9 infection
Having verified the ability of E10 to provide heterosubtypic protec-
tion and the relative stability of its epitope, we decided to verify
whether immunization with peptide containing the E10-binding
motif would be sufficient to provide protection in animals. There-
fore, we expressed the 21 mer peptide corresponding to H7HA166-186

sequence (KSYKNTRKSPAIIVWGIHHSV) linked with OVA in the
C-terminal to increase immunogenicity and availability of helper T
cell epitopes. The peptide corresponds to two β-sheet in HA1
(Fig. 7a). We immunizedmice thrice, collected serum 6 days after the
third immunization and challenged the mice with a lethal dose of H7

14 days after the last vaccination (Fig. 7b). Serum Abs from mice
vaccinated with the peptide demonstrated broad reactivity, recog-
nizing not only full length H7 HA but also H3 and H1 HAs, in line with
E10´s binding profile (Fig. 7c and Supplementary Fig. 6). The binding
capacity was confirmed also byWB analysis of viral lysate (Fig. 7d). To
check the ability of serum to recognize live virus, we tested sera from
peptide-immunized mice for their ability to block hemagglutination:
similar to E10, peptide-immunization elicited Abs capable of blocking
hemagglutination of viruses belonging to both groups (Fig. 7e).
Finally, peptide immunization slightly delayed weight loss and pro-
tected 60% of the vaccinated mice upon H7 viral challenge, con-
firming the central role of this epitope for protection (Fig. 7f).

Overall, peptide immunization, despite its notorious limitations69,
was able to elicit significant levels of cross-reactive Abs in mice and to
affordpartial protection against lethal viral challenge thus highlighting
the potential and relevance of E10 epitope as vaccine target.
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Discussion
H7N9 remains a serious public health threat with frequent human
infections, which are often lethal12. Furthermore, the risk of virus
adaptation, gaining human-to-human transmission ability, in a naïve
population, is a loomingdanger. Developing novel therapeutic tools to
treat zoonotic infections but also discovering sites of vulnerability on

this virus is imperative. Compared to mAbs, nanobodies represent a
promising new avenue for preventing and treating influenza due to
their superior characteristics and distinct binding capacity compared
to conventional antibodies40. Here, we isolated a broadly neutralizing
nanobody, E10, capable of bindingmultiple strains of influenza A virus.
To enhance the therapeutic potential of E10, we added human Fc
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fragment, improving its structural similarity with human antibodies
and allowing it to trigger effector functions. The neutralizing
mechanism of E10 involves blocking viral attachment of the HA pro-
tein. E10 demonstrated broad in vitro and in vivo activity, providing
neutralization and conferring protection against group 2 (H7, H3) and
group 1 (H1) strains.

We utilized multiple methods to identify E10 binding site and
pinpointed the area around residues K166 and S167 as its binding site.
This area included two conserved-beta sheets and is part of the “lateral
patch” of HA. Because of antigenic drift, the HA head domain is highly
variable among different strains70. However, a few regions in the head

have gained traction as potential targets of broadly neutralizing Abs.
One is the receptor binding site (RBS)71, with Abs targeting this area
mostly interacting with highly conserved residues of the RBS by
inserting their HCDR360. In addition, lateral patch” binding antibodies
have been receivingmore andmore attention5,27,29,30,72,73. For instance, a
mAb, CL6649, can recognize the lateral patch and binds most of the
H1N1 viruses ranging from 1977 (seasonal) to 2012 (pdm2009)29. Fur-
thermore, a recent study reported identification of two human H7N9
mAbs targeting the lateral patch on HA head5. These could bind to
several H7 strains. Importantly, none of these Abs are able to cross-
react between different HA groups or even distant types, highlighting
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the distinctive properties of E10 nanobody. It should be noted that
these studies, using humanmAbs, tested them at concentrations up to
10μg/ml while in our experiments we observe cross-reactive binding
to H1 and H3 at higher concentrations (>10μg/ml for binding to
recombinant HA and >25μg/ml for binding to viruses). In general, the
potency, neutralizing and protective effect of E10 nanobody is higher
against H7, as expected. Nevertheless, the binding is specific, as it is
observedonly for the E10nanobody, and strategies to increasebinding
affinity may be valuable to increase potency against heterologous HA.
Indeed, cross-group recognition and neutralization is a rare but
desirable feature of anti-HA Abs. Possibly, thanks to the unique fea-
tures of alpaca nanobodies we increased the likelihood of targeting
conserved epitopes in a unique way.

Moreover, lateral patch polyclonal Abs are also induced by pan-
demic H1 vaccination, though it remains unclear whether these anti-
bodies can cross-react with other influenza subtypes30. From the same
study, the authors isolated human mAbs and identified a crucial,
conserved Y-x-R or Y-R motif within the H-CDR3 region30. In addition,
thesemAbsmostly showed VH3-23/Vk1-33 usage22,30. Interestingly, our
E10 nanobody possesses the “YCSFR” sequence in its CDR3, which is
absent in other nanobodies we have identified.

In our study we also demonstrate that peptide immunization is
able to generate cross-reactive Abs that can block hemagglutination
in vitro and partially protect in vivo. The partial in vivo protection
should not discourage as peptide immunization is notoriously poor at
eliciting Abs69, it however provides an excellent blueprint for the
immunogenicity and potency of this site which could be exploited in
future studies with more advanced computational immunogen
designs74.

With H5N1 infections on the rise, research on animal viruses is an
urgent priority and H7N9 presents a significant pandemic risk. Here,
besides the identification of the nanobody we also tested basic
immunodominance characteristics of the virus. Immunodominance
for H7 has not been extensively studied and defining it is not a mere
academic exercise but may inform on virus adaptation and mutation
potential. Indeed, immunodominance has been suggested as potential
driver of antigenic drift20. Several studies have now pointed out that
certain numbers of individuals have a very focused Ab response, and
these may be driving antigenic drift20,48,64–66. Generally, in mice,
immune response to IAV is broad and H1N1 virus require over 10
mutations to fully escape the serum of infected animals50. Here, we
show that mutations in the E10 epitope almost completely abolish HA
recognition by GC and MBC in mice. Despite this, the residues remain
conserved among most of the circulating H7 strains encouraging
potential therapeutic use. This suggests either a different immuno-
dominance pattern with low immune pressure in avian hosts or poor
fitnessof the escapemutants.Whether immunodominance indifferent
hosts is conserved is debated66,68, but some data points towards a
conserved hierarchy of the response between avian and mammal
hosts68. Similarly, the ease of isolation of mAbs targeting a similar site
in humans5 suggests this epitope to be under constant immune pres-
sure. However, our in vivo and in vitro data suggest this epitope to be
needed to maintain a strong viral fitness and therefore, while escape
mutants may emerge, they are unlikely to be able to compete withWT
virus. Obviously increased immune pressure may favor escape in this
site, as demonstrated for other conserved Ab epitopes75–77, however, in
addition to showing lower fitness, the MUT virus showed also
increased epitope spread after infection, favoring a broader immune
response. This is yet another good news for the potential use of E10 as
therapeutic nanobody or for the targeting of the epitope with vaccine
constructs.

Despite the limitations in our experimental setup, such as the lack
of definitive structural determination by cryo-EM and precise affinity
measurement by Biolayer Interferometry (BLI), which could have
provided more detailed insights into the antibody-HA interaction and

affinity, we successfullymapped the binding area of E10 as a conserved
β-sheet on the HA surface. Furthermore, while the H1 and H3 strains
tested hereby are not currently circulating, the epitope remains rela-
tively conserved even in contemporaryviruses.Overall, E10mayadd to
our arsenal of treatments for zoonotic infections and its epitope and
associated peptide may provide a blueprint for future universal influ-
enza vaccine development.

Methods
Inclusion and ethical statement
All the mouse studies were performed according to ethical permits
1666/19, 2230/19 and 38/23 granted by the Gothenburg Regional Ani-
mal ethics committee, as well as the Guide for the Care and Use of
Laboratory Animals of the Ministry of Science and Technology of the
People’s Republic of China. Experiments involving H7N9 avian influ-
enza viruses were performed in a biosafety level 3 laboratory,
approved by the ChineseMinistry of Agriculture and Rural Affairs. The
alpaca and virus protocols were individually approved by the Com-
mittee on the Ethics of Animal Experiments of the Lanzhou Veterinary
Research Institute (LVRI) of Chinese Academy of Agricultural Sciences
(CAAS) andHarbin Veterinary Research Institute (HVRI) of the Chinese
Academyof Agricultural Sciences (CAAS). Details regarding the facility
and biosafety measures have been previously reported78.

Animals
Mice, Female C57BL/6 mice, aged 8–12 weeks, were purchased from
Janvier, France, and housed in a specific pathogen-free (SPF) facility at
the Experimental Biomedicine Unit, University of Gothenburg. Mice
were house at 20–23 °C, 45–55% relative humidity with 12-h light/dark
cycles, food and water ad libitum. Additional female C57BL/6 mice
were obtained from SPF (Beijing) Biotechnology Co., Ltd. in China and
housed under similar conditions. Alpaca, male, aged 2.5 years, were
provided by a local farm in Gansu Province, China.

Cells, viruses and plasmids
HEK293T (American Type Culture Collection, ATCC, CRL-3216), MDCK
(ATCC, CCL-34), MDCK-SIAT1 (gifted by Dr. Jonathan Yewdell at NIH)
cells were cultured in DMEM (Gibco, C11995500BT) with 10% (vol: vol)
FBS (Gibco, 10,270–106) and penicillin-streptomycin (Gibco,
15,140,163). A549 cells (ATCC, CCL-185) were maintained in Kaighn’s
modified Ham’s-F12 medium (Gibco, C11330500BT) with 10% FBS and
0.01% penicillin-streptomycin. All other cells were cultured and
maintained at 37 °C with 5% CO2. HEK293F (ATCC) was grown in
Freestyle 293 Expression Medium (Gibco, 12338018) with 0.01%
penicillin-streptomycin and cultured at 37 °C with 8% CO2 at 125 rpm.
All cells were regularly tested for mycoplasma. No commonly mis-
identified cell lines were used in this study.

A/Environment/Suzhou/SZ19/2014(H7N9)(SZ19) was isolated and
stored in our laboratory, A/Puerto Rico/8/1934 (PR8, H1N1) was stored
in our laboratory53. A/Puerto Rico/8/1934 (PR8, H1N1), influenza A virus
A/Hongkong//1968 (X31, H3N2) was stored in our laboratory in
Gothenburg. H7N1 virus, H7N1-MUT virus (HA comes from SZ19, oth-
ers come fromPR8)were rescued inour laboratory inGothenburg. The
H7-HA andH7-HAK166T, S167L were constructed containing the H7ORFs:
one for the H7N1K166, S167 and another for the H7N1K166T, S167L mutated
influenza A/Environment/Suzhou/SZ19/2014/H7N9 strains, labeled as
WT and MUT, respectively. The cloning strategy involved double-
digestion of the pDZ plasmid with EcoRI-HF (NEB, R3101S) and XhoI
(NEB, R0146S), followed by In-Fusion cloning (Takara Bio, 638948)
with three PCR-amplified fragments, containing the H7 ORF and its
flanking regulatory regions. Primer sequences are shown in Table S1.

Sequencing
Constructed plasmids were sequenced and analyzed by Eurofins and
Tsingke Biotechnology Co., Ltd.
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Alpaca immunization and phage display selection
Immunization: 2 years and half male alpacas were immunized intra-
muscularly five times, with 14 days interval, with inactivated (0.06%
formaldehyde) and purified H7N9 virus. The first immunization used
300μg of antigen in 300μl PBS + 700μl Freund’s Complete Adjuvant
(FCA, Thermo, 77140) followed by four subsequent immunizations
with 200μg of antigen in 200μl PBS + 800μl Freund’s Incomplete
Adjuvant (Thermo, 77145).

Indirect ELISA was used to measure the IgG titer against H7N9,
initiating phage display construction when the titer exceeded
1:64,000.

Phage display: after 14 days from the last immunization, periph-
eral blood mononuclear cells (PBMC) were isolated from whole blood
of alpaca, and RNA was extracted to synthesize cDNA. VHH fragments
were amplified via nested PCR using specific primers (Supplementary
Table 1), then cloned into the pComb phage vector and transformed
into E. coil SS320 competent cells. The positive clones were
sequenced, and the diversity of the antibody library analyzed with the
calculated antibody library capacity, the remaining culture was trans-
ferred to Amp-Kan medium for expansion culture, and PEG/NaCl was
used to concentrate to obtain the original antibody library. ELISA
plates were coated with inactivated purified H7N9 at 1μg/well, 1%
polyvinyl alcohol (1% PVA) was set as a no-antigen control, 100μL of
theoriginal antibody librarywas added to eachwell, incubated at room
temperature for 2 h, and the solution was discarded; 0.1mol L−1 HCl
was added for elution for 5min, and an equal volume of Tris-HCl was
used for neutralization; the eluate was added to logarithmic phase
NEB5aF’ bacteria, cultured at 200 r/min, 37 °C for 1 h, andM13 assisted
phage rescue for 1 h. An appropriate amount of bacterial solution was
taken for 10-fold dilution and titrated on the plate; the remaining
bacterial solution was cultured overnight. Enrichment and panning
were respect three times and selected by ELISA with anti-mouse M13
antibody. Then select thepositive bacteria andexpress thenanobodies
to pcDNA13.1-Fc vector and transform to DH5α competent cells. After
three rounds, 96 colonies were selected, and the eluted phages were
further characterized for binding by indirect-ELISA. Primer sequences
are shown in Table S1.

Nanobody production and characterization
For protein production, nanobodies were expressed in HEK293F cells
maintained in Expi ExpressionMedium (Gibco, 12338018), followed by
transfection using the ExpiFectamine™ 293 Transfection Kit (Gibco,
A14525). After 5 days, culture supernatants were filtered and purified
using Protein G columns on an FPLC ÄKTA start system.

Confocal microscopy
HEK293 and A549 cells (5 × 105 cells/well) were plated on coverslips.
Cells were allowed to attach for 8 h and were left uninfected or were
infected with H1N1/H3N2/H7N9 IAV (MOI = 0.1) for 24–36 h in serum
free media. Cells were fixed with 4% paraformaldehyde for 20min at
room temperature and washed with PBS three times. Cells were per-
meabilizedwith 0.1% TritonX-100 in PBS for 10min, then blockedwith
5% skimmedmilk for 1 h. Then cells were incubatedwith nanobodies as
the primary and anti-human IgG (Fc specific)-488 (Invitrogen, A55747)
as secondary antibodies and DAPI (Beyotime, C1002). Leica micro-
scope (TCS SP8) were used to observe the strained cells with a 100x oil
objective.

Western blotting
Protein samples (5–20 µg) were separated into 4–12% Bis-Tris gels,
transferred toNitrocellulosemembrane (Cytiva, 1060000). Proteins of
interest were analyzed by hybridization with their corresponding
antibodies (anti-GAPDH (ab181602), anti-NP (Sino Biological, 11675-
V08B)), horse anti-mouse IgG (Vector laboratories, ZK0403), Mouse
Anti-Human IgG Fc Antibody (GenScript, 50B4A9) and visualized by

chemiluminescence using Thermo Scientific SuperSignal West Dura
Extended Duration Substrate (Thermo Fisher, 34076).

Neutralization assay
Serial dilutions of nanobodies (start from 100ng/µL) or mouse serum
were mixed with 100 TCID50 of virus (H7N9/H3N2/H1N1) for 1 h at
37 °C. The mixture was then added to cultured MDCK cells in 96-well
plates for 1 h. After 3 washes with PBS we incubated with DMEM con-
taining 1μg/ml TPCK-treated trypsin and 0.01% penicillin-
streptomycin at 37 °C. To define neutralization we used two meth-
ods: (1) After 20 h, viral infection of cells was quantified by indirect
ELISA by using a nanobody made in house against the nucleoprotein
(NP) of influenza A virus. The final concentration of nanobody that
reduced infection to 50% (IC50) was determined using GraphPad Prism
6 software. (2) In alternative, after 72 h of incubation, we harvested the
supernatant and added it to 1% chicken red blood cells (RBC) to
determine the presence of virions in supernatant and calculated the
50%neutralization titer using theKärber formula. Log50%neutralizing
titer = L − d (s −0.5), where L is the log of the dilution factor, d is the log
difference between the dilution factors, and s is the sum of the pro-
portion of positive wells for all dilutions.

Recombinant hemagglutinin production and testing
Recombinant HA from A/Environment/Suzhou/SZ19/2014(H7N9)
(SZ19), A/Puerto Rico/8/1934 (PR8,H1N1), Hongkong/1968 (X31, H3N2)
and SZ19-HAK166T, S167L were expressed and purified as in ref. 79.
Briefly, proteins were expressed in 293F cells and purified by affinity
chromatography followed by size exclusion.

Enzyme-linked immunosorbent assay (ELISA)
For serum binding test, 96-well plates were coated with recombinant
protein (H7-HA (WT-HA) or H7-HA-K166T, S167L (MUT-HA)) at 1μg/ml
in PBSand incubatedovernight at 4 °C.Wells wereblockedwith 100μL
2% BSA in PBS for 1 h at RT. Plates were washed three times with
PBS +0.05% Tween and incubated with two-fold serially diluted sera
(starting from 1:100) in PBS with 0.05% Tween for 1.5 h at RT. After
three washes, anti-mouse Igκ (Sino Biological, 68077-R008-H) at a
1:1000 dilution was added, and plates were incubated for 1 h at RT.
After three washes, plates were developed using TMB (Thermo Fisher,
catalog: 34029) for 5min at RT and subsequently blocked with H2SO4.
The absorbance was measured with a TECAN Sunrise absorbance
microplate reader (catalog: 16039400) at 450nm.

For nanobody binding test, we coated 96-well plates with differ-
ent strain of UV-inactivated virus (H1H1/H3N2/H7N1) or different strain
of HA recombinant protein (H1N1-HA/H3N2-HA/H7N9-HA) at 1μg/ml
in PBSand incubatedovernight at 4 °C.Wells wereblockedwith 100μL
2% BSA in PBS for 1 h at room temperature. Plates were washed three
timeswith PBS +0.05%Tween andplateswere incubatedwith two-fold
serially diluted nanobodies (starting from 100 ng/mL) in PBS +0.05%
Tween for 1.5 h at RT. After three-time washes, mouse anti-human IgG
Fc Antibody (Sino Biological, SSA001) at 1:6000 dilution was added,
and developed using TMB as above.

Hemagglutination assay
For virus rescue detection, the hemagglutination assaywas performed
using 1% chicken RBC suspension to confirm virus rescue and neu-
tralization titer. Briefly, 50 µL virus supernatant was used to make 2×
serial dilutions in a round-bottomed 96-well plate. The diluted virus
supernatants weremixedwith 25 µL of 1% chicken RBC in eachwell and
incubated at room temperature for 1 h before the results were
inspected.

Hemagglutination inhibition (HAI) assay
H7N9 viral stocks were standardized to 4 HAU units using 1% chicken
RBCs before use in HAI assays. Serial two-fold dilutions of 25 µL
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nanobodies (starting at 300ng/µL) were prepared in V-bottom
microtiter plates. Subsequently, 25 µL of the 4 HA unit virus was
added to each well and incubated for 30min at room temperature
(RT). After incubation, 50μl of 0.5% chicken RBCs was added, and the
mixture was further incubated for 30min at RT. HA inhibition was
visually assessed by the formation of well-defined RBC “buttons” or
teardrop patterns upon plate tilting. HAI titers were reported as the
reciprocal of the highest dilution that completely inhibited
hemagglutination.

Entry, internalization, replication and release assays
For detection of nanobody to block viral entry, H7N9 virus (MOI = 10)
was incubated at 37 °C for 1 h with or without nanobody. Then added
into A549 cells, incubated at 4 °C for 1 h, thereafter cells were incu-
bated in 37 °C for 1 h before cell collection for RNA extraction.

For detection of nanobody to block viral internalization, H7N9
virus (MOI = 10) was incubated at 37 °C for 1 h with or without nano-
body. Then added to A549 cells, incubated at 4 °C for 1 h, then washed
with pH=3 PBS three times and incubated 4 h 37 °C. Then cells were
collected for RNA extraction.

For detection of nanobody to interfere with viral replication,
H7N9 virus (MOI = 10) was incubated at 37 °C for 1 h with or without
nanobody. Then added to A549 cells, incubated at 4 °C for 1 h, then
washedwith pH = 3 PBS three times and incubated 8 h 37 °C. Then cells
were collected for RNA extraction.

For testing of nanobody to block viral release, H7N9 virus
(MOI = 10) was added to A549 cells at 37 °C for 1 h. Then cells were
washed with pH= 3 PBS three times. After 10 h cells were further
washed with PBS three times and nanobodies added. After 2 h, cells
were collected for RNA extraction.

RNA isolation and quantitative RT-PCR
Total RNA from cells was extracted with TRIzol following the manu-
facturer’s instructions. For mRNAs, total RNA was transcribed into
cDNA using M-MLV Reverse Transcriptase, according to the manu-
facturer’s protocol (Promega,M1701). GAPDHwas used as an invariant
control for mRNAs. Real-time PCR was carried out using the Light
Cycler 480 System (Roche). The RNA level of each gene was shown as
the fold of induction (2−ΔΔCT) in the graphs. Primer sequences are
shown in Table S1.

Prophylactic and therapeutic nanobody administration in mice
For prophylactic evaluation, groups of 16mice were intraperitoneally
(i.p.) injected with 10mg/kg purified nanobodies 24 h before being
challenged intranasal (i.n.) with 25 µL of virus (H7N9:106 EID50,
H3N2:107 TCID50, H1N1: 3 × 103 TCID50) suspended in Hanks’ Balanced
Salt Solution (HBSS) + 0.1% fetal bovine serum (FBS). Mice were
anesthetized with carbon dioxide ice or isoflurane during virus
challenge. For therapeutic assessment, mice were infected i.n. with
virus (H7N9: 106 EID50, H3N2:10

7 TCID50, H1N1: 3 × 103 TCID50, H7N9-
MUT (T166, S167): 106 EID50 and treated 2 h later with a single i.p.
dose of 25mg/kg purified nanobodies. Control groups received PBS
instead of nanobodies. Mice were monitored daily for clinical signs
and body weight loss. On predetermined days post-infection, mice
were euthanized, and tissues (nasal turbinate, lung, spleen, kidney,
brain, liver) were collected for viral titration and histopathological
examination.

Escape mutation selection
For egg-based selection,100 µL of H7N9 virus (106 TCID50) was incu-
bate at 37 °C for 1 h with 100 µL of nanobodies at varying concentra-
tions (500, 50, 5, 0 µg/mL). The virus-antibody mixture was then
injected into 10-day-old SPF (specific-pathogen-free) eggs, and after
40–44h incubation, the supernatant was collected and tested by
hemagglutination assay (HA). The presence of viruses and their escape

capacity was detected by HA and HAI assays. Virus samples positive in
both assays were sequenced using next-generation sequencing analy-
sis (NGS) to identify amino acid mutations in the HA segment.

For cell-based selection, MDCK cells were infected with H7N9
virus in the presence of increasing concentration of nanobodies. After
1 h at 37 °C with 5% CO2, the virus containing medium was replaced
with virus growth medium (VGM) containing nanobodies, and incu-
bation continued until cytopathic effect (CPE) was observed. Super-
natants were collected, and the virus was passaged 10 times, doubling
the nanobody concentration after each passage. Viruses from the final
passage were sequenced using NGS to identify mutations across all
segments.

Next-generation sequencing (NGS) analysis
Viral RNA was extracted from the egg supernatant and reverse-
transcribed into cDNAusing theUni12 primer (5’-AGCRAAAGCAGG-3’).
Full-length HA gene amplification was conducted using specific pri-
mers (Supplementary Table 1). NGS was performed and analyzed by
Tsingke (Tsingke Biotechnology Co., Ltd.).

Phage display mapping of mAbs
To map the nanobody epitopes, a phage display library was con-
structed. The full-lengthH7 proteinwas divided into20-mer sequences
with 15 amino acid overlaps. The sequences were adjusted to remove
unwanted restriction enzyme sites and then synthesized as con-
catamers each containing ten peptides. The resulting concatamers
were then individually cloned into a standard cloning vector. A total of
11 plasmids were produced encoding a total of 109 peptide sequences
(ATG: biosynthetics GmbH). The individual plasmids were first trans-
formed into DH5-alpha competent cells by electroporation for main-
tenance. The 20-mer fragments were then cloned into the pAraPgIII
phagemid expression vector. Briefly, the region from each plasmid
containing the concatemer sequences was amplified by PCR using
PlatinumSuperFi II PCRMastermix (Invitrogen, catalog: 12368010) and
universal plasmid-located primers. The amplified DNA was purified
(QIAGEN KIT) and the concentration of each amplicon was deter-
mined. Amplicons were then pooled such that each fragment was
present at the same concentration. The pooled DNAwas then digested
with PstI and HindIII using FASTDigest enzymes (Thermo Scientific)
and dephosphorylated using FASTAP alkaline phosphatase (Thermo
Scientific). The digested dephosphorylated fragments were then
mixed at a ten-fold molar excess with PstI/HindIII-digested pAraPgIII
vector. The mixture was subjected to a ligation reaction with T4 DNA
ligase (Thermo Scientific, catalog: EL0014) at room temperature
overnight. The ligation reaction was transformed to ElectroMAX
DH12S Cells (Invitrogen, catalog: 183812017). Small aliquots of the
transformation were spread onto LB agar plates supplemented with
ampicillin and incubated overnight at 37 °C to determine the trans-
formation frequency, the remainder was transferred to 25ml sterile
liquid LB broth supplemented with ampicillin and grown overnight at
37 °C with shaking. Aliquots of the resulting culture containing the
peptide library cloned into the pAraPgIII vector were used to prepare
glycerol stocks that were stored at −80 °C. Further aliquots were used
for plasmid purification.

Cloning efficiency was determined by restriction enzyme analysis
of purified plasmid. Plasmid preparations were digested with KpnI/
NotI. Empty vector digest with both enzymes whereas plasmids car-
rying insert digests with KpnI only. The library was found to contain
less than 5% empty plasmid. NGS Illumina sequencing was used to
demonstrate that all the peptides were present in the library.

To express the library on the surface of M13 phages the M13KO7
helper phage (supplied by Thermo Fisher) was used. Two aliquots of
5mL of terrific broth (GIFCO, 009600) supplemented with 100μg/ml
ampicillin (without glucose)were inoculatedwith 50μl of an overnight
starter culture, followed by the addition of M13K07 helper phage at a
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multiplicity of infection of aproximately100:1. After 2.5 h, 50μg/ml
kanamycinwas added to oneof the cultures (as a non-induced control)
and kanamycin and 0.2% arabinose was added to the second culture
(to express the peptides on the phage surface). The culture was incu-
bated at 37 °C with shaking (180 rpm) overnight. Next days, cells were
removed from the supernatant by centrifugation followed by filtration
through a 0.2μM filter. The number of phagemid carrying particles in
the resulting supernatantweredetermined by infecting TOP10 F’ E. coli
cells with serially diluted phage library suspensions and incubated for
90min at 37 °C, 180 rpm. A total of 100μl of each dilution was plated
on Lubia broth agar plates supplemented with 100 μg/ml ampicillin
and incubated overnight at 37 °C. The number of colonies were
counted the next day.

A panning experiment was performed to check which epitopes
the nanobodies bind to. Ninety-six-well NUNC plates (Thermo Fisher,
10394751) were coated with 25 ug of each nanobody, at 125μl/well in
triplicate, in 0.1M bicarbonate buffer. Plates were incubated over-
night at 4 °C. The next day the coating solution was removed. The
wells were washed three times with 0.1M bicarbonate buffer and
blocked for 1 h at 4 °C with 300ul/well of filter sterilized 0.1M
bicarbonate buffer containing 0.5% BSA. After blocking, 100 μl of
phage suspension containing 3.9 × 109 phagemid-carrying particles/
ml was added to each well and incubated for 1 h at room tempera-
ture, with gentle rocking. Wells were then washed 8 times with
50mM Tris-HCL pH 7.5, 150mM NaCl and 0.1% Tween-20 to remove
unbound phages. Bound phages were then eluted by adding 100μl/
well of 0.2M Glycine HCl pH2.2 with 0.1% BSA and incubating for
12min at room temperature. Fifteen μl of 1M Tris buffer pH 9.1 was
added to neutralize the solution. The eluted phage suspension was
then stored at 4 °C.

To determine the epitopes bound by the nanobodies, eluted
phages were used to infect TOP10 F’ E. coli as described above. Fol-
lowing infection, the cells were spread onto LB agar plates supple-
mented with ampicillin and incubated overnight at 37 °C. Plasmids
were isolated from individual colonies and sent for sequencing
(Eurofins Scientific) using an araC universal primer. Results from the
sequencing were analyzed using SnapGene and mapped on a 3D
structure using Open-Source PyMOL version 2.5.0.

Viral growth kinetics
Triplicate wells of confluent MDCK cells were infected with WT and
MUT virus at a MOI = 0.001 and incubated with BSA-MEM containing
1μg/ml TPCK-treated trypsin at 37 °C. Supernatants were harvested at
6-, 12-, 24-, 36 h post-infection and titrated by TCID50 in quadruplicate
on MDCK cells in a 96-well plates. After 48 h, presence of virus in the
wells was determinedbyhemagglutination using 1% chickenRedBlood
Cells. TCID50 of the samples was calculated using the Reed and
Muench method.

Rescue of H7N1 virus
The H7N1-WT and H7N1-MUT viruses were rescued under BSL-2 con-
ditions, as viruses containing HA of Influenza A/Environment/Suzhou/
SZ19/2014 and the backbone segments of A/Puerto Rico/8/1934/H1N1
(PR8 strain). Influenza A reverse genetics was performed using a pre-
viously established protocol80 to rescue the H7N1-WT and H7N1-MUT
viruses. Briefly, plasmid cocktails were prepared to contain pDZ plas-
mids of the seven PR8 backbone segments with either the pDZ H7
SZ19-WTor the pDZH7 SZ19-MUTplasmid respectively. Co-cultures of
HEK293T and MDCK-SIAT1 cells were reverse transfected with the
respective plasmid cocktails using TransitLT1 reagent (Mirus Bio, lyec-
1) in a 1:4 ratio. Monolayers of MDCK-SIAT1 cells were then infected
with the co-culture supernatant and observed for cytopathic effect
after 72 h. The virus rescues were confirmed using hemagglutination
assay and their H7 ORF sequences were confirmed using Sanger
sequencing.

HA sequence analysis and alignment
To determine the distributions of amino acids at position 166,167 of
HA in influenza A virus derived from different species, a total of HA
amino acid sequences was downloaded from the Global Initiative on
Sharing All Influenza Data (GISAID) (https://www.gisaid.org/) database
and the Influenza Virus Database of GenBank (https://www.ncbi.nlm.
nih.gov/genomes/FLU/Database/nph-select.cgi?go_database). The
amino acid sequences of each HA were aligned using MAFFT81. Base
compositional data of the amino acid at position 166,167 were then
graphically plotted using the Python language.

Virus infection of mice and flow cytometry analysis
The rescued virus H7N1 (WT) and H7N1-T166, L167 (MUT) were gen-
erated following previous protocols. C57BL/6 mice, maintained in our
laboratory in Gothenburg, were infected intranasally with either WT
virus (0.1 TCID50) or MUT virus (50 TCID50) per mouse in Hanks’
Balanced Salt Solution (HBSS) + 0.1% fetal calf serum (BSA) intranasally
in a volume of 25μL/mouse. Fourteen days post-infection, the mice
were sacrificed and mediastinal lymph nodes (medLNs), spleens and
lungs harvested for further analysis. The harvested organs were pro-
cessed to obtain a single-cell suspension, and red blood cells were
lysed using ACK lysing buffer. For B cell characterization, 25μL of pre-
mixed extracellular antibody mixture was added to each sample and
incubated for 30min at 4 °C. The following antibodies were used for
extracellular B cell staining: 1:700 anti-mouse CD3 BV510 (BD, catalog:
563024), 1:200 anti-mouse IgM PE/Dazzle 594 (BioLegend, catalog:
314529), 1:200 anti-mouse IgD BV785 (BD, catalog: 563618), 1:200 anti-
mouse CD38 FITC (BioLegend, catalog: 102705), 1:200 anti-mouse GL7
PE (BioLegend, catalog: 144607), and 1:200 anti-mouse B220 Pe-Cy7
(BioLegend, catalog: 103221). Following the antibody incubation, the
samples were washed with 1mL of FACS-buffer (DPBS + 2% FBS +
0.5mM EDTA), and the supernatant was discarded. To assess HA-
specific B cells, 100 μL of premixedWT/MUTHAproteinswere added
to each tube and incubated for 1 h at 4 °C. WT-HA protein was con-
jugated with streptavidin-APC (Bioligand, catalog: 405243), Brilliant
Violet 421 Streptavidin (BioLegend, catalog: 405225), MUT-HA pro-
tein was conjugated with Brilliant Violet 650 Streptavidin (BD, cata-
log: 563855), Percp5.5 Streptavidin (BioLegend, catalog: 405214)
before the experiment: proteins were diluted at 0.02mg/ml and
labeled by stepwise addition (at 10min intervals) of molar excess of
fluorescent streptavidin. Labeled proteins were stored at 4 °C over-
night and used within 2 weeks of labeling18. The samples were then
washed. To exclude dead cells, Live/Dead Aqua (Invitrogen, catalog:
L34966) staining was performed for 30min at 4 °C, followed by
fixation of the cells with 1.5% paraformaldehyde (PFA). After fixation,
the samples were washed, resuspended in 200μl of FACS buffer, and
stored at 4 °C until analysis.

B cell ELISpot assay
Ninety-six-well ELISpot plates (Millipore Sigma) were coated with
100μL per well of recombinant WT-HA protein or MUT-HA at a con-
centration of 1μg/mL, and incubated overnight at 4 °C. The next day,
the plates were blocked with 100μL of PBS containing 2% BSA and
incubated for at least 1 h at RT.Micewere sacrificed 14 days after being
infectedwithWT (0.1 TCID50) /MUT (50TCID50) virus 14days, and their
medLNswere harvested andprocessed for analysis. Cells isolated from
medLNs were counted using a Muse cell analyzer (Merck Millipore) in
0.1% BSA in PBS. Each well was seeded with 1.5 × 105 cell in 150μL of
DMEM supplemented with 10% FBS and 10μg/mL gentamicin, then
serially diluted 3-fold and incubated overnight at 37 °C. Plates were
washed three times with PBS containing 0.05% Tween, followed by a
2 h incubation with 50μl anti-mouse IgG H+ L HRP (Aviva Systems
Biology, catalog: ORA 04973) at RT. After three additional washes, the
plates were developed using BD ELISpot AEC Substrate solution and
incubated in a humid chamber for 10min at RT before stopping the
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reaction. A CTL ImmunoSpot plate reader was used for imaging, and
spots were manually counted. The number of spot-forming cells was
normalized to 106 cells.

Atomic model building and refinement
For structure determination, a model of nanobodies was generated
using ImmuneBuilder54. The model of nanobodies linked with Fc tag
was done using the ColabFold version of AlphaFold v2.3.082,83, SZ19-
HA and SZ19-HA-T166,L167 were generated by Swiss-model (https://
swissmodel.expasy.org/). Structures were analyzed and figures were
generated using Open-Source PyMOL version 2.5.0. (http://www.
pymol.org). Final model statistics were summarized in Supplemen-
tary Fig. 1B. The ClusPro 2.084,85 server was used in “antibody mode”
to produce docking models between nanobody E10-Fc and SZ19 H7-
HA. The top 30 models returned by the server were ranked
depending on energy and cluster size. The 10 best ClusPro docking
models were further analyzed based on interactions and interface
properties calculated according to PDBePISA (Proteins, Interfaces,
Structures and Assemblies) (European Bioinformatics Institute
(https://www.ebi.ac.uk/pdbe/prot_int/pistart.html))86 and combined
in our primarily results in Fig. 4a. The final model subsequently
underwent manual analysis and image generation in Open-Source
PyMOL version 2.5.0.

Peptide preparation and immunization
H7-HA166-186 peptide (length: 21 amino acids, sequence KSYKNTRK-
SPAIIVWGIHHSV) was linked with OVA protein at the C-Terminal. Mice
were immunized with H7-HA166-186 /OVA peptide or just PBS three
times with i.p. The first two times each mouse immunized intraper-
itoneally with 100 µg H7-HA166-186 /OVA peptides in 100 µL PBS mixed
with 100 µL of AddaS03™ Adjuvant (InvivoGen, vac-as03-10). For the
third immunization the sameamount of peptidewas used, but without
adjuvant. The H7-HA166-186 peptide was synthesis by and purchased
from GenScript and the purity is ≥95%.

Statistical analysis
GraphPad Prism software was used for plotting and statistical analysis.
To compare the counts of cells between the groups in the ELISpot
screening analysis, a one-way ANOVA was employed, followed by
Dunnett’s multiple comparisons test to adjust for comparisons
between individual pools and the control peptide. For nanobody
detection, a two-sided unpaired Student’s t test was performed. Sta-
tistical significance was indicated as follows: **** for p value ≤0.0001,
*** for p value ≤0.001, ** for p value ≤0.01, and * for p value ≤0.05.
Additionally, a two-way ANOVA with post hoc Tukey’s HSD test was
performed, using an alpha level of 0.05 to identify significant differ-
ences acrossmultiple factors. Statistical significance for these analyses
was similarly indicatedwith **** forp valueof≤0.0001 and * denotes ap
value of ≤0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data are available in the main text or the Supplementary Materi-
als. Source data are provided with this paper.
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