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Abstract
BACKGROUND 
Osteoporosis is the leading cause of vertebral fractures. Dual-energy X-ray absor-
ptiometry (DXA) and radiographs are traditionally used to detect osteoporosis 
and vertebral fractures/deformities. Magnetic resonance imaging (MRI) can be 
utilized to detect the relative severity of vertebral deformities using three-dimen-
sional information not available in traditional DXA and lateral two-dimensional 
radiography imaging techniques.

AIM 
To generate normative vertebral parameters in women using MRI and DXA scans, 
determine the correlations between MRI-calculated vertebral deformities and age, 
DXA T-scores, and DXA Z-scores, and compare MRI vertebral deformity values 
with radiography values previously published in the literature.

METHODS 
This study is a retrospective vertebral morphometric analysis conducted at our 
institution. The patient sample included MR images from 1638 female patients 
who underwent both MR and DXA imaging between 2005 and 2014. Biconcavity, 
wedge, crush, anterior height (Ha)/posterior height (Hp), and middle height (Hm)
/posterior height values were calculated from the MR images of the patient’s 
vertebrae. Associations between vertebral deformity values, patient age, and DXA 
T-scores were analyzed using Spearman correlation. The MRI-derived measure-
ments were compared with radiograph-based calculations from population-based 
data compiled from multiple studies.

RESULTS 
Age was positively correlated with lumbar Hm/Hp (P = 0.04) and thoracic wedge 
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(P = 0.03) and biconcavity (P = 0.001) and negatively correlated with thoracic Ha/Hp (P = 0.002) and Hm/Hp (P = 
0.001) values. DXA T-scores correlated positively with lumbar Hm/Hp (P < 0.0001) and negatively with lumbar 
wedge (P = 0.046), biconcavity (P < 0.0001), and Ha/Hp (P = 0.046) values. Qualitative analysis revealed that Ha/Hp 
differed between MRI and radiography population-based data by no more than 0.3 and Hm/Hp by a maximum of 
1.2.

CONCLUSION 
Compared with traditional imaging techniques, MRI detects vertebral deformities with high accuracy and re-
liability. It may be a sensitive, ionizing, radiation-free tool for use in clinical settings.

Key Words: Magnetic resonance imaging; Dual-energy X-ray absorptiometry; Radiography; Vertebral deformities; Biconca-
vity; Wedge; Crush; Vertebral fractures
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Core Tip: This study provides new reference data for vertebral deformities using Magnetic Resonance Imaging (MRI) to 
assess vertebral heights and deformities in women. We correlated MRI-derived measurements with age and dual-energy X-
ray absorptiometry scores, revealing key insights into the progression of spinal deformities. Our results highlight the 
potential of MRI to accurately measure vertebral deformities, offering improved diagnostic capabilities and a non-invasive 
approach for monitoring spinal health.
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INTRODUCTION
Osteoporosis is a skeletal disorder characterized by low bone mass and microarchitectural deterioration, leading to bone 
fragility and increased risk of fractures. As human life expectancy increased, osteoporosis became the leading bone 
disease in prevalence and economic cost[1]. Vertebral fractures are the most common manifestation of osteoporosis, 
comprising almost 50% of all osteoporotic fractures in the United States annually, leading to a significant burden on our 
healthcare system[2]. Patients have an increased medical cost of $38649 in their first year after an osteoporotic vertebral 
fracture compared to their healthy-matched counterparts[3]. Moreover, vertebral fractures have been linked to physical 
disabilities, reduced mobility, increased anxiety and depression, and increased mortality[4-6]. They frequently occur in 
the elderly population, particularly postmenopausal women, due to decreased estrogen production, eventually resulting 
in osteoporosis[7]. Furthermore, a single vertebral fracture substantially increases the risk of subsequent osteoporotic 
fractures, both vertebral and non-vertebral. Osteoporotic vertebral fractures cause a wide range of symptoms depending 
on the location and severity, meaning no stereotypical symptoms are associated with these fractures. They, therefore, 
tend to be underdiagnosed and missed by clinicians. Only one-third of vertebral fractures are clinically diagnosed, 
resulting in unnecessary long-term pain and the accumulation of severe spinal deformities over time[4].

There are several methods to detect vertebral fractures. However, the variation in shape and size of the vertebrae 
individually and between patients leads to great uncertainty in the diagnosis. In qualitative visual diagnoses, the 
assessment of vertebral fractures is primarily determined by individual clinicians’ interpretations of radiographic 
appearances. Dual-energy X-ray absorptiometry (DXA) scans have been the gold standard in diagnosing osteoporosis, 
while vertebral compression fractures are diagnosed using lateral X-ray imaging of the spine[8]. DXA scans accurately 
measure bone mineral density (BMD) and can provide a clear lateral image of the lower thoracic and lumbar spine. This 
method allows for simultaneous assessment of overall bone quality and vertebral fracture status[9]. DXA scans use a low 
dose of ionizing radiation, require minimal patient setup, and have a short scan time[10], but they do not provide a clear 
image of the upper thoracic vertebrae[11].

Lateral plain X-ray radiographs use the Genant semi-quantitative approach, which reduces the subjectivity of a 
vertebral fracture assessment. This approach utilizes a visual grading scale to categorize the severity of vertebral 
deformities. Each vertebra’s severity grade is assigned based on the visually apparent degree of vertebral height loss. 
Vertebral fractures are classified as grade 1 if the vertebral height is reduced by 20%-25%, grade 2 if reduced by 25%-40%, 
or grade 3 if reduced by 40% or more[12]. Large amounts of bone loss, typically 40%-50%, are required before abnorma-
lities on lateral radiographs can be detected easily[13]. Vertebral fractures may be quantified by setting a fracture thre-
shold based on the average vertebral deformity of a reference population, as proposed by Eastell et al[14], Rajapakse et al
[15] and Jiang et al[16]. Vertebral deformities can be characterized as wedge, biconcavity, or crush, depending on the 
anterior (Ha), middle (Hm), and posterior (Hp) heights of each vertebral body[12]. A wedge deformity is defined as an 
anterior-posterior asymmetry. Biconcavity deformities are characterized by decreased Hm relative to Hp. Crush deformi-
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ties are described as vertebral compression relative to neighboring vertebrae. Wedge, biconcavity, and crush deformities 
comprise 50%, 17%, and 13% of prevalent fractures among adults, respectively[15].

Each vertebra is a three-dimensional entity. Hence, two-dimensional (2D) imaging may not be the most accurate 
method to analyze vertebral fractures, especially since the spine is inherently curved. The spinal curvature must be 
assessed to evaluate a spinal deformity accurately. 2D imaging only depicts the spinal anatomy from a single plane, 
meaning an exact description of the spinal curvature cannot be fully determined from 2D imaging alone[17]. Thus, the 
multi-slice magnetic resonance imaging (MRI)-based approach developed by Rajapakse et al[15] is a promising tool for 
measuring the relative severity of spinal deformities accurately and reliably. The MRI-based approach provides improved 
spatial resolution with good signal, contrast properties, and multiplanar reconstruction[18,19].

This study utilized MR images to establish new reference data for vertebral wedge, biconcavity, and crush deformities 
for vertebrae C3 through L5 in females. We sought to validate this data by comparing it to previously published 2D-
derived vertebral heights and correlating the deformity severity with age and DXA T- and Z-scores. Standard deformity 
curves at each vertebral level would allow clinicians to accurately determine the relative severity of spinal deformities.

MATERIALS AND METHODS
This was a retrospective vertebral morphometric study with both between-participant and within-participant compo-
nents. The institutional review board approved the procedures, and written informed consent was obtained from all 
participants.

MRI cohort
Analyses were conducted using multi-slice spine MR images from 1638 female patients who underwent both MR and 
DXA imaging at our institution between January 1, 2005 and January 20, 2014. Due to the severe nature of osteoporosis 
among women, we excluded male participants from this study. To maximize the sample size and capture the diversity of 
individuals obtaining spinal DXA and MR images, the exclusion criteria did not include any specific blood chemistry 
values or other clinical diagnoses. Female participants (n = 1638) with a mean ± SD age of 67.6 ± 10.9 years (range: 27-98 
years) were included in this study.

Spine MRI acquisition
Vertebral deformity analyses were performed on sagittal images of the vertebral spine (Figure 1). These were acquired 
using a fast spin-echo sequence: Magnetic field strength, 1.5-3 T; slice thickness, 3-4 mm; repetition time, mean = 625.77 
ms, range 250-5000 ms; echo time, mean = 11.86 ms, range 5.56-101.02 ms; voxel size, mean = 0.55 mm, range 0.25-1.5 mm; 
and matrix size, mean = 487.56 mm, range 256-1024 mm.

DXA-derived BMD T-score and Z-score
BMD scores were obtained from DXA scans conducted for various clinical workups. T-scores are reported as a reference 
for diagnosing osteopenia and osteoporosis, along with other associations calculated between DXA BMD scores and 
deformity values.

Vertebral deformity quantification
Deformities were quantified using software written in Interactive Data Language (Exelis Visual Information Solutions, 
Inc., Boulder, Colorado) described previously by Rajapakse et al[15]. A stack of sagittal images was displayed, the image 
crossing each vertebra in the midline was located, and the four corners and superior and inferior midline edges were 
annotated manually. Special precautions were taken to avoid errors due to osteophytes and depressions caused by 
endplate herniations (Schmorl’s nodes). Euclidean distances between annotations were used to calculate the Ha/Hp and 
Hm/Hp ratios and wedge, biconcavity, and crush deformities using the formulas (Table 1). The number of vertebrae 
analyzed per participant varied based on height due to a fixed field of view and the visualization of individual vertebrae 
on MR images.

2D radiography existing literature
We focused on gathering literature that utilizes radiographs to calculate spinal deformities[20-30]. The main objectives of 
the studies we collected to calculate spinal deformities in radiographs were to establish vertebral spinal deformity 
reference values dependent on population-based data. Eleven studies were examined initially, with sample sizes large 
enough that the vertebral values calculated in each study were deemed representative of the values likely to occur in the 
participants’ demographics[20-30]. Studies were excluded if vertebral calculations did not include enough spine seg-
ments. For example, radiography is often limited in the thoracic spine due to its low image quality. In total, the average 
age of participants in the 2D imaging studies was 63.5 years.

Statistical analysis
Statistical significance was set at α = 0.05. All analyses were performed using R (version 3.5.1, R Foundation for Statistical 
Computing, Vienna, Austria). Within the MR imaging cohort, DXA T-score and Z-score, as well as corresponding healthy, 
osteopenia, or osteoporosis designations, were previously determined clinically. For each deformity type, Spearman’s 
rank correlation coefficient was calculated to investigate the association between lumbar deformity severity and DXA-
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Table 1 Vertebral deformity formulas

Cervical vertebrae Thoracic vertebrae Lumbar vertebrae

Wedge 1 - Hp/Ha Hp/Ha - 1 1 - Hp/Ha

Biconcavity Ha/Hm - 1 Hp/Hm - 1 Ha/Hm - 1

Crush ([H]above + [H]below)/2[H] - 1 ([H]above + [H]below)/2[H] - 1 ([H]above + [H]below)/2[H] - 1

[H]: (Ha + Hm + Hp)/3; Ha: Anterior height; Hm: Middle height; Hp: Posterior height.

Figure 1 Representative magnetic resonance imaging demonstrating a severe L2 biconcavity deformity (left) and no L2 deformity (right) 
with anterior, middle, and posterior height measurements. Ha: Anterior height; Hm: Middle height; Hp: Posterior height.

derived T-score and Z-score.
Each deformity value and height ratio were averaged within vertebral regions to generate severity measures for the 

cervical, thoracic, and lumbar spine. Spearman’s correlations were conducted to determine associations between age and 
the deformity values of each vertebral region (cervical, thoracic, and lumbar). The between-participant component 
involved plotting the MR imaging cohort’s vertebral height values against those collected from the literature. The mean 
height values (Ha/Hp and Hm/Hp) were calculated for individual vertebrae (T1-L5) in each study. C3-C7 vertebrae were 
excluded from these analyses as images did not permit an accurate and complete assessment of these vertebrae.

RESULTS
Individual vertebral measurements
Deformities (wedge, crush, and biconcavity) and height ratios (Ha/Hp and Hm/Hp) were calculated for each vertebra (C3-
L5) for 1638 female participants. Wedge, crush, and biconcavity deformity values are shown (Figure 2A). The mean ± SD 
values of the wedge deformities of the cervical, thoracic, and lumbar regions are -2.99 ± 2.45, 8.40 ± 3.41, and 3.60 ± 7.43, 
respectively. The mean ± SD of the crush deformities of the cervical, thoracic, and lumbar regions are 1.62 ± 3.68, -0.52 ± 
1.07, and 0.41 ± 2.00, respectively. The mean ± SD of the biconcavity deformities of the cervical, thoracic, and lumbar 
regions are 11.43 ± 3.83, 12.41 ± 7.20, and 13.30 ± 4.25, respectively.

Ha/Hp and Hm/Hp values are shown in Figure 2B. The mean ± SD Ha/Hp ratios of the cervical, thoracic, and lumbar 
regions are 0.97 ± 0.02, 0.93 ± 0.03, and 1.04 ± 0.07, respectively. The mean ± SD Hm/Hp ratios of the cervical, thoracic, and 
lumbar regions are 0.88 ± 0.02, 0.88 ± 0.01, and 0.92 ± 0.03, respectively. The deformity values of each vertebra are 
presented in Table 2.

Relationship with age
Table 3 contains correlations between age and vertebral deformity values. Age was positively correlated with thoracic 
wedge (rs = 0.06, P = 0.03) and biconcavity deformity values (rs = 0.09, P = 0.001) (Figure 3A) and negatively correlated 
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Table 2 Reference spinal deformities of individual cervical, thoracic, and lumbar vertebrae in women (n = 1638)

Vertebra Wedge Crush Biconcavity Ha/Hp Hm/Hp

C3 -1.66 -4.12 15.61 0.98 0.86

C4 -1.54 0.26 15.31 0.98 0.87

C5 -7.21 1.85 7.32 0.93 0.87

C6 -4.17 7.19 7.62 0.96 0.90

C7 -0.36 2.92 12.27 1.00 0.90

Total cervical, mean ± SD -2.99 ± 2.45 1.62 ± 3.68 11.43 ± 3.83 0.97 ± 0.02 0.88 ± 0.02

T1 4.38 2.91 10.19 0.96 0.91

T2 1.85 -1.87 10.17 0.98 0.91

T3 4.50 -1.61 11.68 0.96 0.89

T4 8.43 -0.36 12.22 0.93 0.89

T5 10.06 -0.17 12.45 0.91 0.88

T6 13.94 0.70 16.08 0.88 0.86

T7 11.60 0.29 15.41 0.90 0.87

T8 12.01 -0.028 14.35 0.90 0.88

T9 9.84 1.20 14.4 0.93 0.88

T10 6.95 -0.05 14.47 0.94 0.88

T11 10.13 0.07 14.64 0.91 0.87

T12 7.17 -0.84 12.46 0.93 0.89

Total thoracic, mean ± SD 8.40 ± 3.41 -0.52 ± 1.07 13.38 ± 1.89 0.93 ± 0.03 0.88 ± 0.01

L1 -5.22 -1.44 7.09 0.95 0.89

L2 -1.84 -1.02 10.94 0.98 0.89

L3 2.30 -1.21 13.84 1.02 0.90

L4 6.64 -1.94 14.71 1.07 0.94

L5 16.16 3.54 19.93 1.16 0.97

Total lumbar, mean ± SD 3.61 ± 7.43 -0.41 ± 2.00 13.3 ± 4.25 1.04 ± 0.07 0.92 ± 0.03

Ha: Anterior height; Hm: Middle height; Hp: Posterior height.

Table 3 Deformity values of cervical, thoracic, and lumbar vertebral regions correlated with age, P value

Wedge Crush Biconcavity Ha/Hp Hm/Hp

Cervical 0.41 0.29 0.88 0.41 0.87

Thoracic 0.03 0.18 0.001 0.002 0.001

Lumbar 0.61 0.85 0.33 0.61 0.04

Ha: Anterior height; Hm: Middle height; Hp: Posterior height.

with thoracic Ha/Hp (rs = -0.08, P = 0.002) and Hm/Hp (rs = -0.09, P = 0.001) (Figure 3B). Also, age was positively correlated 
with lumbar Hm/Hp (rs = 0.06, P = 0.04) (Figure 3C).

BMD scores
Clinically calculated DXA T- and Z-scores for the MRI cohort are reported (Table 4). Based on their T-scores, 61.76% of the 
cohort had osteoporosis, 29.37% had osteopenia, and 8.87% had normal bone density. DXA T-scores were negatively 
correlated with lumbar wedge (rs = -0.24, P < 0.0001) and biconcavity (rs = -0.06, P = 0.046) (Figure 4A). They were also 
negatively correlated with Ha/Hp (rs = -0.06, P = 0.046), but positively correlated with Hm/Hp (rs = 0.17, P < 0.0001) 
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Table 4 Dual-energy X-ray absorptiometry T-score and Z-score of the magnetic resonance imaging cohort (n = 1638)

mean ± SD Median ± IQR Range

T-score -0.3 ± 1.82 -0.5 ± 1.15 -7.4-8.0

Z-score 0.8 ± 1.77 -0.7 ± 1.10 -5.3-9.0

IQR: Interquartile range.

Figure 2 Individual vertebral measurements. A: Mean wedge, crush, and biconcavity deformities of vertebrae C3-L5; B: Mean anterior height/posterior height 
and middle height/posterior height ratios of vertebrae C3-L5. Error clouds represent SD. Ha: Anterior height; Hm: Middle height; Hp: Posterior height.

Figure 3 The relationship with age. A: The relationship between age and average thoracic (T1-T12) wedge (left) and biconcavity (right) deformities; B: The 
relationship between age and average thoracic (T1-T12) anterior height/posterior height (left) and middle height/posterior height (right); C: The relationship between 
age and average lumbar (L1-L5) middle height/posterior height. Ha: Anterior height; Hm: Middle height; Hp: Posterior height.
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Figure 4 The relationship with dual-energy X-ray absorptiometry scores. A: The relationship between dual-energy X-ray absorptiometry (DXA) T-
scores and average lumbar (L1-L5) wedge (left) and biconcavity (right) deformities; B: The relationship between DXA T-scores and average lumbar (L1-L5) anterior 
height/posterior height (left) and middle height/posterior height (right); C: The relationship between DXA Z-scores and average lumbar (L1-L5) biconcavity (left) and 
middle height/posterior height (right). DXA: Dual-energy X-ray absorptiometry; Ha: Anterior height; Hm: Middle height; Hp: Posterior height.

(Figure 4B). DXA Z-scores were negatively correlated with lumbar biconcavity (rs = -0.23, P < 0.0001) and Hm/Hp (rs = 
0.18, P < 0.0001) (Figure 4C). No significant correlations were identified between DXA T-scores and average lumbar crush 
or between DXA Z-scores and average lumbar wedge, crush, or Ha/Hp (P > 0.05).

MRI cohort compared to 2D existing literature
A qualitative comparison between the MRI cohort and averaged radiograph-derived data from selected prior studies 
(literature mean) reveals a difference in Ha/Hp by no more than 0.3 at most (Figure 5A), while the maximum difference in 
Hm/Hp between the two groups is 1.2 (Figure 5B).

DISCUSSION
The primary aims of this study were to establish C3-L5 deformity reference values for a clinically relevant population of 
females using MR images, to determine the association between deformity severity and age, and to validate MRI-derived 
reference data against previously published radiograph-derived vertebral heights. As hypothesized, multiple vertebral 
deformities increased in severity with age. Mean calculations of Ha/Hp and Hm/Hp ratios were comparable between the 
MRI cohort and the existing radiographic literature. Quantitative analyses were, however, performed within the MRI 
cohort to compare wedge, crush, biconcavity, Ha/Hp, and Hm/Hp with age and DXA BMD scores. A fixed field of view 
limited the number of vertebrae we could analyze, so calculations specifically for the C3-C5 vertebrae do not include all 
participants. Vertebral fracture incidences occur most often at T7-T9 due to thoracic kyphosis and L1-L5 due to activities 
that increase the axial load[31]. We, therefore, do not believe this omittance will alter the clinical utility of this data.

Additionally, the MRI cohort comprises females with clinically necessitated DXA and MRI scans performed at our 
institution. The mean age of this cohort is 63.5 years, so the vertebral deformity height values do not represent all adult 
females equally. Given that vertebral fractures and osteoporosis are most common in postmenopausal women[31,32], 
with women over 60 experiencing 2-2.5 fold compression fractures compared to those under 60 years old, this distri-
bution is clinically reasonable. However, future studies should emphasize compression fractures in younger individuals 
as many other variables, such as obesity, can increase the likelihood of vertebral compression fractures[33,34]. Due to our 
study’s large sample size, vertebral height data calculated from these MRI scans likely accurately represents the defor-
mity values of women.
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Figure 5 Magnetic resonance imaging cohort compared to two-dimensional existing literature. A: Distribution of average anterior height/posterior 
height from prior studies. The magnetic resonance imaging cohort (red) differs from the two-dimensional radiograph-derived literature mean (yellow) by a maximum of 
0.3; B: Distribution of average middle height/posterior height from prior studies. The magnetic resonance imaging cohort (red) differs from the two-dimensional 
radiograph-derived literature mean (yellow) by a maximum of 1.2. Ha: Anterior height; Hm: Middle height; Hp: Posterior height.

Comparisons between MRI deformity calculations and DXA T-score and Z-score support the notion that MRI can be 
used to classify fracture severity of the spine accurately[35,36]. Specifically, lumbar wedge, biconcavity, Ha/Hp, and Hm/
Hp correlate with DXA T-scores, and lumbar biconcavity and Hm/Hp correlate with DXA Z-scores. MRI deformity cal-
culation methods should be studied further to replicate our results. Spine and proximal hip BMD provide valuable 
clinical information, but there is debate about which offers greater predictability of vertebral fracture[35,37,38]. Future 
comparisons of deformity calculations using MRI with BMD should account for both spine and hip scores. Due to the 
high contrast possible with MR imaging of soft tissue and bone[39], predictive fracture risk and deformity severity can be 
determined using manually calculated heights at individual vertebrae instead of DXA, which relies on a broader diag-
nostic measurement.

Our results also indicate a significant increase in deformity values of lumbar and thoracic biconcavity and Hm/Hp, as 
well as thoracic wedge and Ha/Hp with age. This observation is supported by the fact that osteoporosis and resultant 
vertebral fractures are most common in older women[40], which is why age is highlighted as a risk factor for multiple 
fractures and osteoporosis in studies utilizing radiography[41-45]. Our age-related findings, therefore, validate our MRI-
based reference data, further supporting the potential clinical utility of MRI in deformity calculation and assessment. 
While quantifying vertebral deformities from MRI data has not been widely adopted in routine clinical practice yet, 
largely due to the labor-intensive nature of these calculations, recent advancements in artificial intelligence-assisted ima-
ging hold great promise. Automation through machine learning algorithms has the potential to streamline these 
measurements, making MRI a more feasible option for vertebral deformity assessment in clinical settings[46]. Addi-
tionally, the use of opportunistic MRI scans provides a unique opportunity to gather valuable clinical data without 
additional radiation exposure. MRIs conducted for unrelated clinical reasons could be repurposed to automatically assess 
vertebral deformities, thus allowing for proactive monitoring of spine health. By leveraging these opportunistic MRIs, 
vertebral deformities could be assessed as an early prognostic marker for fracture risk, particularly in populations prone 
to osteoporosis and spinal degeneration.
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Several limitations should be considered. Although no qualitatively large variation was present, there was no 
quantitative comparison of the MRI cohort’s vertebral heights with previously published vertebral heights. Raw radio-
graphic-derived patient data was not published, which limited our knowledge of variance and distribution[20-30]. Also, 
it is important to note that consecutive vertebral deformities may introduce inaccuracies in calculating crush deformities 
since these deformity calculations rely on the above and below vertebrae as reference points. Additionally, further studies 
are needed to better understand the relationships between vertebral deformity severity and other clinical factors and 
demographics, such as race, body mass index, weight, height, baseline activity level, comorbidities, and medication 
usage. Future analyses should focus on stratifying participants by these factors to assess their impact on vertebral defor-
mity progression and severity in women at different stages of life.

CONCLUSION
Clinically, MRI is more expensive and time-consuming than DXA. However, MRI can be advantageous because it does 
not subject patients to ionizing radiation[47]. With further investigation, MRI has the potential to be used in clinical 
settings to detect vertebral fractures. We believe opportunistic spinal MRI analysis conducted over a patient’s lifetime 
would allow for prophylactic monitoring of spine health and vertebral deformity progression. Conducting vertebral 
deformity calculations on routine MRI scans could prove beneficial, as vertebral fractures often go undetected and can 
have severe ramifications on the quality of life[31]. Additionally, opportunistic analysis would provide more data on 
vertebral fracture rates in younger individuals. In summary, calculating vertebral deformities using MRI has many 
benefits, ranging from improving health outcomes to expanding research on MRI’s involvement in detecting spine-
related diseases.
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