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Simple Summary: Surgery of skull base tumors presents significant challenges for neu-
rosurgeons owing to their proximity to critical structures, such as the brainstem, arteries,
veins, and cranial nerves. These tumors are located in deep and narrow intracranial spaces,
and the anatomical variations in the surrounding structures differ among patients. Con-
sequently, complete tumor resection carries the risk of damaging these vital structures,
potentially leading to severe neurological deficits. Preoperative imaging plays a crucial role
in assessing tumors and their relationships with adjacent structures. This study reviewed
advanced imaging techniques that allow detailed visualization of important structures
using different modalities such as computed tomography, magnetic resonance imaging
(MRI), and digital subtraction angiography. Moreover, we report the MRI contrast defect
sign, which suggests that the cranial nerve penetrates the skull base meningiomas. These
methods improve the accuracy of preoperative assessment, guide surgical planning, reduce
complications, and preserve neurological functions.

Abstract: Skull base tumors such as meningiomas and schwannomas are often pathologi-
cally benign. However, surgery for these tumors poses significant challenges because of
their proximity to critical structures such as the brainstem, cerebral arteries, veins, and
cranial nerves. These structures are compressed or encased by the tumor as they grow,
increasing the risk of unintended injury to these structures, which can potentially lead to
severe neurological deficits. Preoperative imaging is crucial for assessing the tumor size,
location, and its relationship with adjacent vital structures. This study reviews advanced
imaging techniques that allow detailed visualization of vascular structures and cranial
nerves. Contrast-enhanced computed tomography and digital subtraction angiography
are optimal for evaluating vascular structures, whereas magnetic resonance imaging (MRI)
with high-resolution T2-weighted images and diffusion tensor imaging are optimal for
evaluating cranial nerves. These methods help surgeons plan tumor resection strategies,
including surgical approaches, more precisely. An accurate preoperative assessment can
contribute to safe tumor resection and preserve neurological function. Additionally, we
report the MRI contrast defect sign in skull base meningiomas, which suggests cranial nerve
penetration through the tumor. This is an essential finding for inferring the course of cranial
nerves completely encased within the tumor. These preoperative imaging techniques have
the potential to improve the outcomes of patients with skull base tumors. Furthermore,
this study highlights the importance of multimodal imaging approaches and discusses
future directions for imaging technology that could further develop preoperative surgical
simulations and improve the quality of complex skull base tumor surgeries.

Keywords: skull base tumor; schwannoma; meningioma; vascular; cranial nerve; preoperative
imaging
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1. Introduction
Among skull base tumors treated by neurosurgeons, the majority are histologically

benign, such as meningiomas and schwannomas. It is established that the extent of tumor
resection significantly influences long-term postoperative tumor control [1–5]. However,
these tumors are located in deep and narrow intracranial spaces, frequently adjacent to
critical structures, such as the brainstem, arteries, veins, and cranial nerves. As the tumor
grows, these structures are compressed or encased. Pathological anatomical variations in
these structures differ significantly among patients. Therefore, radical resection carries
the risk of deteriorating the patient’s function and quality of life [6–10]. For surgical
support, neuromonitoring and neuronavigation are useful to prevent injury to surrounding
structures [11–14]. Moreover, preoperative imaging assessment is crucial for ensuring the
safety of surgery, as well as for efficient tumor resection. It is necessary to assess the size
and location of the tumor, as well as its anatomical relationship with adjacent structures,
such as the cerebral vessels and cranial nerves. This information is valuable for determining
the surgical approach and planning tumor resection strategies.

For preoperative tumor evaluation, contrast-enhanced computed tomography (CT),
magnetic resonance imaging (MRI), and digital subtraction angiography (DSA) are often
used. Recent advances in these modalities have made it possible to obtain more detailed
preoperative tumor information using less invasive methods. Here, we review methods for
preoperatively identifying the surrounding structures in skull base tumors. We summarize
the previous literature on the evaluation of vascular structures and cranial nerves related
to skull base tumors and introduce methods for cranial nerve visualization based on our
experience.

2. Visualization of Vascular Structures with Skull Base Tumors
Preoperative vascular assessment during skull base tumor surgery is necessary to

avoid complications associated with tumor resection and surgical approaches. Vascular
injury associated with tumor resection is one of the most critical complications to avoid,
and the normal arteries running near or through the tumor should be evaluated preopera-
tively [15–18]. Evaluation of tumor-feeding arteries is useful for assessing tumor vascularity
and determining the indications for preoperative embolization [19,20]. Additionally, pre-
serving important veins during tumor resection is essential because it influences decisions
regarding the extent of resection and surgical approaches [21,22].

Because contrast agents flow through vessels, vascular structures can be visualized in
great detail. By utilizing this information, the exact location of the tumor and its relationship
with surrounding vessels can be determined precisely [23–25]. Although DSA is more
invasive than other modalities, it offers many advantages, making it the gold standard for
preoperative vascular evaluation. DSA has high spatial and temporal resolutions, allowing
for the visualization of small feeders or surrounding vessels [26]. High-resolution cone
beam CT images reconstructed from three-dimensional rotational angiography enable
detailed anatomical assessment. With cone beam CT, multiplanar reconstruction of the
axial, coronal, and sagittal planes allows for more accurate and comprehensive information
acquisition. The relationship between the skull base bone and tumor-feeding arteries or
small perforators running near the tumor can be visualized using cone beam CT [20,27].
In addition, DSA can visualize vessels from each arterial system separately, and high-risk
pial feeders from the internal carotid artery or vertebral artery systems can be highlighted
compared with other modalities (Figure 1) [20]. In addition, DSA enables the assessment of
tumor blood flow, which helps evaluate surgical risks and determine the indications for
preoperative tumor embolization [19]. There has been controversy regarding the benefits
of preoperative feeding artery embolization for skull base meningiomas [28]. However, in
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selected cases, feeder embolization before tumor resection can be a highly useful adjuvant
therapy [20,29].
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Figure 1. Modality selection and its advantages and disadvantages in preoperative vascular and
cranial nerve imaging.

Skull base tumors sometimes compress or involve venous structures, and injury or
sacrifice of venous structures can result in severe complications [30–33]. Moreover, normal
venous drainage may need to be sacrificed when using a specific skull base approach.
Because sacrificing the main venous drainage can potentially lead to significant complica-
tions, surgical approaches for skull base tumors require preoperative assessment of normal
venous drainage courses [21,22,25]. For the evaluation of venous structures, CT or MRI
with contrast has been mainly used in previous studies. In addition to the convenience
of CT and MRI, evaluating venous structures does not require a detailed assessment of
arteries. DSA, with its temporal resolution, may be the best modality for some tumors for
which a venous drainage assessment is necessary.

Identifying the location of venous sinuses is important when determining the keyhole
position for craniotomy. Surface landmarks on the bone have long been widely used
to determine this position, with reports supporting its effectiveness [34,35]. However,
variations exist in the relationship between these landmarks, and the actual position of the
venous sinuses varies. Therefore, minimizing discrepancies using preoperative imaging
is an effective strategy to ensure an accurate and safe craniotomy. The development of
neuronavigation systems has made it possible to verify preoperative images in the surgical
field during surgery [36], but it is sometimes less reliable in the posterior fossa. It is also
possible to reconstruct preoperative information into three-dimensional (3D) simulation
data, including the bone, venous sinuses, and other structures [15,37,38]. To ensure safe
and effective surgery, it is essential to utilize preoperative imaging information effectively
using different methods.
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3. Visualization of Normal Anatomy of Cranial Nerves
Unlike vascular structures, normal cranial nerves are not well enhanced by contrast

agents. Visualization of fine intracranial structures, including cranial nerves, initially
began with cisternography using high-resolution CT with contrast agents or gases [39,40].
Subsequently, advancements in MRI have made it possible to visualize these structures
noninvasively. Currently, MRI-based visualization of intracranial microanatomy is the
gold standard, and several different sequences are available for this purpose. Initially,
high-resolution T1-weighted images were used to visualize cranial nerves that were not
surrounded by cerebrospinal fluid (CSF). Using the contrast-enhanced technique, T1-
weighted images show favorable results in the visualization of nerves surrounded by soft
tissue [41]. However, T2-weighted images have a higher contrast between the cranial
nerves and CSF than T1-weighted images. Therefore, T2-weighted images have frequently
been used to identify the cisternal segments of the cranial nerves surrounded by the
CSF. MRI cisternography using high-resolution T2-weighted images has been frequently
reported, including driven equilibrium (DRIVE) [42], constructive interference of steady-
state sequence (CISS) [43], fast imaging employing steady-state acquisition (FIESTA) [44],
fast asymmetric spin echo (FACE), and balanced fast field echo (bFFE) [45]. These methods
reduce the CSF-compensated artifacts caused by motion and susceptibility owing to local
magnetic field inhomogeneity.

In contrast, the cranial nerves running through the venous sinuses or plexuses can
be identified using contrast-enhanced MRI [46,47]. Because normal cranial nerves are not
enhanced by the contrast agent, the contrast-filled venous structures allow non-enhanced
structures to be identified as cranial nerves. In addition, high-resolution T2-weighted im-
ages with intravenous contrast are used to identify cranial nerves in both venous structures
and subarachnoid cisterns [47,48]. This technique is valid for visualizing the lower cranial
nerves in and out of the jugular foramen and the abducens nerve in the petroclival segment.

The identification of cranial nerves using diffusion tensor imaging (DTI) was con-
ducted using an approach different from the previously mentioned methods. This method
uses the unequal diffusion of water molecules along white fibers to extract their direction
and then reconstruct the white fiber tracts [49]. Tracking cranial nerves is limited because
of their small size [50], tortuous trajectories in skull base cisterns or dura folds, and splayed
fibers within bundles [51]. The tracking parameters should be tailored to the anatomical
features of each cranial nerve. In addition, an anatomical reference is needed for accurate
fiber tracking owing to the low resolution of diffusion imaging. A successful cranial nerve
tractography requires experience in anatomy, radiology, and computer science. There-
fore, tractography training is necessary to ensure the reliability and reproducibility of the
results [52].

Generally, for cranial nerve visualization using DTI, nerves with a thick diameter,
straight course, and minimal artifacts from the surrounding structures are optimal for
fiber tracking. The nerves adjacent to the bone or paranasal sinuses are highly affected
by artifacts. Therefore, the tracking parameters of DTI should be tailored to each nerve
considering the anatomical specificities of each cranial nerve. Therefore, the trigeminal and
facial nerves are relatively easy to visualize. However, because the fibers of these nerves
are thin and diffuse after exiting the brainstem, visualization of the lower cranial nerves is
challenging [51]. A higher-resolution DTI scan with a smaller slice thickness could be one
of the solutions to this problem; however, it has not been utilized in actual clinical practice.

4. Visualization of Cranial Nerves with Skull Base Tumors
The preoperative visualization of cranial nerves is even more challenging in the pres-

ence of tumors. Cranial nerves are often compressed or flattened by tumors and sometimes
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have preoperatively impaired nerve function. This review focuses on meningiomas and
schwannomas, which are commonly encountered benign skull base tumors.

4.1. Meningiomas

Meningiomas are the most prevalent primary intracranial tumors, accounting for
approximately 37% of all intracranial tumors [53]. Meningiomas originate in the meninges
and occur at various locations. Surgical resection is the primary treatment for symptomatic
or enlarging meningiomas, and the extent of resection is an important prognostic factor [54].
The surgical strategy varies significantly depending on the tumor location, size, vascularity,
and adhesion to the surrounding structures. In some cases, the tumor severely compresses
the cranial nerves, or the cranial nerves may penetrate the tumor [6]. These features
increase the risk of postoperative cranial nerve dysfunction, and efficient tumor resection
requires advanced surgical strategies and techniques. Therefore, preoperative visualization
of the cranial nerves surrounding the tumor is believed to contribute to improved surgical
outcomes and various studies have been conducted on this subject (Table 1).

Table 1. Previous reports of meningiomas and cranial nerve visualization.

Tumor Location Authors Year Imaging
Modality

Target
Cranial Nerve

Identification
Rate of Cranial

Nerve in
Preoperative
Image, % (n)

Accuracy
Rate

Confirmed
During the

Surgery, % (n)

Parasellar Sumida M 1998 SPGR II 50.0% (7/14) -

Parasellar Saeki N 2002 Heavily T2 II 85.7% (6/7) -

Parasellar Ma J 2016 DTI II 100% (3/3) 100% (2/2)

Parasellar Zolal A 2017 DTI II 50.0% (1/2) 100% (1/1)

Petroclival Yang K 2017 FIESTA VI 100% (1/1) 100% (1/1)

Cerebropontine
angle Hokamura M 2024 FACE VII 50.0% (1/2) 100% (1/1)

Cerebropontine
angle Mikami T 2005 FIESTA + C V, VI, VII, VIII,

IX, X, XII 87.5% (7/8) 100% (7/7)

Petroclival Ma J 2016 DTI V, VI, VII, VIII 100% (3/3) 100% (3/3)

Petroclival Yoshino M 2016 DTI III, IV, V, VI 100% (1/1) 100% (1/1)

Posterior fossa Behan B 2017 DTI V, VII, VIII 100% (3/3) -

Cerebropontine
angle Zolal A 2017 DTI V, VII, VIII 100% (1/1) 100% (1/1)

Cerebropontine
angle Epprecht L 2019 DTI VII, VIII 100% (1/1) -

Cerebropontine
angle Churi ON 2019 DTI V, VII, VIII 100% (2/2) 100% (2/2)

Posterior fossa Szmuda T 2020 DTI VII 100% (4/4) 100% (4/4)
C: contrast, DTI: diffusion tensor imaging, FACE: fast asymmetric spin echo, FIESTA: fast imaging employing
steady-state acquisition, and SPGR: spoiled gradient recalled acquisition in steady state.

For parasellar meningiomas such as anterior clinoidal meningiomas, planum sphe-
noidale meningiomas, and tuberculum sellae meningiomas, preoperative simulation of the
relationship between the tumor and the optic nerve is crucial. A report using conventional
spin echo T1-weighted imaging and spoiled gradient recalled acquisition in steady state
(SPGR) showed that the detection rates of the optic nerve and chiasma were only 28.6% and
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50.0% [55]. These T1-weighted images were used to detect the optic nerves in patients with
pituitary neuroendocrine tumors. Because meningiomas usually show iso-intensity on T1-
weighted images and often have irregular margins compared to pituitary neuroendocrine
tumors, the detection rate in the optic nerve declines. Furthermore, optic nerves near the
optic canal tend to be difficult to identify in meningiomas of midline origin. However, the
detection rate improved when heavily T2-weighted images were used (85.7%) [56]. On
T2-weighted images, changes in the intensity of the optic nerve and chiasma due to tumor
compression may affect detection. Although the number of cases was limited, one study
successfully visualized the optic nerve using DTI tracking. In three cases, 3D reconstruction
images based on DTI tracking matched the intraoperatively confirmed course of the optic
nerve (100%) [57,58].

For posterior fossa meningiomas, such as petrous, petroclival, and petrotentorial
meningiomas, many critical structures are present within a confined space. The trochlear,
trigeminal, abducens, facial, vestibulocochlear, lower cranial, and hypoglossal nerves
are associated with tumors. High-resolution T2-weighted images without contrast some-
times have difficulty in visualizing cranial nerves compressed by posterior fossa menin-
giomas [8,59]. However, with contrast-enhanced imaging, cranial nerve pathways were
identified with a high degree of accuracy (87.5%) [60]. Meningiomas often demonstrate
homogenous enhancement in contrast-enhanced studies. In the FIESTA sequence with
contrast, homogenous enhancement of meningiomas and hyperintensity of the CSF further
accentuated the boundary with the cranial nerves, demonstrated as hypointense structures.
DTI fiber tracking has also been applied to posterior fossa meningiomas. Despite the tumor
compression, cranial nerves were successfully visualized in all 15 cases in the previous
reports [52,57,58,61–64]. These reports focused on the visualization of cranial nerves com-
pressed or flattened by meningiomas, and the consideration of cranial nerves penetrating
through the tumor has not yet been reported (Figure 1).

4.2. Schwannomas

Intracranial schwannomas are the third most common intracranial non-malignant
tumors after meningiomas and pituitary neuroendocrine tumors [53]. Most intracranial
schwannomas are vestibular schwannomas (95.5%), and most published studies have
focused on vestibular schwannomas. Trigeminal and jugular foramen schwannomas
account for approximately 2% of intracranial schwannomas and may sometimes be treated
as cerebellopontine angle tumors [65,66]. Treatment options for vestibular schwannomas
include surgery and stereotactic radiosurgery. Both methods have shown good outcomes in
tumor control; however, surgery is preferred for larger tumors and younger patients [67–69].
A combination of surgery and radiosurgery has been selected as a surgical strategy for
large vestibular schwannomas [70]. The extent of resection is known to affect postoperative
tumor outcomes; however, aggressive resection may increase the risk of facial nerve palsy or
hearing loss due to damage to the adjacent facial and cochlear nerves [69]. Resection using
neuromonitoring is effective in avoiding irreversible nerve injury; however, preoperative
assessment of the facial nerve pathway is crucial for safe and effective surgery [71,72].

Table 2 summarizes previous reports on the preoperative imaging visualization of
cranial nerves in patients with intracranial schwannomas. While most of the literature
focuses on vestibular schwannomas [57–60,62–64,73–80], a few reports include trigeminal
and jugular foramen schwannomas [60,62,64]. High-resolution T2-weighted imaging with
or without contrast, which demonstrated accurate cranial nerve visualization in patients
with meningioma, had a significantly lower cranial nerve identification rate in patients
with schwannoma (20%; 9 of 45 patients). The course of the facial nerves has a variety
of anatomical patterns in patients with vestibular schwannoma [10]. As the tumor size
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increases, the facial and cochlear nerves are often stretched over the tumor and are difficult
to identify morphologically using MRI. Instead, many reports have used DTI for cranial
nerve visualization, proving its high accuracy.

Table 2. Previous reports of schwannomas and cranial nerve visualization.

Tumor Origin Authors Year Imaging
Modality

Target
Cranial Nerve

Identification
Rate of

Cranial Nerve in
Preoperative
Image, % (n)

Accuracy
Rate

Confirmed
During the

Surgery, % (n)

Vestibular nerve Mikami T 2005 FIESTA + C VII, VIII 22.2% (2/9) -

Vestibular nerve Sartoretti-
Schefer S 2000 T2 FSE VII 9.1% (2/22) -

Vestibular nerve Hokamura M 2024 FACE VII 36.4% (4/11) 100% (4/4)

Vestibular nerve Taoka T 2006 DTI VII 87.5% (7/8) 83.3% (5/6)

Vestibular nerve Gerganov VM 2011 DTI VII 100% (22/22) 90.1% (20/22)

Vestibular nerve Wei PH 2015 DTI VII 100% (23/23) 95.5% (21/22)

Vestibular nerve Ma J 2016 DTI VII 88.9% (8/9) 100% (8/8)

Vestibular nerve Song F 2016 DTI VII 93.3% (14/15) 92.9% (13/14)

Vestibular nerve Behan B 2017 DTI V, VII, VIII 100% (6/6) 100% (6/6)

Vestibular nerve Zolal A 2017 DTI VII, VIII 100% (2/2) 100% (2/2)

Vestibular nerve Zhang Y 2017 DTI VII 100% (30/30) 100% (29/29)

Vestibular nerve Li H 2017 DTI VII 94.7% (18/19) 94.4% (17/18)

Vestibular nerve Churi ON 2019 DTI VII 100% (32/32) 100% (32/32)

Vestibular nerve Szmuda T 2020 DTI VII 90.6% (29/32) 89.7% (26/29)

Vestibular nerve Zhang Y 2023 DTI VII 90.0% (27/30) 92.6% (25/27)

Trigeminal nerve Mikami T 2005 FIESTA + C V 0.0% (0/2) -

Trigeminal nerve Behan B 2017 DTI V 100% (1/1) 100% (1/1)

Trigeminal nerve Churi ON 2019 DTI V 100% (2/2) 50.0% (1/2)

Lower cranial
nerve Mikami T 2005 FIESTA + C IX, X, XI 100% (1/1) -

C: contrast, DTI: diffusion tensor imaging, FACE: fast asymmetric spin echo, FIESTA: fast imaging employing
steady-state acquisition, and FSE: fast spin echo.

Owing to the incidence of schwannomas, most previous studies have focused on
vestibular schwannomas and the facial nerves. Visualization of the facial nerve using DTI
is a highly reliable examination that shows a high rate of concordance with intraoperative
findings. Large tumor size, cystic tumors, and similar tumor diffusion signals to cranial
nerves have been reported as reasons for the inability to perform facial nerve tracking
in vestibular schwannomas [74,81]. Visualization of the trigeminal nerves in trigeminal
schwannomas has been reported to have a relatively low accuracy [62]. Only one pa-
tient with jugular foramen schwannoma had successful DTI tracking of the lower cranial
nerves [60]. Devising the target selection of the region of interest, the combined use of
DTI and other high-resolution T2-weighted sequences has been reported to improve the
accuracy of predicting the course of the facial and cochlear nerves [52,76]. There has been a
report of improved facial nerve visualization through the reconstruction of high-resolution
DTI; however, comparisons with actual intraoperative findings have not been made [61].
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Methods for tractography reconstruction have also been studied, and better accuracy has
been achieved compared to standard single-diffusion tractography [64]. However, single-
diffusion tractography is still more commonly used clinically because of its high prevalence
(Figure 1).

5. Cranial Nerves Penetrating Skull Base Tumors
In skull base meningiomas, tumors sometimes completely encase surrounding struc-

tures, such as the cranial nerves penetrating the tumor [6]. Previously described imaging
techniques assess the course of the cranial nerves adjacent to the tumors, and few reports
have focused on cranial nerves completely encased by the tumors. When a tumor com-
pletely encases the cranial nerves, careful manipulation is required during surgery to avoid
cranial nerve damage. Therefore, preoperative imaging to assess whether the cranial nerves
penetrate the tumor could be useful for improving the safety of skull base meningioma
surgery. Compared with tumors or vessels, cranial nerves are less enhanced by contrast.
Cranial nerves that penetrate the venous sinus, venous plexuses, or uniformly enhanced
tumors may appear as linear contrast defects on contrast-enhanced MRI [46,47,82]. We
aimed to clarify the relationship between tumor contrast defects observed on preoperative
MRI and the actual course of the cranial nerves.

We investigated 68 patients who underwent surgery for posterior fossa meningioma
at our institute between January 2017 and December 2023. Preoperative contrast-enhanced
MRI was performed in all the cases. To assess the presence of tumor contrast defects of
the cranial nerves, a T1-weighted fast-field echo with water-selective excitation (T1 FFE
WATS) was performed with a slice thickness of 1.0 mm. The images were scanned in an
axial section. We focused on the trigeminal, abducens, lower cranial, and hypoglossal
nerves and the facial and vestibulocochlear nerve complexes. The cochlear nerve was
excluded owing to its small diameter. The medical records and surgical videos of patients
with cranial nerve contrast defects were reviewed retrospectively. Two board-certified
neurosurgeons determined the presence of contrast defects and intraoperative findings of
the cranial nerves. Disagreements were resolved by consensus.

Contrast defects were identified in 14 cranial nerves in 10 patients (Table 3). Among
them, 11 cranial nerves were verified during surgery, all of which penetrated the tumor.
We could not confirm the course of the three cranial nerves (two abducens nerves and one
facial and vestibulocochlear nerve complex) because of the difficulty in tumor resection.
The trigeminal, abducens, and lower cranial nerves were penetrated in five, two, and
four patients, respectively. Most patients had benign pathological findings, except for one
patient with a clear cell meningioma. Here, two illustrative cases are presented. The first
case was case number nine with a left petroclival meningioma. A linear contrast defect
of the left abducens nerve was observed on the preoperative MRI (Figure 2a). Tumor
resection was performed using the anterior transpetrosal approach, and the abducens nerve
penetrating the tumor was confirmed during surgery (Figure 2b). Most of the tumor, except
for that in the cavernous sinus, was removed, and the function of the abducens nerve was
preserved. The second case was case number ten with a right petrous meningioma. Contrast
defects were observed in the right lower cranial nerves (Figure 2c). Tumor resection was
performed using the lateral suboccipital approach. Tumor penetration of the lower cranial
nerve (glossopharyngeal nerve) was verified intraoperatively, and near-total resection
of the tumor was achieved (Figure 2d). No postoperative deficits were observed in the
penetrating cranial nerves. We believe that preoperative anticipation of cranial nerve tumor
penetration contributed to the avoidance of imprudent stimulation or traction of the cranial
nerve during surgery. From this series, linear contrast defects in the tumor indicate cranial
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nerve penetration, which is a useful finding for devising surgical strategies against posterior
fossa meningiomas (Figure 1).

Table 3. Characteristics and findings of patients with posterior fossa meningioma with cranial nerve
contrast defects.

Case Age Sex Attachment Contrast
Defect

Intraoperative Findings
of CNs Pathology

1 47 F Petrous LCNs Penetrated Meningothelial

2 75 F Foramen
magnum LCNs Penetrated Transitional

3 48 F Petroclival V Penetrated Meningothelial
VI Not observed

VII-VIII Not observed

4 78 M Petroclival V Penetrated Meningothelial
VI Penetrated

5 70 M Petroclival V Penetrated Clear cell

6 48 F Petrotentorial V Penetrated Meningothelial

7 74 F Petrotentorial V Penetrated Transitional
VI Not observed

8 45 F Jugular
tubercle LCNs Penetrated Meningothelial

9 61 F Petroclival VI Penetrated Meningothelial

10 35 F Petrous LCN Penetrated Meningothelial
CN: cranial nerve, F: female, LCN: lower cranial nerve, M: male.
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contrast defect in the abducens nerve. (b) Intraoperative view of the abducens nerve penetrating
the tumor (yellow arrow). (c) T1-weighted image showing the contrast of the patient with a right
petrous meningioma. The yellow arrowhead indicates a contrast defect in the lower cranial nerve.
(d) Intraoperative view of the glossopharyngeal nerve penetrating through the tumor (yellow arrow).

6. Conclusions and Future Directions
Various techniques for visualizing the vascular structure and cranial nerves related

to skull base surgery in preoperative imaging are available, with each modality having
advantages and disadvantages in terms of accuracy and complexity. It is necessary to eval-
uate each structure, tumor, vessel, and nerve using the appropriate modalities. Multimodal
preoperative simulations that combine these modalities are also becoming possible [15,37].
Personalized 3D visualization technologies not only help understand the complicated
anatomical skull base structures for each patient but also enable surgical simulations that
are closer to real surgery using virtual reality, augmented reality, and three-dimensional
printed models [83].

Artificial intelligence (AI)-based deep learning is likely to advance in the future for
efficient surgical simulations. AI enables the accurate segmentation of surgical structures
and optimizes preoperative planning [84]. Imaging analysis with AI aids in identifying
critical structures from preoperative images, leading to more precise surgery. Moreover, AI
may be able to consider things beyond the human experience by learning vast amounts
of patient data. This could allow AI to perform objective assessments, potentially leading
to accurate diagnoses of rare anatomical variations or detailed interpretations of intricate
cerebrovascular flow patterns.

We expect to be able to identify all relevant structures from preoperative images,
perform detailed surgical simulations, and develop comprehensive surgical strategies for
skull base tumors. We believe that advances in medical imaging and AI technologies have
the potential to significantly improve surgical planning and outcomes in complex skull
base surgeries.
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