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Abstract: Parkinson’s disease (PD) is the second most common neurodegenerative disease
in the world. Currently, PD is incurable, and the diagnosis of PD mainly relies on clinical
manifestations. The central pathological event in PD is the abnormal aggregation and
deposition of misfolded α-synuclein (α-Syn) protein aggregates in the Lewy body (LB) in
affected brain areas. Behaving as a prion-like seeding, the misfolded α-syn protein can
induce and facilitate the aggregation of native unfolded α-Syn protein to aggravate α-Syn
protein aggregation, leading to PD progression. Recently, in a blood-based α-Syn seeding
amplification assay (SAA), Kluge et al. identified pathological α-Syn seeding activity in
PD patients with Parkin (PRKN) gene variants. Additionally, pathological α-syn seeding
activity was also identified in sporadic PD and PD patients with Leucine-rich repeat kinase 2
(LRRK2) or glucocerebrosidase (GBA) gene variants. Principally, the α-Syn SAA can be used
to detect pathological α-Syn seeding activity, which will significantly enhance PD diagnosis,
progression monitoring, prognosis prediction, and anti-PD therapy. The significance and
future strategies of α-Syn SAA protocol are highlighted and proposed, whereas challenges
and limitations of the assay are discussed.

Keywords: α-synuclein; biomarker; neurodegeneration; Parkinson’s disease; seeding
amplification assay

1. Introduction
Parkinson’s Disease (PD) is the second most common neurodegenerative disorder

that is clinically diagnosed based on motor symptoms (bradykinesia, tremor, rigidity,
hypomimia, shuffling gait, difficulty walking, and postural instability) and non-motor
symptoms (cognitive decline, autonomous disorders, disrupted sleep, and sensory dis-
turbances) [1–3]. The progressive loss of dopaminergic neurons in substantia nigra pars
compacta (SNpc), and the deposition of cytoplasmic protein inclusions referred to as Lewy
bodies (LBs) in affected brain areas are two pathological hallmarks of PD [4]. Motor
symptoms usually occur late in the neurodegenerative process in PD patients, as more
than half of striatal dopaminergic neurons are lost when motor symptoms occur [3]. Non-
motor symptoms may precede the development of motor symptoms, and thus, can be
considered a prodromal state of PD [5]. So far, the exact pathogenesis mechanism be-
hind PD is still unknown. It has been suggested that endogenous dopamine (DA) can be
considered an endogenous pathogenic factor for PD [6]. In dopaminergic neurons, DA
can undergo auto-oxidation and enzyme-catalyzed metabolism to generate deleterious
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oxidative DA metabolites, including reactive oxygen species (ROS), DA quinones (DAQs),
3,4-dihydroxyphenylacetaldehyde (DOPAL), and neuromelanin (NM), contributing to the
dopaminergic neuron impairment [6,7].

Currently, PD is still an incurable neurodegenerative disease without any therapeutic
strategy that could halt or reverse the progressive loss of dopaminergic neurons. The
levodopa (L-DOPA) replenishing strategy is the current gold standard for clinical PD
treatment to alleviate PD symptoms [8]. Numerous active and passive immunotherapies
have exhibited promising therapeutic efficacy in preclinical studies, and many of these are
currently undergoing clinical trials [9]. Therefore, an objective and reliable biomarker is
urgently required to enhance the diagnostic accuracy of PD in its early stage or prodromal
state and monitor its progression. Accumulated evidence suggests that the abnormal de-
position and spreading of the misfolded and aggregated α-synuclein (α-Syn) proteins are
the central molecular events behind PD pathogenesis [10]. The misfolded and aggregated
α-Syn protein is involved in multiple cellular dysfunctions, including the disruption of
the autophagy-lysosomal pathway, the dysregulation of mitochondrial function, and the
disappearance of dopaminergic neurons [10,11]. The toxicity caused by the aggregated
α-Syn protein is closely related to DA and DA oxidative metabolites [6,12]. The overexpres-
sion of α-Syn enhances the DA-dependent dopaminergic neuron toxicity [13]. DA-derived
metabolites, such as DAQs and DOPAL, can conjugate with α-Syn protein to stabilize
the deleterious oligomer form α-Syn protein and enhance α-Syn protein toxicity [14–17].
Moreover, α-Syn protein promotes the synthesis of NM, an insoluble granular pigment, in
dopaminergic neurons [18]. NM generates ROS under oxidative stress, and the interaction
between NM and α-Syn is identified to induce neuroinflammation and microglia activation
related to α-Syn-associated DA neurodegeneration [7,19,20]. Therefore, the misfolded and
aggregated form of α-syn protein could be considered a vital pathogenic biomarker in PD.

2. Physical Function, Structure, and Pathological Role of α-Syn Protein
The α-Syn, encoded by the SNCA gene, is a small soluble protein comprising

140 amino acids with three distinct domains: an N-terminal domain (1–60 amino acid
residues), a non-amyloid-β component (NAC) domain (61–95 amino acid residues), and a
C-terminal domain (96–140 amino acid residues) [21]. The N-terminal domain is positively
charged and characterized by an amphipathic lysine-rich amino terminus that serves as the
membrane anchor region of α-Syn [21]. The NAC domain is hydrophobic and constitutes
the amino acid segments that are essential in fibril formation and aggregation, which has
been identified as the most aggregation-prone region [21]. The C-terminal domain is a
negatively charged tail that does not contain secondary structures, including ten glutamate
and five aspartate residues, characterized by disease-promoting regions and involved in
chaperone-like activity [22].

The α-syn is abundant in the brains and exists in erythrocytes, platelets, and other
tissues [23]. In the brains, α-Syn is primarily expressed in neuronal cells, located in the
pre-synaptic terminal and probably bound to the membrane of synaptic vesicles [24]. It
exists in the dynamic equilibrium in the unfolded form in the cytosol and an α helical-rich
form when bound to membranes, which is thought to play a vital role in modulating
the stability of the membrane, altering membrane trafficking via vesicular transport and
promoting the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein
receptor complex (SNARE) [25,26]. Native α-Syn mainly exists as an unfolded monomer,
dimer, or tetramer. However, under disease conditions, the native α-Syn can aggregate and
misfold into pathological α-syn oligomers, also known as aggregates, to increase membrane
permeability and disrupt membrane integrity [27]. Furthermore, the α-Syn oligomers can
further polymerize to form α-Syn fibrils and accumulate in the brain, peripheral tissues,
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and biofluids [28]. The aggregation of α-Syn fibrils is believed to be the pathological
hallmark of synucleinopathies, including PD, Dementia with Lewy Bodies (DLB), and
multiple system atrophy (MSA), based on the cellular predilections and neuroanatomical
distributions [11,29].

3. Detection of Pathological α-Syn Aggregates by Seeding Amplification
Assays (SAAs) in PD Patients
3.1. Principle of α-Syn SAAs

The α-syn seed amplification assays (SAAs), previously known as the real-time
quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification
(PMCA), have shown promise in detecting pathological α-Syn aggregates in different
biometrics from living patients with synucleinopathies, with relatively higher specificity
and sensitivity [30–34]. The α-Syn SAAs use the intrinsic self-propagating nature of mis-
folded α-syn oligomers or aggregates as seeds to amplify themselves in vitro. Amplification
is obtained by adding excessive monomeric α-syn as a reactant into the tested samples.
These α-syn oligomers or aggregates in the tested samples will recruit reactants and elon-
gate into fibrils [30]. Subsequently, the elongated fibrils will be fragmented into new
fibrils by shaking the samples, whereas the newly created fibrils again grow by recruiting
monomeric reactants, and this cycle continues [30]. Hence, the presence of α-Syn seeds can
be monitored in real-time by detecting the fluorescent intensity of thioflavin T (ThT), which
can be detected upon its binding to the fibril and allows for the use of total fluorescence
intensity as a readout once the seeds are sufficiently amplified [30]. According to the kinetic
parameters and filament structure of α-Syn seeds, PD patients can be differentiated from
healthy individuals or related synucleinopathies [31,35–38].

3.2. Detection of Pathological α-Syn by SAAs in PD Patients

So far, most PD cases are sporadic PD (SPD), and their exact pathogenesis is unclear.
The pathogenesis of familial PD (FPD) is closely related to mutations in multiple pathogenic
genes, including Leucine-rich repeat kinase 2 (LRRK2), PTEN-induced kinase 1 (PINK1), Parkin
(PRKN), glucocerebrosidase (GBA), DJ-1, and SNCA [6]. The positive α-Syn seeding activity
has been detected in both SPD patients and FPD patients from multiple biometrics by per-
forming SAAs, including skin, gut, submandibular gland, olfactory mucosa, cerebrospinal
fluid (CSF), and blood [32,34,38–48]. Among these biometrics, CSF represents a poten-
tially reliable source for neurodegenerative disease [49]. Using SAA in CSF, a previous
study demonstrated that the prevalence of α-Syn seeding activity in SPD patients (91%)
and FPD patients carrying GBA mutations (87%) was higher than that of FPD patients
carrying LRRK2 mutations (78%) or recessive heterozygous mutations (59%) [46]. FPD
patients carrying bi-allelic mutations in recessively inherited genes like PINK1 and PRKN
did not present positive α-Syn seeding activity [46]. Similar patterns were observed in
a more recent study, which demonstrated that the prevalence of positive α-Syn seeding
activity was higher in FPD patients carrying GBA mutations, followed closely by the SPD
patients, and a substantially lower prevalence was identified in FPD patients carrying
LRRK2 mutations [32].

Moreover, due to the limited availability of CSF samples, blood-based biomarkers
have emerged in numeric studies in recent years. Previous studies have proved that higher
levels of α-Syn in plasma and serum have been found to positively correlate to motor
deficits and cognitive decline in PD patients [50–52]. Meanwhile, PRKN, a PD-relevant
ubiquitin E3 ligase, was found to be involved in the modulation of mitochondria function
and autophagy-lysosomal pathway [53,54]. Mutations in PRKN are recognized as the
most frequent pathological causes of autosomal recessive early-onset PD [55]. In a recent
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study involving 32 participants (9 idiopathic PD patients, 13 PD patients with pathogenic
biallelic PRKN variants, and 10 healthy controls), Kluge et al. evaluated the prevalence
of α-Syn seeding activity by blood-based α-Syn SAAs [40]. Through analysis of neuron-
derived extracellular vesicles (NEVs) extracted from patient blood samples, the positive
α-Syn seeding activity was confirmed in 8 of 9 idiopathic PD patients, 8 of 13 PD patients
with pathogenic biallelic PRKN variants, and none of the healthy controls [40]. These
findings, for the first time, indicated that α-Syn seeding activity could be a consistent
pathological feature of PRKN-linked PD, supporting that α-Syn seeding activity monitored
by NEVs-dependent SAA protocol can be a promising biomarker for PD [40].

4. Significance, Challenges, and Future Directions
The oligomeric α-Syn, the earlier stage of α-Syn aggregation, is widely distributed in

multiple cortical and subcortical regions, contributing to synaptic dysregulation, dopamin-
ergic neurodegeneration, motor deficits, and cognitive impairments in PD patients [56,57].
Therefore, detecting oligomeric α-Syn could be considered a routine strategy to distinguish
PD patients from healthy individuals or related synucleinopathies in the prodromal or early
stage. Nevertheless, multiple factors, such as the distribution of oligomeric α-Syn, gene
mutation, post-translational modifications, and exposure to mental heavy, have positive or
negative effects on the α-Syn seeding activity, which needs to be re-assessed, re-evaluated,
and re-addressed in future studies for precision diagnosis.

Until now, the presence of α-Syn seeds has been detected in various biological fluids,
especially CSF and peripheral blood. According to the gut-to-brain axis hypothesis, the
misfolded or toxic oligomeric α-Syn originates from the periphery enteric plexus or erythro-
cytes. The erythrocytes-derived and periphery-derived α-Syn oligomers can spread from
the gut to the brain via the enteric nervous system, vagus nerve, and glossopharyngeal
nerve [58,59]. Meanwhile, previous studies have shown that the aberrant deposition of
α-Syn in the intestinal tract was earlier than the loss of dopaminergic neurons and the
occurrence of motor symptoms of PD [60]. Nevertheless, the presence of oligomeric α-
Syn in specific body tissues and the occurrence of PD clinical features has not been fully
determined, which needs to be emphasized, evaluated, and addressed in future studies
to provide scientific insight for further application of α-Syn SAAs-based strategy for PD
precision diagnosis.

Mutations in SNCA, including missense and multiplication mutations, can cause early-
onset autosomal-dominant PD [61]. Six missense point mutations in the N-terminal domain,
including A53T, A30P, A53E, E46K, H50Q, and G51D, have been strongly associated with
autosomal dominant familial PD, which might be related to their capacities to influence the
oligomerization or fibrillation of α-Syn protein [62–65]. PD patients affected by SNCA point
mutations present a clinical phenotype similar to those with sporadic PD, with an earlier
age at onset, and often suffer from dementia and autonomic disturbances [66]. Recent SAAs
have demonstrated that the A53T mutation has a more robust seeding activity than the
wild-type (WT) protein [67]. Moreover, PD patients with SNCA duplication exhibit a typical
late-onset PD phenotype, and PD patients with SNCA triplication have been reported to
cause hereditary early-onset PD phenotype with dementia [68,69]. It has been demonstrated
that the α-Syn seeding activities in the CSF from PD patients with triplication were more
robust than those of the WT PD patients [70]. Other PD-related genes, such as LRRK2,
GBA1, DJ1, PINK1, and PRKN, can significantly influence the misfolding and aggregation of
α-Syn [6]. Among them, PRKN, PINK1, and DJ-1 variants are usually found in individuals
with autosomal recessive early-onset PD [71]. In contrast, variants in GBA1 and LRRK2
are widely accepted as the two most crucial genetic risk factors associated with PD [72].
The GBA variants, such as the L444P and N370S variants and LRRK2 variants, especially



Int. J. Mol. Sci. 2025, 26, 389 5 of 10

the G2019S variant, can remarkably promote α-Syn aggregation [72–74]. Recent studies
highlight that PD patients carrying GBA and LRRK2 variants have higher seeding activity in
CSF than those carrying PINK1 and PRKN [46]. So far, the effects of PD-related pathogenic
genes and their variants on α-Syn seeding activity have not been thoroughly investigated.
Genetic tests, such as next-generation sequencing, have been used to identify pathogenic
variants in PD patients [75]. Hence, screening the pathogenic variants by multiple genetic
tests could be considered an adjunct measurement to improve the sensitivity and accuracy
of SAA.

α-Syn is subjected to extensive post-translational modification, such as truncation,
phosphorylation, ubiquitination, nitration, and O-GlcNAcylation, which could influence
its aggregation and cytotoxicity. The C-terminal truncated α-Syn produced by aberrant
proteolysis has been detected in the brains of healthy individuals and PD patients, and it is
thought to be associated with the formation of α-Syn aggregates [76]. Previous studies have
shown that C-terminal truncated fragments, α-Syn (1–108) and α-Syn (1–124), aggregate
faster than the full-length α-Syn protein [77]. Recent SAA has proved that the PD-related
C-terminal 123–140 and 104–140 truncations of α-Syn present higher seeding activity than
the WT α-Syn [67]. Further mechanistic studies revealed that C-terminal truncations
promote the conversion of monomers to aggregated forms of α-Syn, enhance autocatalytic
aggregation on existing fibrils, and interfere with the interactions between the N-terminal
of α-Syn and the membrane [67,76]. These findings demonstrated that the truncation of
α-Syn affects their seeding activity and aggregating properties. In addition, truncation,
phosphorylation, ubiquitination, nitration, and O-GlcNAcylation of α-Syn have been
reported to influence α-Syn aggregation and fibril formation at various degrees [78–84].
The effects of these post-translational modifications on the α-Syn seeding activity have not
been comprehensively evaluated, which needs to be emphasized and addressed in future
studies. Moreover, proteomics techniques, particularly those based on high-resolution mass
spectrometry, have been rapidly developed as a preferred method to determine relative
changes in post-translational modifications and protein abundance [85]. Thus, screening
and monitoring post-translational modifications via multiple proteomic techniques may
enhance the sensitivity and accuracy of SAA, which need to be assessed, evaluated, and
addressed in future studies.

Numerous epidemiological studies have correlated exposure to metal ions with the
onset and development of PD [86]. The pathogenic effects of metal in PD patients are
associated with their capacities to elevate ROS levels and enhance aberrant α-Syn aggre-
gation in the brain [87,88]. It was previously reported that divalent or trivalent metal
ions, particularly aluminum (III), copper (II), iron (II), cobalt (III), and manganese (II),
significantly accelerated the rate of α-Syn aggregation and fibril formation [89]. Recent
studies indicated that bivalent metal ions, including zinc (II), copper (II), calcium (II), and
manganese (II), accelerate the α-Syn fibrillation and form different amyloid-competent
conformations, suggesting that α-Syn exposure to these mental ions have a higher seeding
activity [90,91]. These α-Syn fibrils formed in the presence of different bivalent metal ions
have distinct kinetics, size, morphology, secondary structure, and cytotoxicity, as well as the
charge status of bivalent metal ions (measured by the native nanoelectrospray ionization
ion mobility-mass spectrometry) was remarkably reduced when bound to the α-Syn [90,91].
Moreover, the bivalent metal ions have also been reported to significantly promote the
aggregation of mutant α-Syn protein. For instance, in the presence of copper (II) ion, the
mutants G51D α-Syn protein have higher aggregation kinetics and fibril formation rate
than WT α-Syn protein [92]. Nevertheless, further studies are warranted to evaluate the
pathogenic effects of other trivalent or heavy metal ions on α-Syn aggregation and fibril for-
mation. Strategies that determine the morphology and structure of fibrils formed by α-Syn
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aggregates and the charge status of metal ions could be used as an adjunct measurement to
SAA, which also needs to be addressed in future studies.

5. Conclusions
The α-Syn seeding activity detected by SAA is a promising strategy for distinguishing

PD patients from healthy individuals and other synucleinopathies. Further studies are
necessary to systematically evaluate the distribution of α-Syn seeds in different biofluids.
After that, multiple strategies to screen for pathogenic variants, post-translational modifi-
cations, and environmental toxins can be used as adjunct measurements to improve the
sensitivity and accuracy of the α-Syn SAA test.
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