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Abstract: Cenobamate is a new and highly effective antiseizure compound used for the
treatment of adults with focal onset seizures and particularly for epilepsy resistant to other
antiepileptic drugs. It acts on multiple targets, as it is a positive allosteric activator of γ-
aminobutyric acid type A (GABAA) receptors and an inhibitor of neuronal sodium channels,
particularly of the late or persistent Na+ current. We recently evidenced the inhibitory
effects of cenobamate on the peak and late current component of the human cardiac isoform
hNav1.5. The determined apparent IC50 values of 87.6 µM (peak) and 46.5 µM (late current)
are within a clinically relevant range of concentrations (the maximal plasma therapeutic
effective concentration for a daily dose of 400 mg in humans is 170 µM). In this study, we
built a 3D model of the canonical hNav1.5 channel (UniProt Q14524-1) in open conformation
using AlphaFold2, embedded it in a DPPC lipid bilayer, corrected the residue protonation
state (pH 7.2) with H++, and added 2 Na+ ions in the selectivity filter. By molecular
docking, we found the cenobamate binding site in the central cavity. We identified 10-point
mutant variants in the binding site region and explored them via docking and MD. Mutants
N1462K/Y (rs1064795922, rs199473614) and M1765R (rs752476527) (by docking) and N932S
(rs2061582195) (by MD) featured higher predicted affinity than wild-type.

Keywords: cenobamate; cardiac voltage-dependent sodium channel; Nav1.5; structural
model; molecular docking; molecular dynamics; binding free energy; MM-GBSA; MM-
PBSA; point mutant

1. Introduction
Voltage-dependent Na+ channels (Nav) are members of a superfamily of voltage-gated

ion channels included in the chanome [1]. These are derived from primordial prokaryotic
tetrameric K+ channels with two α-helical transmembrane (TM) domains per subunit
(e.g., Kcsa [2,3]) by adding a 4TM helix voltage-sensing domain (VSD) [4,5]. Through
consecutive gene duplication events, Nav channels and related voltage-dependent Ca2+

channels (Cav) present the sequences of all four homologous 6TM domains (I-IV) of the
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tetrameric channel assemblies on the same chain [6]. Beyond the main pore-forming α1
subunits, Nav channels feature four types of ancillary β subunits (β1–β4), with a single
TM α-helix per subunit and a large antiparallel β-sheet immunoglobulin-like extracellular
domain [1] interacting with the pore loops between α helices S5 and S6 of each domain of
the main α1 subunit [7]. Due to the structural similarity of β subunits with cell adhesion
molecules, they play a variety of roles in neurons, such as their involvement in neural cell
proliferation, migration, neurite extension, myelination, and influence on neuronal firing
by the regulation of Nav α subunits’ gene expression and trafficking, the modulation of
gating events such as voltage-dependent activation, the coupling of activation with fast
inactivation, and late current modes [8,9]. However, for the cardiomyocyte-specific Nav
isoform (Nav1.5), such roles have not been proved [10].

As suggested by the classical studies included in the Hodgkin–Huxley model [11] and
the gating current recordings of Clay M. Armstrong and Francisco Bezanilla [12], the S4 helix
of the VSD features positively charged residues (R/K) at every third position and functions
as a voltage sensor. This fact was confirmed after the cloning of a Nav α subunit gene [13]
and subsequent charge-neutralizing point mutations within S4, leading to decreased voltage
dependence of activation [14]. Mutagenesis studies have shown that the S4 voltage sensors
of Nav domains I-III contribute to the activation gating current, while the S4 of domain IV
is largely involved in fast voltage-dependent inactivation [15–19]. The fast “inactivation
particle” effecting this state transition is formed by the highly conserved hydrophobic
IFMT motif in the internal loop between domains III and IV [20–23]. Recent phototrapping
experiments pointed to a lateral pore-adjacent binding site for this particle and an allosteric
mechanism resulting in the pinching of the S6 inner gate [24]. Meanwhile, slow voltage-
dependent inactivation is deemed to result from conformational changes in the region of
the selectivity filter and external S6 helices, and their reversibility upon hyperpolarization
is also slow compared to fast inactivation and recovery [25–27]. Nav channels feature
a large number of serine/threonine phosporylation sites on their endodomain [28,29],
as well as interaction motifs for a large number of regulatory proteins and cytoskeletal
components [7,30].

A large number of studies have been performed on Nav channels to elucidate the
molecular details of interaction with local anesthetics, antiseizure drugs, or antiarrhythmic
medications [1]. Structural and mutagenesis studies identified several residues in the S6
helices of multiple domains participating in drug binding, upon drug entry into the central
cavity [31–34]. Many compounds produce use- and frequency-dependent blocks and access
to the binding site may occur along different pathways for the neutral and protonated forms
of the drug molecule, resulting in different binding affinities, as is the case for lidocaine
in interaction with Nav1.5 [35–38]. Classical studies on the use-dependent block of Na+

channels by local anesthetics led to the modulated receptor hypothesis (MRH), claiming
that open channel conformations have a higher drug affinity than closed conformations,
and inactivation further stabilizes drug binding via the modulation of the binding site con-
figuration, resulting in even higher affinity ([39,40], discussed in [41]). Lateral fenestrations
in the permeation domain (S5–S6) of the Nav main subunit facilitate the passage of small
neutral drug molecules via a lipophilic pathway to produce a resting state block, although
with lower affinity [42]. By contrast, the guarded receptor hypothesis (GRH) postulates that
charged compounds can access their binding site only via a hydrophilic pathway, passing
through the inner gate during the open state conformation, and subsequently get trapped
in the central cavity upon conformational changes to inactivated or closed states [43–46].

Cenobamate is a novel highly effective third-generation antiseizure drug used for focal
onset seizures in adults, particularly in multi-drug-resistant epilepsy [47–49]. Chemically it
is an alkyl carbamate derivative, featuring a halogenated aromatic ring, a tetrazole hetero-



Int. J. Mol. Sci. 2025, 26, 358 3 of 19

cycle, and a carbamate group that can be found in several other antiepileptic drugs acting
as Na+ channels inhibitors, such as carbamazepine and derivatives, carisbamate, felbamate,
rufinamide, lacosamide, phenytoin, and others [50]. Its effectiveness is due to actions
on multiple targets, including positive allosteric modulatory effects on γ-aminobutyric
acid type A (GABAA) receptors [51], combined with the inhibition of neuronal Nav chan-
nels, particularly of the late or persistent Na+ current component, with an apparent IC50

of 53.1 ± 4.2 µM in isolated rat hippocampal CA3 neurons [52]. Its pharmacokinetics is
complex, with a maximal effective plasma therapeutic concentration of 170 µM for a daily
dose of 400 mg, and an average binding to plasma proteins of ~60% [53,54]. Clinical and
non-clinical safety studies have evidenced QT interval shortenings with more than 20 ms at
doses of 200 and 400 mg/day but not below 300 ms in healthy volunteers [55,56]. These ef-
fects led to the prohibition of the drug for patients with hereditary short QT syndrome and
careful cardiology monitoring of patients during combined treatment with other antiseizure
drugs with similar effects, such as lamotrigine or rufinamide.

Advanced structural methods have provided new insights into the architecture of
voltage-dependent Na+ channels. The development of X-ray diffraction methods led to a
first wave of progress in unraveling the detailed 3D structure of voltage-dependent Na+

channels of prokaryotes, with separated 6TM subunits: the NaChBac channel from Bacillus
halodurans in 2001 [57] and its orthologue NavRh from Rickettsiales sp. HIMB114 [58],
followed in 2011 by the NavAb channel from Arcobacter butzleri RM4018 in a closed con-
formation ([59] reviewed in [60]) and NavMs from Magnetococcus sp. MC-1 [61]. A second
wave of progress was fueled by advances in cryoelectron microscopy: a low-resolution
structure of voltage-dependent Na+ channels from Electrophorus electricus [62] was followed
by high-resolution structures of NavPaS from Periplaneta americana [63], Nav1.4 (α+β) from
Electrophorus electricus [64] and Homo sapiens [65], Nav1.2 [66], Nav1.7 [67,68], Nav1.5 [69,70],
Nav1.1 [71], Nav1.8 [72], and Nav1.6 [73]. Together with accurate structure prediction
engines such as AlphaFold2 or RoseTTAFold [74] and molecular modeling computational
tools, these discoveries have offered us an opportunity to explore the binding and molecular
dynamics of cenobamate via in silico approaches using human Nav1.5 atomic resolution
structural models. We compared the estimated binding affinities with experimental data we
previously obtained and attempted to assess the predicted effects of certain point mutant
variants, resulting in changed residues in the vicinity of the putative cenobamate binding
site in the central cavity of Nav1.5 channels.

2. Results
2.1. Nav1.5 Modeling

The human Nav1.5 open-conformation model generated by AlphaFold2 was embed-
ded in an approximately 200 Å × 200 Å square patch of DPPC (Figure 1a,b). An explicit
TIP3P water box was added, ensuring a buffer zone of 17.5 Å, and Na+ and Cl− ions were
added to reach a salt concentration of 0.15 M. In addition, a file of ions was modeled in the
selectivity filter of the channel (Figure 1c).

The structural models of eight channels with punctiform mutations were generated
after the minimization and equilibration of the wild-type model, as described in the Materi-
als and Methods section. These were further optimized by energy minimization to ensure
an easing up of any steric conflicts inflicted by the amino acid side chain changes.

In the energy-optimized and equilibrated wild-type Nav1.5 model, prior to the pro-
duction of the 100 ns MD simulation, cenobamate forms two hydrogen bonds with Asn932,
a pi–alkyl interaction with Leu1462 and favorable van der Waals interactions with residues
Val405, Leu409, Leu928, Leu931, Leu935, Phe1418, Phe1459, Phe1463, and Ile1768. The
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binding site is mostly hydrophobic (Figure 2). There is a single unfavorable donor–donor
interaction with Asn927.
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Figure 1. Human Nav1.5 model in open conformation generated by AlphaFold 2 (represented as
cartoon and colored in a red to blue colorscale according to the order of amino acids in the sequence)
inserted in a DPPC bilayer (represented as licorice with atoms colored according to type): (a) top
view, showing the channel in the middle of the lipid bilayer; (b) side view; (c) the file of alternating
Na+ ions (blue sheres) and water molecules (red and white spheres) placed in the selectivity filter;
the residues of the inner charge ring are highlighted and marked.
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types and the protein is represented as cartoon colored in cyan; (b) detailed view of residues located
at a distance of less than 4 Å (yellow licorice with labels, while all the protein is represented as
green catoon) from the docked cenobamate molecule (red licorice); (c) a 2D interaction map between
cenobamate and surrounding residues from wild-type Nav1.5 structure in which van der Waals
interactions are represented in light green, conventional hydrogen bonds are represented in green,
the unfavorable donor-donor interaction is shown in red and the pi-alkyl interaction is shown in pink;
(d) representation of the surface of cenobamate binding site colored according to the hydrophobicity
according to the blue to brown colorscale shown in lower left and cenobamate shown as licorice
in the center of the site. Residues Leu1462, Asn932, and Asn927 are represented as licorice, and
the interactions established with cenobamate are shown as dashed lines colored according to type
(pi-alkyl is pink, conventional H-bonds are green and the unfavorable donor-donor interaction is red).

2.2. MD Simulations

All models were further subjected to 100 ns explicit solvent MD simulation runs at
constant pressure (1 atm) and temperature (300 K). Over this period, the 9 Nav1.5 models
did not suffer major conformational changes, given the size of the unstructured loops on
the inner side of the membrane. The RMSDs of each model throughout the simulations
are shown in Figure 3. The relatively high RMSD values are due to the flexibility of the
above-mentioned stretches and not the transmembrane region. Figure 4 shows that the
transmembrane domains (repeats I–IV labeled in the plot) have noticeably lower RMSF
values relative to other regions. However, what can be seen is that the N927S and N932K
mutations have more influence on the overall flexibility of the system.
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Figure 3. Time series of the RMSD values across a 100 ns simulation, showing the relative stability of
the mutant proteins.

Focusing on the mutation-induced effects upon the ligand, it is interesting to note that
after a longer equilibration of ~20 ns, the flexibility of cenobamate significantly decreases
in all mutants when compared to that of wild-type Nav1.5, with RMSDs plotted in blue
in Figure 5. Over the equilibration period, only N1463K displays a larger cenobamate
flexibility; nevertheless, after that period, it joins the rest of the mutations in constraining the
ligand movements. This tighter binding could be an important enthalpic factor explaining
the lower estimated Kd values, as shown below.
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Figure 5. RMSD time series of cenobamate molecules in the systems comprising wild-type and
mutant Nav1.5 models calculated over 100 ns, showing how interactions with different receptor
residues affect the movements of the ligand.

2.3. Computation of Ligand-Receptor Interaction Energy

The interaction between different Nav1.5 point mutant variants and the cenobamate
molecule was estimated by molecular docking assays with a grid box encompassing the
central cavity of the channel, which were run in triplicate for each variant, and also via
MM-PBSA analysis of MD trajectories. As presented in Table 1, docking assays identi-
fied four point mutant variants with cenobamate binding affinity higher than wild-type
Nav1.5, while the MM-PBSA results indicate that all mutants had stronger interactions
with cenobamate than the wild-type model, with mutant N932S being the top candidate
for binding. Contacts between the cenobamate molecule and each of the prepared mutants
were computed. The full results are available in Table S1 of Supplementary Data.
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Table 1. Results of estimated binding affinity of cenobamate to wild-type hNav1.5 channels and
8 point mutant variants, expressed in binding energy (Kcal/mol) and dissociation constant (Kd),
assessed by molecular docking with Autodock Vina 1.2.5 and MD simulations with NAMD, followed
by MM-PBSA approaches; mutants with higher binding affinity than wild-type assessed by docking
or MM-PBSA are marked with an asterisk.

Mutant
Docking

Score
(Kcal/mol)

Average
Docking

Score
(Kcal/mol)

Est. Kd
(Docking)

(µM)

∆Gbinding
MM-PBSA
(Kcal/mol)

(Mean ± SD)

Est. Kd
MM-PBSA

(µM)

hNav1.5
wild-type

−5.479
−5.50 90.37 −8.8912 ± 2.4548 0.287734−5.523

−5.489

N927S
(rs199473589)

−5.087
−5.62 73.33 * −11.6432 ± 2.2684 0.002719 *−5.033

−6.741

N932K
(rs2125871972)

−5.008
−5.00 208.66 −12.0383 ± 2.3951 0.001392 *−4.979

−5.022

N932S
(rs2061582195)

−5.096
−5.03 200.57 −14.0262 ± 2.1880 0.000048 *−5.080

−4.903

L935V
−4.825

−4.83 279.08 −10.3997 ± 2.8926 0.022348 *−4.807
−4.862

S1458Y
(rs199473253)

−5.102
−5.11 174.07 −11.8620 ± 2.0938 0.001877 *−5.137

−5.091

N1463K
(rs1064795922)

−6.110
−6.20 27.62 * −11.5250 ± 1.9787 0.003322 *−6.253

−6.227

N1463Y
(rs199473614)

−6.324
−6.01 38.13 * −9.9455 ± 2.3765 0.048236 *−5.536

−6.159

M1766R
(rs752476527)

−6.229
−6.03 36.84 * −9.4284 ± 2.0207 0.115821 *−6.068

−5.783

2.4. Simulations of Action Potential Propagation in a String of Ventricular Cardiomyocytes

Simulations of action potential (AP) propagation along the linear string of 50 ventricu-
lar cardiomyocytes conducted with a modified O’Hara-Rudy 2011 electrophysiology model,
using pharmacological data in different conditions of intermyocyte coupling conductance
(Gj) for a cenobamate concentration of 17 µM, yielded the results shown in Figure 6. These
data indicate differences in propagation delay along the string for high-affinity mutants
relative to the models adjusted for wild-type Nav1.5 channels. The computed AP depo-
larization wavefront conduction velocities (cv) over the total string length of 5 mm for the
second propagated AP were as follows:

- For Gj = 1000 pS/pF (a value six-fold lower than normal), the estimated cv was
8.0 cm/s for wild-type Nav1.5, 3.0 cm/s for N1463K, 3.7 cm/s for N1463Y, and
3.6 cm/s for M1766R;

- For Gj = 2000 pS/pF (three-fold lower than normal coupling conductance), the dif-
ferences between mutants were far less striking: the estimated cv was 14.9 cm/s
for wild-type Nav1.5, 11.8 cm/s for N1463K, 12.4 cm/s for N1463Y, and 12.4 cm/s
for M1766R.
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Figure 6. Propagation of AP wavefront along the string of 50 ventricular cardiomyocytes for
a cenobamate concentration of 17 µM and an intermyocyte gap junctions coupling conduc-
tance Gj = 1000 pS/pF for different Nav1.5 variants: (a) wild-type Nav1.5; (b) mutant N1463K
(rs1064795922); (c) mutant N1463Y (rs199473614); (d) mutant M1766R (rs752476527); cv—conduction
velocity. Each color corresponds to APs generated by a cell in the 50-cell string, in rainbow order. The
initial black lines correspond to the moment of current injection. The propagation times are shown in
each image and the delays between APs are marked with arrows.

3. Discussion
This study was made possible by the recent progress in structural biology, resulting

in the availability of accurate 3D data for Nav channels in open conformation [69,70,75],
as well as by a variety of effective molecular modeling computational tools. However,
highly flexible regions of cryogenic electron microscopy-derived structures, such as the
intracellular loops, may be poorly resolved, or some backbone torsion angles may be
strained, and these problems may be solved by advanced artificial intelligence-based
algorithms such as AlphaFold2. Its predictions are regularly competitive with experimental
predictions in CASP14 [76]. We note the recent publication of a molecular dynamics study
using a non-conducting Nav1.5 3D model predicted by AlphaFold for long production
runs (1 µs) that demonstrated structural stability of the transmembrane region of the
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channel [77]. Another conclusion of this study was that the AlphaFold prediction of the
structure of highly variable cytoplasmic domains was less accurate compared to the more
stable transmembrane region. However, for our study, the endodomain of the channel
presumably exerts a very limited influence on drug binding within the central cavity.
Interestingly, in this MD study, a different four-point three-charge rigid water molecule
model (optimal point charge—OPC, [78]) was used, which is considered an optimal match
to the ff19SB force field [79]. Again, we do not believe that using the TIP3P water model in
our study resulted in significant errors.

For building the lipid bilayer model, we chose dipalmitoyl phosphatidylcholine
(DPPC), a phospholipid with saturated fatty acyl chains, generating robust bilayers with
less intrinsic fluidity compared to those composed of phospholipids with unsaturated
chains such as POPC or POPE. This minimizes the perturbing effects of increased bilayer
fluidity or asymmetry induced by unsaturated acyl chains phospholipids, stabilizing the
dynamics output. As a long-acyl-chain phospholipid, DPPC also provides a realistic and
consistent bilayer thickness [80]. Thus, DPPC has been successfully used in MD simulation
studies of ion channels [81–83]. It is also worth mentioning that the Nav channel pore
is distant from the lipid bilayer; thus, we expect no influence of phospholipid types on
cenobamate binding.

It is interesting to analyze the binding site of cenobamate in the Nav1.5 central cavity
predicted by molecular docking and further used as the initial position for MD runs
(Figure 2c,d). The halogenated aromatic ring is in close vicinity to the side chains of several
aromatic residues (Phe1459 and Phe1418 of the S6 helix of domain III), with which it
interacts by hydrophobic forces, as well as with other aliphatic hydrophobic side chains
(Leu1462 and Leu931). The chloride atom of the ring interacts with the amide group of
Asn1463 and with the amino group of Leu935. This explains why the mutation of Asn1463
to tyrosine and particularly to lysine increases the binding affinity, as predicted by docking.
The tetrazole heterocycle interacts with other two asparagine residues, Asn927 and Asn932.
The secondary group carbonyl of Asn932 also interacts with the nitrogen of the carbamate
group of cenobamate, explaining the important effects of substitution mutations of these
Asn residues, particularly the high-affinity binding of cenobamate to mutant Asn932Ser
predicted by MD simulations. By following MD trajectories, we found that different parts
of the ligand molecule, such as the tetrazole ring, as well as their interacting residues,
change position over time, while the aromatic ring is more stable. Nevertheless, over the
entire duration of simulations, the cenobamate molecule occupies a central position at the
inner opening of the selectivity filter in the central cavity, and presumably, it is able to
block Na+ ions inflow since the sodium ions initially placed in the filter maintain their
positions over this time frame. In the above-mentioned MD study of a similar model, it was
found that Na+ ions did not cross the selectivity filter over a 1 µs time frame [77]. Upon
closer inspection of the binding site, it is interesting to note that even though the MM-PBSA
calculation indicates stronger binding of all mutants to the cenobamate molecule, the
mutated residue may not be directly involved in said stronger binding. For instance, in
the case of both N932S and N1463K, the number of frames in which the ligand was bound
(within 5 Å) to the mutated residues was similar or lower than to the same residues in the
wild-type model. However, in the case of N932K and N1463Y, there was a significantly
stronger binding of the mutated residue to the ligand.

Comparing our simulation results with different drug binding sites on Nav channels
described in the literature, we conclude that cenobamate occupies the C binding site in the
central cavity, more specifically the upper cavity and zones 2 and 3 described by Li et al. [84].
In this study, we did not address the important question of other possible binding sites
beyond that in the central cavity, and of possible indirect effects of drug binding on Nav1.5
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gating kinetics. It was postulated that local anesthetics and other Nav-inhibiting drugs
such as class I antiarrhythmics and some antiseizure compounds [85] interact strongly with
some conserved residues of S6 of domain IV (F1760 and Y1767 in the canonical Nav1.5
sequence) as well as L1462 of S6 domain III [32–34,36,38,41,43,60,86–88] and thus promote
fast inactivation, featuring even stronger binding to the inactivated state conformation.
According to the MRH, drugs with neutral protonation states that can access the central
cavity via a local hydrophobic pathway [40,60] may exert state-dependent binding, while
charged compounds follow GRH, quickly entering the cavity during the open state via the
internal gate and becoming trapped during inactivated or closed states, thus showing little
state dependence of binding affinity [45,87,88]. These differences in blocking mechanism
and access pathways result in differential use and frequency dependence, as well as
differential binding/unbinding kinetics. Thus, class Ib antiarrhythmics in the Vaughan–
Williams classification [89–91], such as lidocaine and mexiletine, have the fastest binding
kinetics and least use dependency; class Ia drugs such as quinidine and disopyramide are
intermediate; and class Ic compounds, like flecainide and encainide, bind and dissociate
slowly, exhibiting sodium current inhibition even at normal heart rates; the effects of class Ia
and Ic drugs are use-dependent [92]. Our experimental data with cenobamate showing the
use-dependent and frequency-dependent inhibition of Nav1.5, together with the electrical
neutrality of the drug molecule, indicate at least partially slower access via a lipophilic
lateral pathway [93]. However, this molecular modeling study failed to provide evidence
of drug interaction with the above-mentioned aromatic residues of S6 of domain IV, the
docked position featuring interactions predominantly with S6 of domains II and III, and
with a single residue of S6 domain IV: Ile1768. The recent Nav1.5 structures obtained by
cryoelectron microscopy provided evidence that the slow activation of S4 voltage sensors
of domains III and IV creates a lateral pocket for the binding of the IFMT inactivation
particle of the III–IV cytoplasmic loop and decouples the S4-S5 linker of domain III from S6
of domain IV [22,24,70].

We also want to emphasize the very good agreement between the predicted Kd for the
binding of cenobamate to wild-type Nav1.5 channels obtained via molecular docking and
the experimental IC50 for cenobamate inhibition of Nav1.5 channels obtained in whole-cell
patch–clamp experiments [93]: 87.6 µM (experimental) vs. 90.37 µM (molecular docking,
Table 1). However, there was less agreement between Gibbs free energies of binding es-
timates obtained via docking and MD, followed by MM-PBSA for the wild-type Nav1.5
channel model and the eight point mutant variants. Studying the literature, we found
large differences between these two methods for other molecular systems as well, e.g.,
for the interaction of folate receptors α and β with different antifolate compounds [94].
We assume that such differences may result from the approximations in setting relative
dielectric constant values for different subdomains of the model when performing con-
tinuum electrostatic computations with the MM-PBSA approach [95]. It should also be
mentioned that MM-PBSA is a method that provides relative ∆Gbinding values, being useful
in classifying different ligand–receptor pairs; for absolute ∆Gbinding, one should use more
computationally demanding methods such as alchemical absolute binding free energy
(ABFE) [96]. Machine learning approaches are also an alternative to improve the accuracy
of ligand–receptor interaction energy estimation [97,98], and they have been implemented
in a number of accessible computational tools [99,100]. Wang C et al. (2016) analyzed the
sources of errors in MM-PBSA computations, identifying a number of factors influencing
the overall accuracy of the method, including overlooking contributions to solvation-free
energy of buried atoms, approximations introduced by finite difference Poisson–Boltzmann
algorithms with various grid spacings, the molecular surface definition based on chosen
sets of atomic radii and solvent probe radius (0.6 Å provides satisfactory estimates), the
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choice of solute dielectric constant (usually εr = 4 for proteins), and particularly the approxi-
mation introduced by considering a constant ligand conformational restriction contributing
to the protein–ligand interaction free energy based on analysis of a single MD trajectory [95].
Based on methods developed by Gao, Park, and Stern (2010) [101] to estimate the config-
urational entropy loss due to conformational restriction of the ligand bound to protein
compared to its lowest-energy conformation in solution, these authors obtained better
estimates of conformational entropy and enthalpy contributions of ligand conformational
restraint to ∆Gbinding ([95], reviewed in [102,103]). Other attempts to improve the accuracy
of MM-PBSA and MM-GBSA methods, such as polarizable force fields, improved solvation,
or quantum-mechanical computations, have failed so far [104]. Although some practical
tools and algorithms to improve MM-PBSA free binding energy estimates are available,
e.g., [105], it would have been very difficult to adopt them in our study.

4. Materials and Methods
We started by selecting several open state conformation structures of Nav1.5 from the

RCSB Protein Data Bank (PDB: www.rcsb.org, accessed on 24 November 2024) [106]: PDB
ID 7XSU [75] representing rat Nav1.5 (UniProt P15389) fused with a C-terminal rVSV g
protein-GFP tag (UniProt B7UCZ6) in interaction with the open-conformation-inducing
α-like toxin LQH3 from Leiurus quinquestriatus hebraeus, and PDB ID 6UZ0 [70] representing
rat Nav1.5 fused with a C-terminal GFP tag from Aequorea victoria (UniProt P42212) with
flecaininde bound in the central cavity. The corresponding 3D structures of human Nav1.5
in the open state were generated by employing AlphaFold2 [107] and selecting the best
structure based on the predicted local distance difference test (pLDDT) score. Mutants
were generated using an in-house script with rotamer optimization. The best-ranked
AlphaFold2 Nav1.5 protein model was used for incorporation into a DPPC lipid bilayer
covering a surface of 200 Å × 200 Å with the Membrane Builder interface of the CHARMM-
GUI application (https://charmm-gui.org/, accessed on 24 November 2024) [108–115],
following the six consecutive steps: protein PDB input, orienting, establishing system size,
building lipid/water components, assembly, and equilibration of the system. Subsequently,
we completed the model by adding a file of two sodium ions alternating with water
molecules, placed at the origin in the horizontal (XY) plane, parallel to the bilayer, and
with the Z positions for ions and oxygens of TIP3P water molecules at mid-distance along
the Z axis between the Z position of consecutive planes of 4 backbone carbonyl oxygens
of residues within the four domains forming the selectivity filter. After supplementary
preprocessing of the structure file containing the Nav1.5 protein, DPPC bilayer, and sodium
ions, we used the H++ server available at Virginia Tech (http://newbiophysics.cs.vt.edu/
H++/, accessed on 24 November 2024) [116–118] to accurately titrate the pKa of ionizable
residues using a continuum electrostatic approach based on detailed structural information,
computing solvation self-energies and interactions with permanent partial charges as well
as with titratable charges [119–121]. The output generated by H++ for the titratable protein
residues of our model using the linearized Poisson–Boltzmann equations applied to a
complete system, including the lipid bilayer with its specific relative dielectric constant
instead of the channel protein completely immersed in water, is listed in Table S2 of
Supplementary Data; the pK1/2 values, compared to the desired pH of 7.2, were used to
adjust the protonation state of 7 histidine residues (residues 151, 350, 472, 738, 886, 1200
and 1584) and 2 lysine residues (residues 63 and 1419).

The protein component of the processed model was used for the molecular docking of
cenobamate. The cenobamate molecule was converted to the pdbqt format from the 3D
conformer downloaded from the PubChem database (https://pubchem.ncbi.nlm.nih.gov,
accessed on 24 November 2024) with OpenBabel 3.1.0 [122] and docked on the Nav1.5

www.rcsb.org
https://charmm-gui.org/
http://newbiophysics.cs.vt.edu/H++/
http://newbiophysics.cs.vt.edu/H++/
https://pubchem.ncbi.nlm.nih.gov
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model after the addition of polar hydrogens and conversion to the pdbqt format, using
MGLTools [123,124]. Molecular docking was performed with AutodockVina 1.2.5 [125,126],
using a grid box for placing the ligand in the central cavity of the channel to find the putative
drug binding site. Docking was performed in triplicate for all receptor structures, to mediate
the stochastic component of the scoring function and provide improved accuracy. By
screening several sequence databases such as UniProt [127,128] and ClinVar [129,130], we
subsequently identified 8 point mutant human Nav1.5 variants with changed residues in the
S6 helices, in the vicinity of the predicted cenobamate binding site, and assessed their effects
on cenobamate binding affinity via molecular docking and molecular dynamics approaches.

For MD simulations, the system was prepared using the PACKMOL-Memgen
tool [131] included in the AMBERTools23 package [132]. Explicit-type transferable in-
termolecular potential three-point (TIP3P) water was used, and the membrane bilayer was
composed of DPPC lipids. Proteins were parameterized using the ff19SB force field [79] and
the lipids were parameterized using the lipid21 force field [133]. The cenobamate ligand
was parametrized using GAFF2 [134], with absent parameters generated by homology.

The initial global minimization of the wild-type system was performed using the
limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) implemented in
OpenMM [135]. All the molecular simulations presented in the work were performed using
NAMD3 [136]. In order to obtain proper energy distribution of the system, the heating
protocol consisted of 4 stages: (1) only the hydrophobic tails of the bilayer were allowed to
move; (2) the hydrophobic and hydrophilic parts of the lipid along with the water and ion
molecules were allowed to move; (3) the lipids, water, and ions along with the protein side
chains and the backbone of the loop regions were allowed to move; and (4) performing the
procedure globally, leaving the entire system free. Each of the steps consisted of 1000 steps
of conjugate gradient minimization followed by gradual heating to 300K. After the final
heating step, a 10 ns equilibration was applied, in order to extract a good starting structure
for the MD simulations. All heating/equilibration simulations were run using fully flexible
hydrogen bonds, with a 1 fs time step. This was carried out to ensure proper geometry
optimization, especially considering the presence of the small ligand.

The Nav1.5 point mutant models were generated using the fully equilibrated wild-
type model. Mutant structures were minimized, in order to ensure no errant atomic clashes
were present prior to MD simulation. Each of the 9 variants of the Nav1.5 receptor–ligand
complexes was subjected to 100 ns of MD simulation with NPT constraints. Considering
the size of the system, a time step of 2 fs was used and SHAKE was applied to the
hydrogen bonds.

MM-PBSA calculations were performed using the MMPBSA.py program [137]. Since
the current work involves a transmembrane channel, the MMPBSA calculation parameters
were tuned to reflect the difference in dielectric constant that the presence of the membrane
imposes upon the protein’s environment. Parameters were derived from similar use cases
in the AMBER user manual as well as other published work [94,95,103], and the script used
for computations is provided in Section S1 of Supplementary Data. In total, 50 equally
spaced snapshots were used from each simulation.

For the visualization and analysis of molecular structure files, we used VMD
(http://www.ks.uiuc.edu/Research/vmd/, accessed on 24 November 2024) [138], Py-
Mol [139], Swiss Model server (https://swissmodel.expasy.org, accessed on 24 November
2024) [140–146], and BIOVIA Discovery Studio Visualizer v24.1.0.23298, Copyright ©2023,
Dessault Systèmes Biovia Corp, free molecular visualization tool (https://discover.3ds.
com/discovery-studio-visualizer-download, accessed on 24 November 2024).

In order to assess the effects of increased cenobamate binding affinity for 3 of the tested
Nav1.5 point mutants compared to wild-type, as predicted by molecular docking (Table 1),

http://www.ks.uiuc.edu/Research/vmd/
https://swissmodel.expasy.org
https://discover.3ds.com/discovery-studio-visualizer-download
https://discover.3ds.com/discovery-studio-visualizer-download
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we used a 1D linear ventricular cardiomyocyte string action potential propagation model
developed and tested in previous studies [93]. The ventricular tissue model is based on
the O’Hara-Rudy 2011 human ventricular cardiomyocyte model [147] with subsequent
completions for in silico pharmacology studies [148–150]. The string was composed of
50 cardiomyocytes, each with a length of 100 µm, connected by gap junctions with variable
conductance ranging from normal values (Gj = 6000 pS/pF) to 20-fold reduced values
specific for ischemic or fibrotic scar myocardial tissue [151–153]. The model includes
cenobamate blocking and unblocking rates specific for the open and inactivated Nav1.5
channel conformation, estimated from experimental data. To account for increased binding
affinity of cenobamate to the three Nav1.5 point mutants relative to wild-type channels we
kept constant the blocking rates and modified the unblocking rates to observe the modified
Kd values for these mutants, as shown in Section S2 of Supplementary Data.

5. Conclusions
Cenobamate, a novel highly effective antiseizure drug, exerts inhibitory effects on

cardiac voltage-dependent Na+ channels Nav1.5 at clinically relevant concentrations. Our
study using molecular docking and MD approaches for an open-state conformation hu-
man Nav1.5 model indicates stable binding of the compound in the central cavity via
interactions with multiple aromatic, aliphatic, and secondary amide residues of S6 helices
of domains II and III, with the occlusion of the inner outlet of the selectivity filter tract.
Some point mutant variants identified in sequence databases UniProt and ClinVar seem
to exert even stronger binding of cenobamate than wild-type channels. A computational
assessment of the effects of these mutations on AP waveform propagation in a linear string
of ventricular cardiomyocytes indicates a significant reduction in conduction velocity for
moderately reduced intermyocyte coupling conductances (1000 pS/pF) and low cenoba-
mate concentrations (0.1 × Cmax = 17 µM) that may result in the creation of re-entry loops
triggering dangerous ventricular arrhythmias in patients with structural or functional
myocardial impairment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms26010358/s1.
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