
Bridging the Gap from Molecular Surveillance to Programmatic Decisions for
Malaria Control and Elimination

Monica Golumbeanu,1,2 Constant A. V. Edi,3 Manuel W. Hetzel,1,2 Cristian Koepfli,4 and Christian Nsanzabana1,2*
1Swiss Tropical and Public Health Institute, Allschwil, Switzerland; 2University of Basel, Basel, Switzerland; 3Centre Suisse de Recherches

Scientifiques, Abidjan, Cote d’Ivoire; 4Department of Biological Sciences and Eck Institute of Global Health,
University of Notre Dame, Notre Dame, Indiana

Abstract. An increasing number of molecular and genomic assays are available to study malaria parasite popula-
tions. However, so far they have played a marginal role in informing policy and programmatic decision-making. Currently,
molecular data are mainly used for monitoring drug efficacy against Plasmodium falciparum; assessing molecular
markers of drug and insecticide resistance; and assessing P. falciparum histidine-rich protein 2 and 3 genes (Pfhrp2/3)
deletion. We argue that additional use cases for molecular routine surveillance could be implemented in the near future,
especially in transmission settings approaching elimination. These would include using quantitative polymerase chain
reaction to monitor the prevalence of sub-patent infections in asymptomatic carriers, monitoring parasite genetic diver-
sity as transmission intensity is changing, using genomic data to determine the origin of imported infections and charac-
terize transmission chains in settings with very low malaria transmission, and using serology to monitor recent and past
exposures in low-transmission settings. Molecular surveillance could inform control programs on adapting novel strate-
gies, such as reactive case detection or focal mass drug administration, and help evaluate the impact of interventions
currently in place. To better integrate molecular and genomic data into control program decision-making, engagement of
national malaria control experts is crucial. Local laboratory capacity needs to be strengthened, shortening the time from
sample collection to data availability. Here, we discuss opportunities and challenges of the use of molecular and genomic
data for supporting malaria control and elimination efforts, as well as the avenues to link molecular and genomic data
with gold standard epidemiological measurements through mathematical modeling.

INTRODUCTION

Increased coverage with effective malaria control interven-
tions has led to a decrease in the transmission of Plasmo-
dium parasites and a notable reduction in the malaria burden
across large parts of the malaria-endemic world.1,2 However,
increasing subnational heterogeneity in malaria transmission
as a consequence of varying uptake and the effectiveness of
control measures requires more detailed and granular data
for targeting and tailoring intervention packages. As countries
scale up their malaria control efforts and aim at eventually
achieving elimination, transforming malaria surveillance into a
core intervention becomes increasingly important.3 In prac-
tice, surveillance data need to play an increasing role in pro-
grammatic decision-making and day-to-day response action.
Several initiatives are underway to improve the collection

and reporting of routine surveillance data, most notably
the large-scale rollout of standardized, country-owned, and
locally customizable systems such as DHIS 2 (formerly Dis-
trict Health Information Software).4 Extensions to DHIS2 and
other locally developed systems increasingly allow programs
to move from aggregate reporting of clinical cases to individ-
ual case–based reporting that forms the basis for case inves-
tigation and classification, a requirement for eventual certifi-
cation of elimination.5

To date, efforts toward consolidating and scaling up rou-
tine surveillance for the purpose of programmatic decision-
making have focused mainly on malariological indicators
that are based on well-established diagnostic tools such as
microscopy, a rapid diagnostic test (RDT), or morphological
identification of mosquitoes.6–8 Although crucial for monitor-
ing malaria transmission and burden, these data capture

only part of the complex malaria transmission dynamics in a
given geographical region.9 Furthermore, not all of these
indicators can be collected in all settings.
As parasite and mosquito genetic pools are continuously

shaped by control strategies, genomic data provide a com-
plementary tool to understand underlying transmission in
response to the applied interventions.10 Molecular diagnostic
tools can provide a more accurate picture of ongoing trans-
mission,11 and they may hence have the potential to improve
malaria surveillance efforts. However, to date, molecular and
genomic data have been rarely used in routine surveil-
lance12,13 and are often conducted by research institutions
that lack programmatic perspective and decision-making
power. Their use is limited, for example, by a lack of adequate
infrastructure and well-trained staff in many malaria-endemic
countries, especially at the National Malaria Control Program
(NMCP) level. Moreover, for some molecular techniques, there
is a lack of sufficient evidence and hands-on guidance for
their programmatic implementation and application.14

In this review paper, we present current use cases of
molecular techniques to guide malaria strategies and explore
future use cases of molecular surveillance to inform pro-
grammatic decisions for malaria control and elimination
efforts.

CURRENT USE CASES OF MOLECULAR TECHNIQUES
TO INFORM MALARIA PROGRAMMATIC DECISIONS

There are several use cases for malaria molecular monitor-
ing, but only four of them are currently recommended for
routine surveillance, including the distinction between recru-
descence and new infections in therapeutic efficacy studies
(TESs) for Plasmodium falciparum15 and monitoring of insecti-
cide resistance.16 Although guidelines also exist for monitor-
ing P. falciparum histidine-rich protein 2 and 3 (Pfhrp2/3)
genes deletion17 and molecular markers of resistance,18,19
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they are rarely systematically performed as part of routine
surveillance.
In the following section, we provide an overview of the cur-

rent and prospective use cases of molecular tools for guid-
ing programmatic decisions, also summarized in Table 1.
Therapeutic efficacy studies.
Polymerase chain reaction (PCR) correction (i.e., compar-

ing the genotype of parasites collected from a patient at
enrollment with the genotype of parasites found in the same
patient during follow-up) allows distinguishing a new infec-
tion (newly acquired genotypes) from a recrudescence

(same genotype[s]) in P. falciparum infections. Highly
diverse–size polymorphic markers, such as P. falciparum
merozoite surface protein 1 and 2 (Pfmsp1 and Pfmsp2) and
microsatellites, are used to differentiate recrudescence from
new infection by comparing P. falciparum genotypes in pre-
treatment samples and any posttreatment sample with para-
sites detectable by microscopy or PCR.20,21 The sensitivity of
the different markers in detecting minority clones in polyclonal
infections is the main limitation of the techniques used to dif-
ferentiate recrudescence and new infection.22,23 The recom-
mended WHO protocol for molecular monitoring during clinical

TABLE 1
Summary of current and prospective use cases of molecular tools for guiding programmatic decisions

Use Case Description (molecular techniques) Strengths and Weaknesses

Current use cases
Therapeutic efficacy

studies
Use highly polymorphic markers to differentiate

recrudescence from new infection (nested PCR
followed by gel or capillary electrophoresis,
PCR-RFLP, NGS)

1 Drug efficacy estimates comparable between
areas of different transmission intensity

2 Follow-up of patients is required
2 PCR limitation in detecting minority clones
2 Reproducibility between laboratories

Pfhrp2/Pfhrp3 deletion
typing (diagnostic
resistance monitoring)

Uses nested PCR, qPCR, or digital PCR, Sanger
sequencing, NGS

1 Yields conclusive data on deletion status, as
false-negative Pfhrp2-based RDTs can have
other causes

2 Nondetection of deleted parasites in polyclonal
infections

Drug resistance
monitoring

Uses established genetic markers to assess the
frequency of genotypes associated with drug
resistance (nested PCR-RFLP, qPCR, Sanger
sequencing, NGS)

1 Characterizes resistance emergence and
spread

1 No follow-up of patient needed; can be used
on archived blood samples

2 Does not provide a direct estimate of
treatment efficacy

Insecticide resistance
monitoring

Uses established genetic markers to assess the
frequency of genotypes associated with
insecticide resistance (nested PCR, PCR-
RFLP, qPCR, Sanger sequencing, NGS)

1 Characterizes resistance emergence and
spread

1 Affordable and scalable compared with
phenotypic studies

2 Cannot provide a direct relationship with
insecticide efficacy

Prospective use cases
Sero-surveillance Uses established antibodies to measure changes

in transmission intensity (ELISA, bead-based
assays, protein microarrays)

1 Allows for a better understanding of
transmission heterogeneity in low-transmission
settings

2 Acquired immunity may be a major confounder

Detecting the sub-patent
and asymptomatic
reservoir

Uses highly sensitive diagnostic methods to
screen for low-density, sub-patent infections
(nested PCR and gel electrophoresis, LAMP,
qPCR)

1 Provides an accurate view of the transmission
reservoir and where to target interventions

1 Increasingly available in reference laboratories
in endemic countries

2 Currently not scalable for point of care
2 Additional benefit over other tools (case

numbers, prevalence by mRDT) unclear
2 Sensitivity depending on the target gene (18 s,

varATS, etc.) and the matrix used for sample
collection (whole blood vs. dried blood spot)

Genomic measures as
surrogate markers for
transmission changes

Use nPCR/gel-based genotyping, PCR–capillary
electrophoresis, qPCR (HRM), NGS

1 May be more scalable and affordable than
other measures of transmission intensity,
especially in areas with low malaria
transmission

2 Links between transmission intensity and
parasite diversity/multiplicity are complex and
not well understood

Characterizing
transmission chains

Identifies hot spots of transmission and sources
of importation; tracks cases in the event of an
outbreak (NPCR/gel-based genotyping, PCR–
capillary electrophoresis, qPCR [HRM], NGS)

1 May allow for new strategies to prevent
importation/break transmission chains

2 Added value compared with travel history
reporting by patients not clear

1 5 strengths; 2 5 weaknesses; ELISA 5 enzyme-linked immunosorbent assay; HRM 5 high-resolution melting; LAMP 5 loop-mediated isothermal amplification; mRDT 5 malaria rapid
diagnostic testing; NGS 5 next generation sequencing; nPCR 5 nested polymerase chain reaction; PCR 5 polymerase chain reaction; PCR-RFLP 5 polymerase chain reaction–restriction
fragment length polymorphism; qPCR5 quantitative polymerase chain reaction.
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trials was recently amended to consider this limitation. Accord-
ingly, the glutamate-rich protein gene (Pfglurp) marker was
replaced with microsatellite markers owing to the limitation of
Pfglurp in detecting minority clones in polyclonal infections.21

Nevertheless, sampling at a single time point can also result in
missed clones because of parasite sequestration and fluctua-
tion in parasite densities.24,25 Furthermore, different data anal-
ysis algorithms have been proposed,26–29 and a consensus still
needs to emerge about how to validate them.
Polymerase chain reaction correction is still often performed

using PCR and agarose gel–based assays. These assays have
lower discriminatory power in distinguishing recrudescence
from new infection and provide inaccurate estimates of PCR-
corrected drug efficacy. There is a need to implement techni-
ques with improved discriminatory power based on capillary
electrophoresis or amplicon deep sequencing to precisely esti-
mate amplicon fragment sizes and precisely call haplotypes,
respectively; however, many challenges are hampering their
wide adoption. Although amplicon deep sequencing (i.e., Illu-
mina sequencing of highly diverse amplicons of a few hundred
base pairs) provides higher sensitivity30 and results in higher
detectability of minority clones,31 no guidelines currently exist
for assay validation, minimum criteria of assay acceptance,
and data reporting. This makes it challenging to compare data
over time or between different laboratories. Moreover, the
costs associated with implementation of this technology, chal-
lenges in reagents procurement, training, and limited capacity
in data analysis are still major obstacles for implementation in
malaria-endemic countries.
The current system based on TESs, conducted in a few

sentinel sites, has many limitations. First, because of logisti-
cal and economic constraints, TESs are conducted at best
every 2 years, although many countries still fail to reach that
goal. Second, in high-transmission settings, delayed para-
site clearance, which is the hallmark of artemisinin partial
resistance, is confounded by a high level of acquired immu-
nity, making it a poor indicator of the emergence of artemisi-
nin partial resistance in these settings.32 Third, TESs are
challenging to conduct in low-transmission settings owing to
the low number of malaria cases. Additional molecular data,
such as the prevalence or frequency of drug resistance mar-
kers, could offer a complementary or alternative approach to
monitor antimalarial drug resistance, inform the best loca-
tions to conduct TES, and confirm resistance.33

Markers of drug resistance.
The molecular basis of resistance to many antimalarials is

well understood; thus, typing of respective loci can provide
information on the prevalence or frequency of genotypes asso-
ciated with drug resistance. These results are not confounded
by patient immunity and may help to detect early emergence
of drug resistance.34 For artemisinin partial resistance, muta-
tions in the PfKelch13 gene have been associated with
delayed parasite clearance after treatment with artemisinin
combination therapies (ACTs)35,36 or artemisinin monother-
apy.37,38 Detection of kelch13 mutations has proven highly
effective in monitoring the spread of resistance across the
Greater Mekong subregion.39,40 In contrast to TESs, which
require follow-up of patients at multiple time points, monitoring
resistance markers can be conducted on any blood sample
collected from clinical patients or asymptomatic carriers. It is
an affordable and highly scalable strategy. Nevertheless,
well-equipped laboratories with well-trained staff are

required to conduct the analyses using the most appropriate
techniques.41

Not all infections with a drug-resistant parasite will result in
treatment failure, as resistant infections may be cleared in
semi-immune individuals. As a result, there is not always a
direct relationship between molecular markers of resistance
and treatment failure.42 However, increasing prevalence or fre-
quency of validated molecular markers has often been associ-
ated with increasing treatment failure,43–46 and large pooled
analyses have confirmed the selection of specific resistance
markers after treatment with most currently used ACTs (i.e.,
artemether-lumefantrine and artesunate-amodiaquine).47,48

Most current drug resistance–marker surveillance activi-
ties focus on a few geographical sites and are conducted
irregularly. Repeated studies are needed to monitor molecu-
lar markers and their dynamics over time and space. To
better guide policymakers in antimalarial treatment policy
change, the development of tools to dynamically map the
prevalence of resistance markers and predict treatment out-
comes on a population level is needed.49,50

Diagnostic resistance.
Malaria case management is based on prompt diagnosis

and treatment of confirmed cases. This strategy relies on easy
access to malaria diagnosis at each level of the health system.
Over the last 10years, malaria RDTs (mRDTs) have become
the mainstay for malaria diagnosis in malaria-endemic coun-
tries, especially in sub-Saharan Africa.2,51 However, this strat-
egy is threatened by the emergence of parasites lacking the
Pfhrp2 and 3 genes, the target of the most sensitive available
RDTs for P. falciparum.52–54

Plasmodium falciparum parasites lacking the Pfhrp2/3 genes
were initially reported from Peru55 and since then in many other
malaria-endemic countries, especially in the Horn of Africa.56,57

Two countries in sub-Saharan Africa (i.e., Eritrea and Ethiopia)
have reported a very high prevalence of Pfhrp2/3 genes dele-
tion, leading Eritrea to change its national malaria diagnosis
policy from histidine-rich protein 2 (HRP2)-based RDTs to
plasmodium lactate dehydrogenase (pLDH)-based RDTs.58–60

The WHO has developed guidance for monitoring Pfhrp2/3
deletions,17,61 and multiple molecular assays for deletion typ-
ing are available.62–65 There is a need to develop laboratory
capacity for applying these assays and for the associated
high throughput molecular analyses in malaria-endemic
countries. Such a laboratory is currently being established in
Ethiopia (C. K., personal communication).
Insecticide resistance.
Susceptibility or intensity bioassays, including the CDC’s bot-

tle bioassays, the World Health Organization Pesticide Evalua-
tion Scheme cone bioassay, and the WHO bottle bioassay,
remain the gold standard for monitoring vector resistance to
insecticides,66 but logistical challenges and high intra-assay
variability impede surveillance.67 Molecular assays are currently
performed only to confirm the underlying mechanism of resis-
tance after detection of phenotypic resistance with bioassays.68

However, despite previous studies showing functional links
between molecular markers and insecticide resistance,69 bioas-
say outcomes do not always correlate with molecular data.70

Although the genotype–phenotype relationship for insecticide
resistance is not fully understood, bioassay data may be addi-
tionally impacted by other factors, such as environmental fac-
tors or metabolic resistance,67,71 impeding their association
with molecular data. It is currently recommended that molecular
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species characterization be conducted after the bioassays to
confirm morphological characterization and to identify species
groups that cannot be differentiated morphologically.16 Logisti-
cal challenges, high intra-assay variability, and data interpreta-
tion and standardization challenges associated with bioassays
impede insecticide resistance surveillance.72,73

Several molecular markers for resistance to each major
insecticide class have been established. One such example
is knockdown resistance (kdr) mutations conferring resis-
tance to dichlorodiphenyltrichloroethane and pyrethroids.74

Molecular surveillance can be used to monitor temporal and
spatial trends of vector resistance, although this strategy is
not yet commonly used.75,76 Despite implementation of
monitoring of markers such as kdr mutations in several loca-
tions,77–80 little is known about the correlation between the
prevalence of molecular markers and insecticide efficacy in
the field, and more data are needed to fill this gap.81 Under-
standing of the current status of insecticide resistance and
the drivers of vector control efficacy can be addressed
through molecular surveillance by simultaneously collecting
bioassay data, field efficacy of insecticide-based interven-
tions, and the prevalence of molecular markers.

PROSPECTIVE USE CASES FOR MOLECULAR TOOLS

Detection of the malaria transmission reservoir.
Currently, the commonly used mRDTs are missing a signifi-

cant number of infections both in low- and high-transmission
settings, especially low-density infections and parasites with
deletion of Pfhrp2/3 genes.82–84 Polymerase chain reaction (or
quantitative PCR [qPCR]) is substantially more sensitive than
microscopy or an RDT, reaching a limit of detection of , 1
parasite/mL of blood. Polymerase chain reaction screening can
be applied to determine the proportion of infections missed by
routine diagnosis and to screen for low-density, sub-patent
individuals to identify hidden parasite reservoirs. Numerous
studies have shown a large sub-patent reservoir under all
transmission intensities.85,86 Although PCR was often only
available in a relatively small number of research laboratories
in the past, slowing down time to results, it is now widely avail-
able in endemic countries. Furthermore, portable devices allow
screening on-site and thus a much faster turnaround time.87–89

Despite its wide use in research, PCR-based molecular
screening for infections has led directly to interventions or pol-
icy change in only a few documented cases. In Myanmar,
qPCR is usually applied to stratify villages into low or high
prevalence, with the latter receiving mass drug administration
(MDA).90 However, although estimates by qPCR are highly
accurate, the cost is high, and screening by an RDT combined
with a lower detection prevalence threshold for deploying
MDA might be more cost-effective. Another example is the
Chinese 1-3-7 approach in which confirmation of infection by
qPCR is established before case investigation is conducted.91

According to this approach, cases are reported within 1day
and investigated within 3days, and reactive investigation of
the focus is conducted within 7days. Polymerase chain reac-
tion confirmation is warranted owing to the relatively small
number of cases and extensive investigation of each case. On
the opposite, during the elimination phase in Sri Lanka,
microscopy was the main method used for malaria diagnosis,
and RDTs results were always confirmed by microscopy.
However, this required the establishment of an extensive

microscopy quality assurance program, including proficiency
testing and continuous training of the microscopists.92

Molecular tools such as qPCR might become more
widely integrated into routine surveillance, especially in low-
transmission areas or in settings advancing toward elimination.
Polymerase chain reaction has also been established in refer-

ence laboratories in other countries that are in the elimination
phase (e.g., Afghanistan).93 Furthermore, it has been frequently
used in research studies to assess the impact of interventions94

and for monitoring sub-patent infections.95,96 To increase
throughput and reduce costs, multiple samples can be pooled
for qPCR analysis. If a pool is positive, samples can be tested
individually.97,98 It remains to be seen whether the extensive
infrastructure for molecular testing built up in many countries in
response to COVID-19 may in the future be leveraged for the
molecular surveillance of other pathogens, including malaria.99

Multiplicity of infection (MOI) as a proxy for
transmission intensity.
Different indices of genetic diversity are being evaluated

as surrogate markers for transmission intensity. The MOI (or
complexity of infection) is among the most frequently
reported genetic measures. It can be easily determined
using any of multiple genotyping techniques. Some small-
scale, geographic-specific studies have found a strong cor-
relation between MOI and other measures of transmission
intensity (e.g., clinical incidence or prevalence), in particular
over extended periods of time. Nevertheless, a systematic
review of the relationship between MOI and prevalence did
not find a clear pattern.100 Likewise, the relationship
between other genetic diversity metrics and transmission
intensity is poorly characterized. It appears that MOI starts
to decline only once transmission has been reduced to very
low levels (reviewed in Koepfli and Mueller101 and Noviyanti
et al.102). Owing to these complexities, genomic indicators
are not routinely used by control programs.
Parasite relatedness, detecting importation, and

characterizing transmission chains.
More sophisticated genomic analysis, including genotyping a

higher number of markers or whole genome sequencing
(WGS), and advanced tools for data analysis can provide
insights into parasite movements across space and time.103

Once transmission is very low, it becomes crucial to differenti-
ate between imported and locally transmitted cases. Parasite
genotyping might be able to do that, but it will rely on a good
understanding of the genomic composition of the local parasite
population as well as populations that might serve as sources
for importation.101,104 Baseline and subsequent cross-sectional
surveys to generate WGS data in low- to very low–transmission
settings would provide a better understanding in this regard,10

as they can be used in mathematical models to elucidate the
structure of parasite populations and transmission networks to
target and tailor interventions accordingly.105–107 Almost all
existing studies on genetic diversity, MOI, and transmission net-
works were conducted at a time when changes in transmission
were already evident by changing clinical case numbers.
Likewise, self-reported travel histories used to be sufficient to
classify a case as imported versus locally transmitted. How-
ever, self-reported travels may not be able to reliably disen-
tangle local transmission chains, as transmission in areas
approaching elimination is very complex and may be due
mainly to imported cases, despite a large local sub-patent
parasite reservoir.108 Moreover, compared with travel history
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and mobile phone data, genomic data can provide better
estimates of parasite movements and connectivity over lon-
ger distances,109 paving the way to regional activities for
malaria control and elimination.
Sero-surveillance.
Serological markers to monitor recent or past exposure to

parasites or vectors hold great promise for monitoring con-
trol efforts and may serve to identify at-risk populations or
hot spots, where preventive measures should be implemen-
ted. Applications have been reviewed in detail else-
where110,111 and are summarized briefly here.
In particular, when transmission becomes very low, clinical

cases or asymptomatic infections are too few to provide
meaningful information in heterogeneity of transmission or
recent changes in response to control. Measuring antibody
titers as markers of past exposure to parasites can provide
higher power to assess differences. For example, in western
Kenya, seroprevalence across multiple clusters was around
5-fold higher than prevalence by PCR and 10-fold higher
than prevalence by RDT.112 Seroprevalence data thus
allowed for a better understanding of heterogeneity in trans-
mission than parasite prevalence data alone.
When very few parasites are present in a population, sero-

surveillance can be applied to quantify transmission in the
population. With use of different antibodies with different
half-lives, it may be possible to assess cumulative and
recent exposures. Recent studies have shown that antibo-
dies such as Ama-1 and msp1 may be associated with
cumulative exposure, whereas Etramp and Glurp are associ-
ated with recent or current infection.113,114 Even in the
absence of current or recent infections, individuals at higher
exposure to vectors are expected to be at risk of getting
infected. Bites of infected and uninfected mosquitoes result
in a relatively short-lived immune response. The gSG6-P1
peptide was identified as a marker to Anopheles bites115 and
was used to stratify exposure in multiple settings.116,117 Anti-
bodies for this assay were successfully extracted from
archived RDTs collected by the National Malaria Elimination
Program in Bangladesh,118 thus minimizing the efforts for field
collection of specimens. Highly multiplexed assays have also
been developed allowing assessment of hundreds or thou-
sands of antibodies at the same time and helping to identify
newmarkers for parasite or mosquito exposure.119,120

The main limitation of all these molecular techniques is the
requirement of human blood samples. Because it may not
always be possible to collect the required samples for
molecular analyses, an alternative would be to use mosqui-
toes. Indeed, DNA extracted from mosquitoes may be suit-
able not only for insecticide resistance monitoring but also
for parasite drug resistance monitoring or Pfhrp2/3 deletion
typing. Mosquitoes can thus also be used as a source of
parasite DNA, and previous studies have shown that this
could be a fast and cost-effective strategy,121,122 alleviating
the need to collect blood samples from humans. However,
this strategy will be likely applied in high-transmission set-
tings, where routine entomological surveillance is regularly
conducted and mosquito infection rates are assessed.

THE ROLE OF MATHEMATICAL MODELING

Data derived from routine epidemiological surveillance
and representative surveys have been previously successfully

used to guide policy decisions in numerous use cases.123–125

For this purpose, mathematical modeling and statistical analy-
ses have proven instrumental in extracting quantitative evidence
from collected surveillance data and informing programmatic
decisions. Frameworks using epidemiological data for statistical
analyses and to parameterize mathematical models of malaria
transmission have been set up and used by countries to guide
their national malaria strategic plans.126 A nonexhaustive list of
these applications includes identification and stratification of
malaria risk,127–129 optimization of interventions for national
strategic planning,130 and support for funding requests to the
Global Fund.131,132 Furthermore, routine surveillance data and
quantitative risk assessment combined with statistical and
model-based analyses have constituted a key component of
the National Malaria Elimination Program in China.133

Despite the existing data and modeling frameworks for
decision-making and their uptake by certain NMCPs, only a
few small-scale applications have included molecular sur-
veillance data. Of note, in this context, mathematical models
have been previously used to link parasite diversity to
changes in transmission intensity,134,135 map the drivers and
spread of Pfhrp2 deletions,136 and drug resistance,137,138

identify outbreaks,139 and characterize flows of infections.107

However, despite their usefulness,104 these applications
have been mostly restricted to a specific geographical set-
ting rather than applied countrywide and were performed
mostly for research purposes rather than with an actionable
programmatic implication for malaria control and elimination
strategies. The development of analytical methods and
extension of current mathematical models to include molec-
ular surveillance data could bring valuable insights and com-
plement the current efforts of national malaria control and
elimination programs.
Mathematical modeling can be used to leverage the avail-

able molecular data collected so far. In the context of TESs,
the current algorithm recommended by the WHO to distin-
guish recrudescence from new infections has some limita-
tions, as it does not consider uncertainty associated with the
markers and the technique used for genotyping.21,140 More
robust algorithms providing a certain degree of uncertainty
in genotyping results are needed to help policymakers make
the most appropriate decisions. Several recent algorithms
have been developed for distinguishing recrudescence from
new infections based on dynamical modeling and Bayesian
statistics.26–28 A systematic benchmarking of these methods
on multiple existing molecular datasets would allow estab-
lishing a standardized algorithm that could be readily appli-
cable in the countries where TESs are conducted.
Having been previously used for estimating the temporal

and geographic distribution of malaria burden,129,141,142

geospatial methods can be used to construct monitoring
tools for the spread of Pfhrp2 deletions and drug resistance
markers.49,50 These tools could be incorporated in existing
monitoring dashboards (e.g., DHIS2) that are already in place,
but are currently based mostly on epidemiological indicators.
However, although informative, the spatiotemporal distribu-
tion of molecular markers is challenging to interpret for pro-
grammatic purposes. For instance, the relationship between
molecular markers of drug or insecticide resistance and drug
efficacy or insecticide resistance, respectively, is yet unclear
as many confounding factors play an important role.143–145

Previous modeling analyses have explored the potential
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contribution of biological, epidemiological, and treatment fac-
tors of the establishment and spread of drug resis-
tance,137,146 as well as optimal treatment schemes to prevent
drug resistance establishment and spread.147,148 Neverthe-
less, there remains a need to develop complementary tools
to quantitatively understand the relationship between the
prevalence of molecular markers of drug resistance and
treatment efficacy by leveraging the collected molecular
marker data. By analysis of existing datasets, quantitative
methods can be developed to further understand these rela-
tionships. Developing models that can estimate these rela-
tionships on a population level and over time could provide a
valuable tool to estimate the efficacy life span of deployed
antimalarial drugs or insecticides and help policymakers plan
well ahead of potential changes in drug or insecticide policy.

INCORPORATING MOLECULAR SURVEILLANCE DATA
INTO PROGRAMMATIC AND POLICY DECISION-MAKING

Combining molecular surveillance data with existing rou-
tine epidemiological indicators to guide NMCPs comes with
its own challenges. First, collection of molecular data is not
yet standardized, and countries need capacity for sample
collection, storage, processing, and analysis. Although sam-
ple size recommendations are available for some use cases
(e.g., for Pfhrp2/3 deletion genotyping), no guidance exists
on the number of samples to be screened to determine the
size of the sub-patent reservoir or the required sensitivity of
the PCR assay.
Furthermore, currently there is no gold standard for data

collection, interpretation, and integration with current stan-
dard epidemiological approaches. Specifically, as most of
the routine epidemiological indicators are reported on a
monthly basis, it is not clear whether the molecular indica-
tors would need to be collected at the same resolution, as
well as the number of samples needed to calculate them. In
this case, modeling can guide the design of sample collec-
tion under different assumptions about parasite and human
populations and determine at what level a policy change is
needed.149 Furthermore, the definition of molecular indica-
tors is not yet established as opposed to the standard epide-
miological indicators. So far, complexity of infection and
other measures derived from population genetics, such as
heterozygosity and identity by descent, have been used
to define parasite population diversity, but it is unclear
how they relate to the epidemiological indicators in space
and time.
To date, molecular studies are often conducted separately

from other surveillance efforts and lack systematic sample
collection and statistical power. Data and interpretation are
reported as peer-reviewed manuscripts, often years after
sample collection. For an integrated molecular surveillance
program, systematic sampling and molecular analysis are
recommended, as well as fast communication of results to
policymakers. For example, baseline samples collected for a
TES could be screened by different RDTs per WHO recom-
mendation and the same samples typed for Pfhrp2/3 dele-
tion. Molecular prevalence surveys could be linked to data
from health centers to understand whether the number of
clinical cases diagnosed by microscopy or RDT can serve as
a surrogate marker to identify the spatial or temporal hetero-
geneity of subclinical and sub-patent infections. Specifically,

these data have been included in analyses to predict the res-
ervoir of submicroscopic infections in the community using
Bayesian statistical models or log-linear regression models
as previously described.150–152 These approaches could
support designing targeted interventions at the community
level using incidence data from routine malaria surveillance.
Finally, optimal sampling strategies need to be developed
within the framework of routine surveillance, and reporting
and visualization tools must be developed to facilitate data
access and use for policymakers.33

Several efforts are currently aimed at developing molecu-
lar surveillance systems capable of generating relevant evi-
dence for guiding programmatic decisions. A preeminent
example is a large-scale study being conducted in Mozam-
bique during 2022–2023.153 Accordingly, a protocol is being
established and implemented for three use cases, namely
monitoring drug and diagnostic resistance, identifying
sources of transmission, and evaluating transmission levels
and the impact of interventions. Data are being collected
across a wide range of malaria transmission settings, rang-
ing from low to high levels of transmission and exploring dif-
ferent sampling approaches. Downstream data analyses
and modeling using the data generated in the study include
descriptive analyses of observed molecular data trends as
well as more elaborate modeling analyses, including stratifi-
cation of malaria risk and assessment of intervention impact.
Several similar efforts are currently ongoing in other sub-
Saharan countries such as Tanzania.154,155 Such longitudinal
studies provide valuable insights for further understanding
the role of molecular surveillance and its complementarity
to existing routine epidemiological surveillance in guiding
malaria control programs.
To facilitate incorporating molecular surveillance data into

programmatic and policy decision-making, the different use
cases presented here would first need to be adapted to and
incorporated in routine surveillance systems. We argue that
this would entail a modular organization of processes con-
sisting of sample and data collection, storage and down-
stream data analysis, and iterative dialogue using generated
quantitative evidence and results to guide implementation
decisions (Figure 1). Depending on the use case, molecular
data collection may be performed at health facilities, through
community surveys, and in sentinel sites. The frequency of
sampling for the current use cases could follow current
WHO guidelines (e.g., every 2 years for TES and drug resis-
tance monitoring, every year for insecticide resistance moni-
toring), but it could be adjusted depending on the results of
data analysis (e.g., more frequent if drug resistance markers
are detected). Molecular surveillance for the prospective use
cases would be best suited in settings with very low malaria
transmission, close to elimination and prior implementation
of reactive interventions or in the event of an outbreak.
Establishing reference laboratories at the country level as
well as standardization of sample collection methods and
centralized data storage would facilitate comparison of
assays in different locations, easy access to data, and sub-
sequent data analyses.156 Finally, a continuous dialogue
between data analysts or modelers and official bodies such
as the NMCPs, ministries of health, or other authorities
would be crucial for leveraging the information extracted
from the molecular data to inform programmatic and imple-
mentation decisions.
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THE ROLE OF RECENT LABORATORY
INFRASTRUCTURE DEVELOPMENT

The COVID-19 pandemic has seen unprecedented, con-
certed efforts from the global health community in scaling up
genomic surveillance in low- and middle-income countries,
especially in sub-Saharan Africa. The establishment of the
Africa Centers for Disease Control and Prevention (Africa
CDC) Institute of Pathogen Genomics, through the Africa
Pathogen Genomics Initiative, is a great example.157 Indeed,
the Africa CDC and the African Society for Laboratory Medi-
cine have partnered with public and private institutions to
improve the capacity for genomic surveillance on the conti-
nent through continental and regional laboratory hubs. This
has dramatically improved the equipment and reagent pro-
curement processes, as well as equipment maintenance, by
centralizing the processes. Training activities are coordi-
nated through a few centers of excellence on the continent,
providing training and external quality assurance (EQA)
schemes. The malaria community needs to build on this
momentum to improve molecular surveillance by scaling up
activities for recommended routine surveillance use cases
and providing evidence about new use cases to define their
scope of use and utility in informing public health policies.
As countries are getting access to state-of-the-art techni-

ques for molecular and genomic surveillance, training
capacity needs to be increased, and strategies for sustain-
ability and maintaining qualified staff developed. There is a

need to develop target product profiles to define the mini-
mum criteria for assay validation and acceptance for the dif-
ferent use cases and to implement adequate EQA schemes
to allow laboratories in malaria-endemic countries to imple-
ment these new assays.158 This will not only allow for data
comparison over time and between laboratories and coun-
tries but will also greatly improve quality management sys-
tems and therefore the quality of data. Improved systems for
data collection and collation will be crucial to link the labora-
tory, clinical, and epidemiological data through data sharing
platforms on national and supranational levels—the next
step for an improved real-time surveillance system.

THE WAY FORWARD

The integration of molecular data into routine malaria
surveillance has the potential to complement the existing
malariological data and substantially improve the quality and
accuracy of information generated for decision-making.
However, because of the limited funding currently available
for malaria control and elimination programs as well as the
lack of in-country capacity for implementing the different
molecular techniques, cost-effective strategies and use
cases for using molecular and genetic surveillance must be
developed.
In high-transmission settings, where the reduction of the

burden is the first priority, there is a need to improve the
quality, accuracy, and reporting of classic epidemiological

FIGURE 1. Current and prospective use cases of molecular surveillance and their potential integration within malaria surveillance systems. Samples
and samplemetadata are collected at the community level through cross-sectional surveys, at a health facility, and at sentinel sites. Anonymized samples
are shipped to the reference laboratory or any laboratory performing the analysis, whereas the metadata are sent to a centralized database. Once
the samples have been analyzed, the results are sent to the central malaria database and linked to themetadata. Data analysts andmodelers will use this
central database to analyze and model the data, producing key malaria metrics that will be accessible through surveillance dashboards to key malaria
stakeholders at the national (ministry of health, National Malaria Control Program) and regional (district health authorities) levels. These data will be used
by the stakeholders to target their interventions and produce policy briefs and surveillance reports.
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data (e.g., incidence, prevalence). Three molecular use
cases could complement these data: the prevalence of
resistance markers for drugs, for vectors, and for Pfhrp2/3
deletions. However, their use could be optimized to provide
more robust data, even though an initially substantial invest-
ment would be required.
In low-transmission and elimination settings, where the

detection of each malaria infection becomes crucial for elimi-
nation programs, the integration of portable PCR devices for
reactive case detection could substantially improve the sur-
veillance system. The development of multiplex assays that
can detect other pathogens on these devices should be a
priority. Indeed, in Southeast Asia, where most countries
are moving to elimination, only a very low number of RDTs
performed on patients with fever are positive,159 making
it important for malaria programs to develop a holistic
approach and collaborate with other programs. Assays with
panels of pathogens specific for each region would improve
not only malaria case detection but also prescription prac-
tices because in most cases of negative RDT results, health
workers tend to give an antibiotic to the patient, potentially
impacting antibiotic resistance. Central laboratories would
still perform monitoring for drug and vector resistance and
Pfhrp2/3 deletion. In addition, in these settings it will be
essential to monitor the impact of the different interventions
on the parasite’s genetic diversity, identify sources and sinks
of infections, and confirm imported cases and parasite pop-
ulation movements in areas of interest.160 Furthermore, sero-
logical surveys provide a highly scalable and accessible tool
to assess past and recent exposures to parasites and vec-
tors,113,114,161 allowing stratification of regions with ongoing
transmission or where malaria has been eliminated. Indeed,
serological assays are cheaper to implement and can be
easily used for large-scale analyses. For example, serological
data indicating recent exposure either to malaria vectors or
parasites in an elimination setting can trigger molecular analy-
sis to confirm local or imported infections, helping the control
program to adopt the most appropriate intervention to target
local transmission foci or prevent the importation of infections.
With the recent confirmation of partial artemisinin resis-

tance in Rwanda, Uganda, and Eritrea,162 there is a need to
strengthen the surveillance system for antimalarial drug
resistance across the entire sub-Saharan Africa. Consecu-
tive health facility–based cross-sectional surveys across the
country could provide valuable information on the spatio-
temporal distribution of markers of resistance and potentially
inform the selection of the most appropriate sentinel sites for
TESs. Therefore, building the capacity for control programs
to analyze samples on a regular basis for these cross-
sectional surveys is of paramount importance. National ref-
erence laboratories could perform the molecular assays or
work in collaboration with research laboratories that already
have the expertise. The assays performed should not only
be limited to molecular markers of resistance but should
also include PCR correction to distinguish recrudescence
from new infection in TESs, Pfhrp2/3 deletion, and molecular
markers of insecticide resistance. Countries should also
leverage the recent capacity developed for pathogen geno-
mic surveillance in malaria-endemic countries through the
different initiatives coordinated by the Africa CDC.163

Regional centers of excellence established by the Africa
CDC could provide training and develop and implement

external quality control program schemes. Finally, data anal-
ysis and mathematical modeling combining epidemiological
and molecular data can provide accurate and robust infor-
mation through easily accessible monitoring tools to policy-
makers, upon which they can base their decisions when
implementing tailored interventions.

CONCLUSION

Molecular surveillance can provide essential data for NMCPs,
complementing the information provided by classic routine epi-
demiological indicators, such as case numbers, offering a more
in-depth and more granular picture of transmission dynamics
in space and time. Key molecular information includes the dis-
tribution of drug, diagnostic, and insecticide resistance in all
transmission settings, as well as characterization of transmis-
sion chains and heterogeneity of transmission in moderate- to
low-transmission settings. Although highly valuable, challenges
in terms of infrastructure, data management, data analysis
including mathematical modeling, and data interpretation need
to be addressed in order for molecular and genetic information
to be of direct use for decision-making.
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