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Abstract 

Background Saliva is a protein-rich body fluid for noninvasive discovery of biomolecules, containing both human 
and microbial components, associated with various chronic diseases. Type-2 diabetes (T2D) imposes a significant 
health and socio-economic burden. Prior research on T2D salivary microbiome utilized methods such as metagenom-
ics, metatranscriptomics, 16S rRNA sequencing, and low-throughput proteomics.

Results We conducted ultrafast, in-depth MS-based proteomic and metaproteomic profiling of saliva from 15 
newly diagnosed T2D individuals and 15 age-/BMI-matched healthy controls (HC). Using state-of-the-art proteom-
ics, over 4500 human and bacterial proteins were identified in a single 21-min run. Bioinformatic analysis revealed 
host signatures of altered immune-, lipid-, and glucose-metabolism regulatory systems, increased oxidative stress, 
and possible precancerous changes in T2D saliva. Abundance of peptides for bacterial genera such as Neisseria 
and Corynebacterium were altered showing biomarker potential, offering insights into disease pathophysiology 
and microbial applications for T2D management.

Conclusions This study presents a comprehensive mapping of salivary proteins and microbial communities, serv-
ing as a foundational resource for enhancing understanding of T2D pathophysiology. The identified biomarkers hold 
promise for advancing diagnostics and therapeutic approaches in T2D and its associated long-term complication
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Background
Homeostasis of the oral cavity is maintained by saliva, 
protein composition of which can differentiate between 
healthy and diseased individuals [1]. Saliva is an attrac-
tive sample for the diagnosis of disease, as it is easily 
and noninvasively collected, convenient to store, and 
demands fewer processing steps during clinical pro-
cedures, in comparison to blood [2, 3]. Saliva carries 
biomolecular signatures of both human and micro-
bial origin with potential disease-specific imprints, 
thus serving as a valuable biomarker source in clinical 
diagnostics [4]. The human genes and proteins, differ-
entially regulated in saliva of healthy and diseased indi-
viduals, offer insights into the immune and metabolic 
status of the patients [5], while the extremely rich sali-
vary microbiota (bacteria, archaea, fungi, protozoa, and 
viruses [6]) mediates various physiological functions 
within the human body [1, 7]. Hence, identification of 
differences in salivary composition between healthy 
and diseased individuals, potentially, allows for bet-
ter understanding of the pathophysiology of systemic 
diseases.

Type-2 diabetes (T2D) is one of the most prevalent 
chronic diseases and a major socio-economic burden. 
T2D is often linked to chronic low-grade inflammation, 
triggering activation of immune cells that in turn release 
pro-inflammatory molecules, thereby contributing to 
progression and complication of the disease [8]. In recent 
years, there has been a growing interest in examining the 
salivary composition of individuals with T2D, including 
both human and bacterial elements [9, 10]. Traditionally, 
the detection of microbial features in the saliva of T2D 
individuals mainly relied on methods, such as metagen-
omics [9, 11], metatranscriptomics [12], and 16S rRNA 
sequencing [13–16], mostly reporting relative abundance 
of bacterial genera and phyla in T2D and healthy con-
trols. While providing general information on size and 
diversity of microbial populations [17, 18], some of these 
methods offer limited knowledge about microbial func-
tions, local environmental factors [19,  20], and differ-
ences in abundance of host features.

Contrastingly, mass-spectrometry (MS)-based 
metaproteomics and proteomics offer information about 
protein expression function of the microbiome, as well 
as specific microorganisms [4, 21, 22], along with taxo-
nomic composition of the microbiome and host protein 
characterization. Despite this, the metaproteome of T2D 
saliva remains unexplored. Morever, MS-based proteom-
ics has been previously employed to profile human pro-
teins in T2D saliva [5, 23–27]. However, these pioneering 
studies were constrained by limited proteome coverage, 
primarily focusing on highly abundant proteins involved 
in inflammation and metabolism.

Recent advances in sensitive mass spectrometers [28], 
innovative data acquisition methods [29], the utilization 
of reproducible liquid chromatography [30], and inte-
gration of powerful computational tools [31, 32] have 
collectively improved throughput, sensitivity, and cover-
age of the proteome. We reasoned that these remarkable 
developments would offer significant improvements in 
simultaneous quantification of T2D salivary metapro-
teome, alongside detection of human proteins. We 
rationalized that saliva, a non-invasive biofluid, provides 
a unique opportunity to identify novel biomarkers that 
reflect both host and microbial changes in T2D, poten-
tially complementing or enhancing existing diagnos-
tics. Capitalizing on these advancements, we performed 
comprehensive proteomics and metaproteomics analysis 
of saliva from healthy and T2D individuals in a single 
21-min MS run. Our findings revealed protein signatures 
indicating altered host immune-, lipid-, and glucose-
metabolism regulatory systems, as well as increased oxi-
dative stress and potential precancerous states in T2D 
saliva. Furthermore, metaproteomics analysis revealed 
alteration in abundance of bacterial genera Neisseria and 
Corynebacterium in T2D individuals. Our rapid and in-
depth profiling of T2D saliva by means of proteomics and 
metaproteomics both enhances understanding of the dis-
ease’s pathophysiology and holds promise for biomarker 
discovery through extensive profiling of clinical patient 
cohorts.

Methods
Study design
The study participants were selected from the larger 
ADDITION-PRO cohort (n = 2082), which was con-
ducted between 2009 and 2011 [33], in four centers 
across Denmark. ADDITION-PRO is a risk-stratified 
cohort, set up to understand the risks and underlying 
mechanisms that drive progression to T2D and cardio-
vascular disease in people with pre-diabetes and high 
diabetes risk identified in a screening program [33]. 
ADDITION-PRO is nested in the Danish arm of the 
ADDITION-Europe screening program and trial. The 
ADDITION trial (2001–2006) evaluated the effect of 
comprehensive multifactorial target-driven cardiometa-
bolic treatment in general practices on the incidence of 
cardiovascular events in individuals with screen-detected 
diabetes [34]. Recruitment for the Danish arm of the 
ADDITION trial consisted of a population-based screen-
ing program set in 181 general practices, with a target 
population of over 150,000 individuals. Besides identify-
ing people with screen-detected diabetes, the screening 
program uncovered a large group of individuals in vari-
ous pre-diabetic stages or at high risk for diabetes [35]. 
These individuals were then selected as the participant 
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pool for the ADDITION-PRO study in 2009–2011. The 
study was conducted in accordance with the principles of 
the Declaration of Helsinki.

Participants have undergone an extensive clinical 
examination including anthropometrics, detailed char-
acterization of glycemic status, which has been reported 
in detail elsewhere [33]. In total, 15 patients with screen-
detected T2D and 15 individuals with normoglycemia 
(termed as HC) from the ADDITION-PRO cohort were 
selected for this study. The groups were selected to 
approximately match in age, gender, and BMI.

Sample collection
A detailed description of saliva sample collection is pro-
vided elsewhere [36]. Briefly, saliva samples have been 
collected at Steno Diabetes Center Copenhagen, Copen-
hagen, Denmark, in 2009–2011. Participants were asked 
not to brush their teeth on the day of sample collection. 
Saliva production was stimulated by chewing paraffin 
wax gum, and collected samples were stored immediately 
at − 80 °C and kept un-thawed until analysis in 2022.

Sample preparation
Saliva sample preparation was performed by boiling 20 
µL of saliva (10 min, 99 °C) with 10 µL of the lysis buffer 
(1% SDC/100-mM Tris, pH 8.5/10-mM TCEP/40-mM 
CAA) to denature proteins, followed by 4 min sonication. 
Approximately, 30 µg of protein was digested with 1:250 
enzyme-to-protein ratio of Lys-C (Sigma-Aldrich) for 1 h 
at 37 °C, followed by an overnight digestion with 1:100 
enzyme-to-protein ratio of Trypsin (Sigma-Aldrich), at 
37 °C. Digestion reaction was quenched by 1:10 acidifi-
cation with 10% TFA (Sigma-Aldrich, T6508-500ML). 
All samples were spun down for 5 min at 17,000 × g, and 
peptide concentration was determined with a NanoDrop 
spectrophotometer (Thermo, Wilmington, DE, USA), fol-
lowed by purification on an in-house packed StageTip  C18 
cartridges with further loading of ~ 200 ng of material on 
Evosep  C18 cartridges (Evotips) (Evosep Biosystems, Den-
mark). Evotips were washed with 35% ACN, and peptides 
were loaded directly on the Evosep One [37] LC system 
(Evosep Biosystems, Denmark) for further separation and 
analysis.

LC–MS/MS analysis
Peptides were analyzed using Evosep One LC (Evosep 
Biosystems, Denmark) coupled to timsTOF Pro 2 mass 
spectrometer (Bruker, Bremen, Germany) [29]. Peptides 
were separated on a 8-cm analytical PepSep column 
(Bruker Daltonik, Germany), 150-µm inner diameter, 
packed with 1.5-µm  C18 material, using a 21-min long 
preset LC gradient method (60 samples per day), and 
injected via a CaptiveSpray source and 10-μm emitter 

into a timsTOF Pro 2 mass spectrometer. The mass spec-
trometer was operated in positive ion mode, using DIA-
PASEF acquisition [38]. Briefly, the DIA-PASEF scan 
range was set to 400–1200 (m/z), the TIMS mobility 
range to 0.6–1.43 (V  cm−2), and ramp and accumulation 
times to 100  ms. Thirty-two windows of 25-Da width 
each were placed in the m-/z-ion mobility plane. The dia-
PASEF scheme was set to 2 repetitions of 16-scan. The 
resulting estimated cycle time was 1.80 s.

Saliva sample processing and 16S rRNA gene amplicon 
sequence processing
DNA extraction of saliva samples, 16S rRNA gene ampli-
con sequencing, and raw sequence data processing were 
done as reported [36]. Briefly, microbial DNA was iso-
lated using the NucleoSpin Soil kit, with bacterial cells 
lysed using SL1 + Enhancer Buffer SX. DNA quality and 
quantity were assessed with a Qubit 2.0 fluorometer and 
a NanoDrop 2000 spectrometer. Genomic DNA was 
standardized to 30  ng for PCR amplification of the 16S 
rDNA V4 region, with PCR products purified using the 
AMPure XP kit. Library quality was assessed using a 
2100 bioanalyzer and qPCR with EvaGreen™.

Raw 16S rRNA gene sequencing data processing was 
done using dada2 [39] and metabaRpipe. This included 
truncation, filtering, error rate learning, and ASV infer-
ence using a pseudo-pooling strategy. Taxonomic clas-
sification used dada2 and the eHOMD database (version 
V15.22, https:// www. homd. org), and a phylogenetic tree 
was constructed using the phyloseq package v1.22.3 [40].

Raw LC–MS/MS data processing
DIA raw MS data were analyzed with Spectronaut [32] 
v17 using an in-house generated sample-specific pro-
tein fasta file, containing 1,068,210 protein sequences 
(reviewed Homo sapiens UniProt/Swiss-Prot proteome 
(proteome ID: UP000005640, downloaded 2021 June 
25) + individual-specific protein sequences from Human 
Oral Microbiome Database (HOMD) [41]), in direct-
DIA mode. The sample-specific fasta was generated, 
using Linux command [42] application and RStudio [43], 
as follows: (i) 16S rRNA sequencing data from the cor-
responding study individuals were first combined into a 
single fasta file, followed by removing duplicate entries, 
and (ii) the merged 16S rRNA fasta was then aligned to 
the 16S rRNA RefSeq sequences from HOMD (https:// 
www. homd. org/), using local BLASTn [44] tool executed 
via Linux command application. For each sequence, 
only the most homologous alignments were retained 
(top 200 matches with the alignment score > 450); (iii) 
finally, all corresponding reference protein IDs (HMT-id) 
were extracted from HOMD for each of the 16S rRNA 

https://www.homd.org
https://www.homd.org/
https://www.homd.org/
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sequences, thus forming a reduced sample-specific refer-
ence database of bacterial proteins.

The default settings in Spectronaut were used, unless 
otherwise noted. Data filtering was set to “Qvalue.” False 
discovery rate (FDR) was set to 1% at peptide precursor 
level and 1% at protein level. Proteotypic-only peptides 
were used for protein quantification.

Bioinformatics analysis
Data analysis was performed using Perseus software [45] 
v1.6.14.0 and R programming language within the RStu-
dio v 4.1.2 environment, utilizing  in-house developed R 
[43] scripts. Peptide-, protein-, and genus-level analysis 
was carried out.

To conduct protein-level analysis, the raw proteome 
data was preprocessed by log2 transformation of the 
intensity values, followed by omitting variables with less 
than 70% present values, and the resulting missing values 
were imputed by drawing random samples from a nor-
mal distribution with downshifted mean by 1.8 stand-
ard deviation (SD) and scaled SD (0.3) relative to that 
of abundance distribution of the corresponding protein 
across all samples. For multivariate analysis, a principal 
component analysis was performed on the processed 
data. The percentage of contribution of each of the prin-
cipal components was determined with factoextra [46] 
package, while drivers of principal component separation 
were determined, using FactoMineR [46] package. The 
first and second principal component was used for sam-
ple projections. Univariate analysis was performed using 
two-sample t-test (Benjamini–Hochberg FDR < 0.05), 
and functional annotations of the proteins were obtained 
from the following: (i) UniProt for human entries and (ii) 
eggNOG-mapper [47] v5 (http:// eggnog- mapper. embl. 
de/) for bacterial proteins respectively. BLASTp NCBI 
functionality (https:// blast. ncbi. nlm. nih. gov/ Blast. cgi? 
PROGR AM= blast p& PAGE_ TYPE= Blast Searc h& LINK_ 
LOC= blast home) was used to assess specificity of bac-
terial peptides [48]. 1D annotation enrichment analysis 
[49] of differentially expressed proteins was performed 
on both human and bacterial protein intensity log2-fold 
changes, calculated between T2D and HC groups (Ben-
jamini–Hochberg FDR < 0.02) and visualized as a bubble 
plot, using bubbleHeatmap [50] package. For peptide- 
and genus-level analysis, unique bacterial peptides were 
preprocessed with Unipept Desktop [51] v2.0.0 software 
to (i) assign corresponding taxonomic levels, using the 
lower common ancestor (lca) approach [52], and (ii) to 
perform functional annotation of bacterial peptides, 
using annotations from entire UniProt database. Rela-
tive abundance of bacterial genera and phyla was deter-
mined by calculating the summed peptide/16S rRNA 
read intensity per genus/phylum, followed by dividing 

with the total intensity, for both metaproteomics and 16S 
rRNA datasets. Statistical significance of the differences 
in relative abundance of bacterial genera between T2D 
and HC groups was assessed using a two-sample t-test 
(Benjamini–Hochberg FDR < 0.05). Pearson correlation 
coefficient value (P < 0.01) was calculated, using the total 
intensities of all bacterial genera, to assess the correlation 
between the metaproteomics and 16S rRNA datasets. 
To perform statistical and functional enrichment analy-
sis on the peptide level, peptide intensity values were 
log2-transformed, followed by omitting variables with 
less than 70% present values, and the resulting missing 
values were imputed by random forest method with the 
missForest package. Human peptides were then removed 
from the dataset, followed by the three separate types of 
analysis for bacterial peptides: (i) back-transformation of 
the log2-transformed peptide intensity values, followed 
by calculation of the summed peptide intensity per genus 
(only unique genus-specific bacterial peptides were con-
sidered), log2-transformation of the total genus intensity, 
and univariate analysis of differentially expressed bacte-
rial genera using a two-sample t-test (Benjamini–Hoch-
berg FDR < 0.05); (ii) 2D annotation enrichment analysis 
(Benjamini–Hochberg FDR < 0.02) [49] of all bacterial 
peptides between the two groups (T2D vs HC), visual-
ized as a scatter plot (functional annotations extracted 
from Unipept); and (iii) unsupervised hierarchical clus-
tering (Euclidean distance metric) of bacterial peptides 
from genera Neisseria and Corynebacterium, followed by 
functional enrichment analysis (functional annotations 
extracted from Unipept), performing Fisher’s exact test 
(Benjamini–Hochberg FDR < 0.02) on each cluster. For 
univariate analysis of bacterial genera, derived from the 
16S rRNA reads, similar filtration and imputation steps 
were carried out, as for the peptides.

A linear regression model was applied to test the 
associations between bacterial peptides from genera 
Neisseria, Corynebacterium, and Haemophilus and cor-
responding clinical variables, where peptide log2 abun-
dance was an independent variable and clinical trait 
was a dependent variable, all while controlling for rele-
vant covariates (age, sex, smoking, and glycemic status). 
We fitted an interaction regression model to estimate 
if glycemic status (HC versus T2D) modifies the asso-
ciations between bacterial peptides and corresponding 
clinical variables. Prior to the analysis, the dependent 
variables were log-transformed and scaled. The results 
were computed using the “stats” package in R and 
thereafter reported as effect size estimates on log2 scale 
and FDR adjusted [53] P-values. P-values were consid-
ered significant below 0.05 after FDR correction of 5% 
and suggestive below 0.05 before FDR adjustment.

http://eggnog-mapper.embl.de/
http://eggnog-mapper.embl.de/
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
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Validation of bacterial peptides using synthetic peptide 
hybrid library
Top7 peptide sequences from bacterial genera 
Corynebacterium and Neisseria, with the highest qual-
ity of the annotated MS/MS spectra and the highest MS 
score (EG.Cscore, Spectronaut), were selected and syn-
thesized by JPT Peptide Technologies GmbH (Berlin, 
Germany). Synthetic peptide hybrid library was created, 
as described before [54]. In brief, synthetic peptides were 
dissolved in 0.1% FA and pooled in equimolar concentra-
tions, to obtain a stock solution. Synthetic peptides were 
then spiked into 0.5-μg tryptic peptides from yeast lysate, 
serving as a background, at five different ratios (1:1, 1:2, 
1:4, 1:10, and 1:20). These mixtures were loaded on C18-
based Evotips and analyzed with the same LC–MS/MS 
DIA method, as the study samples, in triplicates. Raw MS 
data were searched with Pulsar functionality within Spec-
tronaut v18 software, to generate hybrid spectral library 
using fasta file composed of Saccharomyces cerevisiae 
(UniProtKB/Swiss-Prot database, downloaded August 
2023) and corresponding synthetic peptide sequences. 
Subsequently, DIA MS raw files from the study samples 
were reanalyzed, using the abovementioned hybrid spec-
tral library, with Spectronaut v18, to validate the pres-
ence/quantify peptides of interest.

Functional peptide validation by insulin secretion assay
Cell culture
The rat INS-1 insulinoma cell line (kindly provided by C. 
Wollheim and P. Maechler, University of Geneva, Swit-
zerland) was cultured in RPMI-1640 medium with Glu-
taMAX supplemented with 10% fetal bovine serum (FBS) 
(v/v), 100  IU/mL penicillin, 100  μg/mL streptomycin, 
10  mmol/L HEPES, 50  μmol/L β-mercaptoethanol (all 
Thermo Fisher Scientific, USA), and 1  mmol/L sodium 
pyruvate (Merck, Denmark) at 37 °C, 5% CO2, humidified.

Glucose‑stimulated insulin secretion assay
For glucose-stimulated insulin secretion (GSIS), 200,000 
INS-1 cells/well were seeded (12-well plate) and prein-
cubated in cell culture medium for 72  h. Subsequently, 
media was removed, and cells were incubated for 2  h 
with pre-warmed, fresh Krebs–Ringer’s-bicarbonate-
HEPES (KRBH) buffer (in mM: 135 NaCl, 3.6 KCl, 1.5 
CaCl2, 1.2 KH2PO4, 1.2 MgSO4, 2 NaHCO3, 20 HEPES; 
0.1% BSA, pH 7.4) at 2 mM glucose. Buffer was replaced 
with new, pre-warmed 2 mM glucose KRBH buffer with 
or without 1  µM bacterial peptides (eluted in deion-
ized water) or vehicle (equivalent volume of deionized 
water). After 1  h incubation for baseline insulin secre-
tion, supernatant was collected and placed on ice. This 
was followed by 1  h incubation at 20  mM glucose with 

1 µM bacterial peptides or vehicle and supernatant sam-
ple collection. Cells were collected with RIPA (Merck, 
Denmark) supplemented with Halt™ protease inhibitor 
cocktail EDTA-free (Thermo Fisher Scientific, USA), and 
protein concentration was determined for normalization 
by Micro BCA Protein Assay (Thermo Fisher Scientific, 
USA) according to manufacturer’s protocol. Secreted 
insulin in supernatants was measured using a rat insulin 
ELISA kit (Mercodia, Sweden) according to manufactur-
er’s protocol with 4 × dilution of high glucose samples.

Results
Study population
The study population consisted of 30 individuals from 
the Danish ADDITION-PRO cohort (2009–2011) [33]. 
ADDITION-PRO is a risk-stratified cohort, aiming to 
understand the risks and underlying mechanisms that 
drive progression to T2D and cardiovascular disease 
among 2082 Danish adults with prediabetes and high 
diabetes risk identified in a screening program [33]. In 
total, 15 participants with screen-detected T2D (based 
on the 1999 WHO criteria, i.e., based on fasting and 2-h 
oral glucose tolerance test (OGTT) criteria) and 15 par-
ticipants with normal glucose tolerance were selected for 
this study and grouped into T2D and healthy controls 
(HC), respectively. During the selection, participants 
were matched on age, sex, and BMI. Participant charac-
teristics can be found in Table 1.

Salivary proteomics and metaproteomics
To investigate T2D-associated salivary proteins, we ana-
lyzed saliva using an ultrafast LC/MS method involving 
21 min measurement time in combination with a new MS 

Table 1 Baseline study participant characteristics

General characteristics of HC and T2D patient groups. The variables are 
displayed as mean values with + / − standard deviation (SD). Student’s t-test 
was used to compare the two groups. A cutoff of P < 0.05 was considered for 
assessing statistical significance. BMI, body mass index; P-Glucose, T0, plasma 
glucose fasting; Age, patient age; HbA1c, hemoglobin A1c; male, sex male; 
female, sex female; current smokers, smoking status (smoker); ex-smokers, 
smoking status (ex-smoker); nonsmokers, smoking status (nonsmoker)

Total HC T2D p-value

n 30 15 15

BMI, kg/m^2 28.46 (2.86) 28.24 (2.58) 28.68 (3.18) 0.68

Age, years 66.18 (4.48) 66.25 (4.43) 66.10 (4.68) 0.93

Sex: male, n (%) 18 (60.0) 9 (60.0) 9 (60.0)

Current smokers, n (%) 6 (20.0) 2 (13.3) 4 (26.7)

Ex-smokers, n (%) 16 (53.3) 9 (60.0) 7 (46.7)

Nonsmokers, n (%) 8 (26.7) 4 (26.7) 4 (26.7)

P-Glucose, T0 
(mmol/L)

6.31 (0.86) 5.68 (0.23) 6.94 (0.81)  < 0.001

HbA1c, % 5.80 (0.42) 5.62 (0.29) 5.99 (0.45) 0.01
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acquisition method called DIA-PASEF [55]. We searched 
the raw MS data in directDIA mode using human reviewed 
FASTA from UniProt and a sample-specific bacterial protein 
FASTA. The latter was created by aligning the available 16S 
rRNA sequencing data from study participants against refer-
ence 16S rRNA sequences from HOMD [56]. The in silico 
generated spectral library consisted of 7787 proteins (2212 
protein groups), 15,790 peptides, and 24,385 precursors. The 
study samples were measured without prior protein deple-
tion, resulting in 30 LC–MS/MS datasets (Fig. 1A).

Using rapid LC–MS/MS analysis, we quantified a 
total of 4820 (1985 human and 2835 bacterial) proteins 
(on average 2231 proteins per individual), with MS sig-
nals spanning an abundance range of 5 orders of mag-
nitude for human proteins and 4 orders of magnitude 
for bacteria. This included detection of high-abundant 
human keratins (KRT13, KRT4, KRT6A), cytoskeletal 
proteins (ANXA1), immunoglobulins (IGKC, IGHA1), 
and bacterial ribosomal proteins (SEQF1066_01194, 
SEQF2020_01460, SEQF2020_01139), as well as 

Fig. 1 Experimental design and quality control of the study. A Study design and experimental setup; B Total number of identified proteins; 
C Dynamic range of quantified proteins (LFQ, label-free quantitation values), proteins are ranked according to their abundance (protein rank); 
D Log10 mean protein intensity distribution across all samples; E Mean Pearson correlation coefficient of protein intensities in each patient 
subgroup (r > 0.9)
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low-abundant proteins (UBR4, ADPRS, NDUFB10, 
SEQF1685_01578, SEQF1899_01938) of both human 
and bacterial origin (Fig.  1B, C; Additional file  1). We 
achieved an impressive depth of coverage in both sali-
vary proteome and metaproteome using just 21  min 
LC–MS runs, a substantial improvement over ear-
lier studies requiring significantly longer measure-
ment time to achieve similar depth of coverage [20, 
57] (Fig.  1B). Importantly, our workflow provides an 
unprecedented profile of salivary metaproteome from 
individuals with T2D. The data was normally distrib-
uted (Fig.  1D), and excellent correlation between bio-
logical replicates (median rT2D = 0.91; rHC = 0.91) was 
apparent (Fig.  1E), supporting high reproducibility of 
sample handling and analysis.

Protein-based profiling of type-2 diabetes saliva
When comparing fasting saliva proteome profiles of 
T2D patients (15 individuals) and HC (15 individuals), 
a moderate separation of the 2 groups was observed in 
principal component analysis (PCA) plot (Fig. 2A). Com-
ponents 1 (PC1) and 2 (PC2) together explained 29.6% 
of the variation (PC1 16.5%, PC2 13.1%, Fig. 2A; Supple-
mentary Fig.  1A), which was primarily driven by human 
proteins with enzymatic activity (PTPRJ, PYGL, PTPRC, 
CAP1, LTA4H etc.), proteins related to immune response 
(ITGAM, CD14, LGALS3BP), calcium-binding proteins 
(S100P, S100A4, CALU), actin (ACTN1), and actin-bind-
ing proteins (PFN1, GSN, MSN) (Supplementary Fig. 1B). 
Statistical analysis returned 148 significantly differentially 
abundant proteins between T2D and HC groups (Student’s 
t-test, P < 0.05, Benjamini–Hochberg FDR < 0.05), of which 
131 proteins (128 human, 3 bacterial) were upregulated 
and 17 (15 human, 2 bacterial) were downregulated in 
T2D condition (Fig. 2B; Additional file 2).

Predominantly up-regulated human proteins in the 
T2D group were associated with immune system regu-
lation and inflammation including immunoglobulins 
(IGHV3-64, IGHV1-69, IGHV3-43, IGLV3-19, IGHG3, 
IGKV4-1, IGLV1-51, IGLV2-8; Fig.  2B) complement 
components (C3, C5, CFH, CFB) as well as acute-phase 
proteins (APCS, A2M, CP). Interestingly, approximately 
40% of up-regulated immunoglobulin proteins comprised 
immunoglobulin light chains kappa (κ) and lambda (λ) 
suggesting association with autoimmune disease or 
cancer [58–60]. Human proteins associated with lipid 
metabolism (APOE, APOB, APOA4) and proteasome 
subunit proteins (PSMA2, PSMA3, PSMA4, PSMA6, 
PSMB1, PSME2) were also upregulated. Additionally, 
protein RBP4, a well-known adipokine associated with 
insulin resistance in T2D [61], and mucin (MUC7) [62] 
were upregulated, serving as quality controls for our 

analysis. Although we identified a higher number of 
bacterial proteins, compared to the human, minimal 
regulation was observed for these entries in T2D saliva, 
in contrast to the pronounced changes in abundance of 
the human proteins. The saliva from T2D individuals 
had higher expression of putative bacterial proteins from 
genera Eubacterium (SEQF2744_00982), Streptococcus 
(SEQF1066_02110), and bacterial membrane lipopro-
tein TmpC from genus Parvimonas (SEQF1676_01175) 
(Fig. 2B and C). The identity and taxonomic assignment 
of the abovementioned bacterial proteins were thereafter 
verified using BLASTp NCBI functionality. The BLASTp-
based protein assignment for SEQF2744_00982 and 
SEQF1676_01175 differed as compared to Unipept analy-
sis, presumably due to differences in underlying data-
bases. However, it confirmed a 100% match of the protein 
SEQF1066_02110 to the amylase-binding protein AbpA 
from genus Streptococcus (Fig.  2C), which is known to 
facilitate catabolism of dietary starches [63].

On the contrary, only a few down-regulated human 
and bacterial proteins were observed in the T2D group. 
This included significant downregulation of several kerat-
ins (KRT78, KRT13, KRT4; Fig.  2B), keratinocyte sciel-
lin (SCEL), ribosomal protein S16 (RPS16), cytoskeletal 
proteins (SH3GLB2, SPTAN1, ANXA2), and several pro-
teins with enzymatic activity (CILK1, PPP2R1A, NAGK). 
Downregulation of bacterial proteins included Efem/EfeO 
family lipoprotein (SEQF1165_02291) and copper-con-
taining nitrite reductase (SEQF2142_00165) from genus 
Neisseria (Fig.  2B and C). The BLASTp-based verifica-
tion procedure for the down-regulated bacterial proteins 
was performed similarly, as for the up-regulated bacterial 
proteins. The results showed a 100% match for the corre-
sponding Neisseria proteins in both cases (Fig. 2C).

To gain deeper insights into differentially regulated 
human and bacterial proteins in the saliva samples from 
T2D individuals, we performed a 1D [49] functional 
enrichment analysis (Additional file  3). The resulting 
enrichment bubble plots, summarizing the top 20 human 
biological processes and significantly enriched bacterial 
terms, are displayed in Fig. 2D. We observed multiple sig-
nificantly enriched immunity-related human biological 
processes, such as regulation of immune system process, 
defense response, regulation of immune response, posi-
tive regulation of immune system process, and indicative 
of immune system activation in T2D patients (Fig.  2D, 
Additional file 3). Microbiologically, significantly enriched 
biological processes included metabolism, cell signaling, 
and biogenesis (Fig.  2D, Additional file  3). Additionally, 
translation-associated biological processes were signifi-
cantly enriched for both human and bacterial proteins 
(Fig. 2D, Additional file 3).
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Taxonomic signature of type-2-diabetic salivary microbiota
To perform an in-depth comparison of the salivary 
microbiota from HC and T2D individuals, we assigned 
identified bacterial peptides to the specific taxonomic 
levels, using the lowest common ancestor (lca) approach 
[52]. Of the 7452 bacterial peptides, 47% could be 

assigned to the genus level and 69% to the phylum level, 
respectively (Table 2).

This approach led to identification of a total of 33 bac-
terial genera and 7 phyla (Fig. 3A).

We leveraged existing 16S rRNA sequencing data 
and compared the relative abundance of the 20 most 

Fig. 2 Statistical analysis of salivary proteome and metaproteome. A Principal component analysis of salivary proteins from 15 type-2 diabetic 
individuals and 15 healthy controls; B Volcano plot reflecting results of univariate statistical analysis (two-sample t-test) of proteins from the two 
patient groups. The x-axis displays log2-transformed fold change, while the y-axis displays the -log10-transformed p-value. Each point represents 
one protein, while colours designate regulation and protein classes (bacterial/human); C Box-plot visualization of the four selected proteins 
of interest. Protein expression levels are displayed, as log2-transformed intensity values. A two-sample t-test was used to statistically compare 
the two groups (HC vs T2D), where p-value is shown in the upper portion of the graph. Colors indicate group; D Bubble plot visualization 
of the functional enrichment analysis of differentially-expressed bacterial and human proteins between 15 type-2 diabetic individuals and 15 
healthy controls. The x-axis displays the -log10-transformed p-value, while size of points represents protein count for each enriched term and color 
stands for the class (bacteria/human)
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abundant bacterial genera between 16S rRNA and 
metaproteomics datasets (Fig.  3B). The comparison 
revealed several differences in the composition of the 
predominant bacterial genera across the two datasets. 
For instance, in the metaproteomics dataset, the top 5 
most abundant bacterial genera were Prevotella, Veil-
lonella, Actinomyces, Rothia, and Fusobacterium, while 

Table 2 Overview of metaproteomics identifications

Unique identified peptides, total

Human 11,548

Bacterial 7452

Mapped to genus level (%) 3519 (47)

Mapped to phylum level (%) 3150 (69)

Fig. 3 Taxonomic signature of type-2 diabetic microbiome. A Taxonomic tree depicting bacterial genera and phyla, identified in the study samples. 
Values in parenthesis indicate the number of unique bacterial peptides assigned to a particular genus; B Relative abundance of the top20 bacterial 
genera in metaproteomics and 16S rRNA datasets. The abundance values are visualised in a heatmap, while mean relative abundances are plotted 
as bar plots. Statistical significance is assessed using a two-sample t-test and significant genera are labelled with a *. Colors indicate groups (T2D 
vs HC); C Volcano plots reflecting results of univariate statistical analysis (two-sample t-test) of bacterial genera from the two patient groups, 
within metaproteomics and 16S rRNA datasets. The x-axis displays log2-transformed fold change, while the y-axis displays the log10-transformed 
p-value. Each point and color represents one bacterial genus
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16S rRNA data displayed Veillonella, Prevotella, Haemo-
philus, Streptococcus, and Rothia as the most prevalent 
genera (Fig.  3B). These genera collectively represented 
approximately 70% of taxonomic abundance within cor-
responding datasets.

Furthermore, we performed a statistical analysis on the 
relative abundance of the top 20 bacterial genera from 
the two datasets. In the 16S rRNA dataset, we observed 
significantly higher relative abundance (Student’s t-test, 
P < = 0.05, Benjamini–Hochberg FDR < 0.05) of genera 
Rothia (P = 0.05) and Schaalia (P = 0.01) in T2D saliva, 
compared to HC group. Conversely, we found a signifi-
cantly lower relative abundance of the genus Neisseria 
(P = 0.05). In the metaproteomics dataset, we observed 
significantly higher relative abundance of genus Haemo-
philus (P = 0.02) and significantly lower relative abun-
dance of genus Neisseria (P = 0.05) in the T2D group, 
compared to HC. Additionally, several complementary 
bacterial genera were identified within the top 20 entries 
across the 2 datasets. Genera Schaalia, Porphyromonas, 
Aggregatibacter, Capnocytophaga, Solobacterium, and 
Gemella were exclusively present within the top 20 
entries of the 16S rRNA dataset, while Parascardovia, 
Lachnoanaerobaculum, Lautropia, Tannerella, Escheri-
chia, Corynebacterium, and Treponema were exclusively 
identified among top 20 metaproteomics genera. Impor-
tantly, genus Corynebacterium was only identified in 
the T2D group while genus Treponema only in the HC 
group. Despite differences in the abudance of most prev-
alent genera (Fig. 3B), the relative abundance of the top 
20 bacterial genera in two datasets showed high degree 
of correlation (Pearson correlation coefficient = 0.7164; 
P < 0.01) (Supplementary Fig. 2). A full list of all bacterial 
genera and phyla, identified with the two methodologies, 
is presented in Additional file  4. In light of taxonomic 
differences between the two datasets, we believe in reli-
ability of metaproteomics analysis, since the abovemen-
tioned findings were validated by a hybrid MS analysis of 
synthetic peptides (Fig. 5B; Supplementary Fig. 4).

When performing statistical comparison of the two 
datasets on the total log2-transformed intensities of bac-
terial genera (Student’s t-test, P < 0.05, Benjamini–Hoch-
berg FDR < 0.05), we observed Corynebacterium as the 
only significantly up-regulated bacterial genus in T2D 

saliva (Fig. 3C), compared to healthy controls, within the 
metaproteomics dataset, while there was no significant 
regulation in the 16S rRNA data.

In-depth functional assessment in type-2 diabetes salivary 
microbiota
To assess the differences in biological functions of 
type-2  diabetic oral microbiota, compared to healthy 
controls, we performed a 2D functional enrichment anal-
ysis [49] on all bacterial peptides, in an unbiased manner 
(Additional file 5). The resulting enrichment scatter plot 
is displayed in Fig. 4A.

We observe several enzymatic terms, such as peroxi-
dase activity (two peptides, P < 0.005)/AhpD-like (two 
peptides, P < 0.005) and carboxymuconolactone decar-
boxylase-like (three peptides, P < 0.005) being positively 
enriched (P < = 0.005, Benjamini–Hochberg FDR < 0.02) 
in the T2D group and negatively enriched in the HC 
group. Conversely, terms ATP binding (728 peptides, 
P < 0.005), metal ion binding (258 peptides, P < 0.005), 
structural constituent of ribosome (434 peptides, 
P < 0.005), and 3-oxoacyl-[acyl-carrier-protein] reduc-
tase (NADPH) activity/sorbitol-6-phosphate 2-dehy-
drogenase activity (2 peptides, P < 0.005) are negatively 
enriched both in T2D and in control patient groups.

We also performed unsupervised hierarchical cluster-
ing (Fig.  4B) on unique bacterial peptides from genera 
Neisseria and Corynebacterium, which previously dis-
played significant differences in abundance between the 
two patient groups (Fig.  3B and C). Subsequently, we 
subjected resulting clusters to the enrichment analysis 
(Fisher’s exact test on the cluster; P < = 0.005, Benjamini–
Hochberg FDR < 0.04). This analysis revealed several 
glycolysis-related terms that were significantly enriched 
the in cluster, exclusively containing peptides from genus 
Corynebacterium: glyceraldehyde 3-phosphate dehydro-
genase type I (four peptides, P < 0.005), NADP binding 
(five peptides, P < 0.005), and with NAD( +) or NADP( +) 
as acceptor (six peptides, P < 0.005) (Fig. 4B and C).

Host–pathogen interactions in type-2 diabetic oral 
microbiome
We performed association analysis to examine the rela-
tionship between bacterial peptides and cardiometabolic 

(See figure on next page.)
Fig. 4 Bacterial functions in type-2 diabetes oral microbiome. A Scatter plot visualization of the functional enrichment analysis of all bacterial 
peptides between the two groups (T2D vs HC). The x- and y-axis display enrichment factor for each functional term, within each patient group. 
Points are colored and annotated according to the corresponding functional terms; B Unsupervised hierarchical clustering of bacterial peptides 
from genera Neisseria and Corynebacterium, visualized as a heatmap, based on the Z-scored log2-transformed intensities of bacterial peptides. The 
colors indicate groups (T2D vs HC) and genera (Neisseria vs Corynebacterium); C Bar plot reflecting the top3 significantly enriched functions. Colors 
correspond to the term class and x-axis displays the -log10-transformed p-value
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Fig. 4 (See legend on previous page.)
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Fig. 5 Bioclinical value of bacterial peptides of interest. A Clinical association analysis of bacterial peptides from genera 
Corynebacterium,Haemophilus and Neisseria, arranged as a supervised hierarchical clustering and visualized as a heatmap, based on scaled 
log2-transformed peptide intensities. Colors indicate specific classes of cardiometabolic traits used in association analysis, as well as bacterial 
genera. Only significantly-associated peptides are shown; B An example of an annotated mirror MS/MS spectrum, used for verification of peptide 
identity by synthetic peptide hybrid library search; C An example calibration curve of synthetic peptide spikes into yeast at the different ratios; 
D&E Screen of nine bacterial peptides on insulin secretion at low glucose (baseline, 2 mM glucose) and high glucose (20 mM) compared to vehicle 
control in INS-1 β-cell line. Peptides AQYLLESLVK, DNTYATLIVPVGTK and AVAVVIPTNEELMIAHDTAR (genus Neisseria) nominally increased insulin 
secretion at low glucose (*), peptides ALLENLQEGSVIK and AVAVVIPTNEELMIAHDTAR (genus Neisseria) nominally increased insulin secretion at high 
glucose (*). Data was screened with multiple unpaired t-tests and depicted as % difference from control values of individual batches (batches 
indicated by symbols); F Highlight of bacterial peptide ALLENLQEGSVIK from screen in D&E, depicting % difference in insulin secretion at low 
glucose (2 mM) and high glucose (20 mM) in INS-1 cells in the presence and absence of the bacterial peptide ALLENLQEGSVIK compared to vehicle 
control. Tested with two-way ANOVA with Sidak’s multiple comparison testing; data depicted as % difference from control values of individual 
batches (batches indicated by symbols)
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traits while adjusting for age, sex, smoking, and glycemic 
status, which resulted in several positive and negative 
associations (Fig. 5A; Supplementary Fig. 3A; Additional 
file 6).

Bacterial peptides, used in the association analysis, 
originated from the differentially expressed bacterial 
genus Corynebacterium (Fig. 3C), as well as from genera 
Neisseria and Haemophilus, which showed statistically 
significant differences in relative abundance between the 
two patient groups (Fig.  3B). The resulting association 
matrix is depicted in Figs. 4 and 5 and in Additional file 6. 
Interestingly, two peptides from genus Corynebacterium 
and multiple peptides from genus Neisseria displayed sig-
nificant negative association with plasma insulin levels 
after 30  min of tOGTT (ALLENLQEGSVIK, FDR-cor-
rected P < 0.05; LSNESVQTVR, FDR-corrected P < 0.05; 
VYAVEPEASPLLTTGK, FDR-corrected P < 0.05, etc.), 
while genus Haemophilus did not follow this pattern 
(Additional file 6). In addition, two peptides from genus 
Haemophilus displayed significant negative association 
(ALAINLVDPAAASTVIK and ALAINLVDPAAAST-
VIKK, FDR-corrected P < 0.05) with the patient waist cir-
cumference, while one peptide (GNEAQVAEELAADAE, 
FDR-corrected P < 0.05) was significantly negatively asso-
ciated with fat % (Additional file  6). We subsequently 
examined whether glycaemic status affects the identified 
trait-peptide associations through an interaction model. 
We did not see significant interaction effects on the FDR-
significant peptide-trait associations (Additional file 8).

We validated our observations using targeted proteom-
ics. Briefly, we used a hybrid MS library, containing 14 syn-
thetic peptides with the lowest FDR-corrected p-values from 
association analysis (peptides VIPGLPIL, AQYLLESLVK, 
LSNESVQTVR, LLELTPALYVGK, ALSTTVTGIEMFR, 
ETTVEEVNEILKK, ALLENLQEGSVIK, FAEAIGGIFTELPK, 
DNTYATLIVPVGTK, DVSYDEDSITVDGHR, GSDI-
EVVAVNDLTDNK, VYAVEPEASPLLTTGK, AAFAP-
LAAALTADEAK, AVAVVIPTNEELMIAHDTAR). We then  
reanalyzed our data using this library. Employing this 
approach, we successfully verified the identity and presence 
of 7 peptides out of 14 (Supplementary Fig.  4), as well as 
determined their concentrations in patient saliva (Additional 
file  7). As an illustration, Fig.  5B displays a representative 
mirror MS/MS spectrum of the peptide ALLENLQEGSVIK 
from genus Neisseria, while Fig.  5C represents the corre-
sponding calibration curve.

Inspired by the significant negative association of these 
peptides with plasma insulin during OGTT, we explored 
the possibility that some of these peptides might exhibit 
incretin-like effects. Previous research has demonstrated 
the presence of bioactive compounds, such as exendin 
from the saliva of the Gila monster, which has been shown 
to have prolonged glucose-lowering effects [64, 65]. 

Specifically, we performed glucose-induced insulin secre-
tion assay by treating INS-1 β-cells with the nine bacterial 
peptides exhibiting highest significance from the associa-
tion analysis: AQYLLESLVK, LSNESVQTVR, LLELTPA-
LYVGK, ALLENLQEGSVIK, DNTYATLIVPVGTK, and 
AVAVVIPTNEELMIAHDTAR from genus Neisseria and 
peptides ALSTTVTGIEMFR, DVSYDEDSITVDGHR, 
and VYAVEPEASPLLTTGK from genus Corynebacte-
rium (Supplementary Fig. 5) compared to vehicle control. 
The screen revealed that peptides AQYLLESLVK, DNTY-
ATLIVPVGTK, and AVAVVIPTNEELMIAHDTAR from 
genus Neisseria nominally increased insulin secretion 
under low glucose conditions (Fig.  5D), while Neisseria 
peptides ALLENLQEGSVIK and AVAVVIPTNEELMI-
AHDTAR nominally increased insulin secretion at high 
glucose (Fig.  5E) compared to vehicle control. Figure  5F 
highlights results of Neisseria peptide ALLENLQEGSVIK, 
showing significantly increased insulin secretion at high 
glucose, but not at low glucose.

Discussion
Here, we employed an ultrafast state-of-the-art saliva 
metaproteomics and proteomics workflow to explore 
differences in salivary microbiome composition and its 
functions between healthy controls and patients with 
screen-detected type-2 diabetes. Participants in our 
study were unaware of their diabetes status until attend-
ing the ADDITION-PRO clinical examination. As a 
result, they had not received any diabetes-specific treat-
ment that could influence our observations. Our com-
prehensive proteomics and metaproteomics analysis of 
saliva provided insights at the three different levels — 
peptide, protein, and genus, each providing complemen-
tary information about both human and microbial profile 
of the studied patient cohort. We identified over 1900 
human proteins, more than 2800 bacterial proteins, and 
7452 bacterial peptides, attributed to 33 bacterial genera 
and 7 bacterial phyla. Our results align with previous sal-
ivary proteomics studies but stand out by offering com-
prehensive proteomic depth with significantly shorter 
measurement times [5, 23, 24, 66]. For instance, the num-
ber of proteins identified in a single run is comparable 
to those reported in study using peptide-level fractiona-
tion, likely due to the enhanced sensitivity of modern 
mass spectrometers [5]. While our rapid metaproteomics 
analysis does not achieve the comprehensive oral micro-
biome coverage seen in metagenomic studies of T2D 
individuals [13, 67–69], it successfully reproduces key 
earlier observations. Notably, the increased abundance 
of Corynebacterium in T2D individuals is consistent 
with findings from previous metagenomic studies [69]. 
The observed proteomics and metaproteomics changes 
mainly fit into the paradigm of altered immune-, lipid-, 
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and glucose-metabolism regulatory systems, as well as 
increased oxidative stress and possible precancerous state 
of T2D oral cavity. In addition, bacterial genera Neisse-
ria and Corynebacterium show a promising biomarker 
potential shedding light on disease pathophysiology and 
potentially opening avenues for microbial interventions 
in prevention and management of T2D. These findings 
are further supported by associations with bio-clinical 
characteristics. We have made efforts to address the pos-
sible influence of age, sex, smoking, and BMI by match-
ing participants on these factors. However, the role of 
additional potential confounders, such as lipid-lowering, 
anti-inflammatory, and antihypertensive medication as 
well as differences in lifestyle factors such as diet, physi-
cal activity, and oral hygiene, remains to be explored in 
larger, less-biased populations. Future studies may also 
elucidate whether the observed differences are likely to 
be causal by examining prospective associations with dia-
betes progression or complications development.

T2D is known to disrupt oral homeostasis. For exam-
ple, T2D conditions can reduce saliva secretion and 
increase carbohydrate levels in the parotid glands, pro-
moting the growth of specific bacterial species and oral 
Candida [70]. Therefore, it can be hypothesized that 
T2D influences the composition of the human sali-
vary proteome. In fact, our enrichment analysis of dif-
ferentially expressed proteins displayed notable shifts 
in immunity, metabolism, translation/biogenesis, and 
signaling pathways in T2D individuals. These find-
ings reinforce the role of increased immune activation 
and metabolic dysregulation in T2D, offering insights 
into potential disease mechanisms. Additionally, we 
observed downregulation of keratin types 13, 4, and 
78 in T2D saliva, which are established markers of oral 
cancer [71]. Specifically, reduced expression of keratin 
types 4 and 13 is associated with oral squamous cell 
carcinoma and precancerous state/epithelial dyspla-
sia [72, 73]. Decreased levels of keratinocyte sciellin 
(SCEL) in the T2D group indicate disturbed differen-
tiation of epithelial cells [74]. Additionally, down-reg-
ulation of cytoskeletal proteins, including SH3GLB2 
(endophilin-B2), spectrin (SPTAN1), and annexin 
(ANXA2) in T2D individuals mirrors the pattern seen 
in oral cancers and precancerous lesions [75–79]. 
Patients with T2D are known to have a higher risk of 
developing oral cancer and oral potentially malignant 
disorders (OPMD) compared to nondiabetic individu-
als [80–82]; therefore, these findings hint at a possible 
precancerous state of oral cell carcinoma in individuals 
with T2D. It is noteworthy that among the HC group, 
there were more former smokers, whereas among the 
T2D group, there were more current smokers. This sug-
gests that the T2D group likely had a higher cumulative 

smoking exposure. This factor may significantly con-
tribute to the presence of indicators of oral precancer-
ous changes.

In further characterizing the T2D salivary micro-
biota, taxonomic assignment of bacterial peptides 
revealed a diverse landscape. Despite a very short MS 
measurement time (21  min) per sample, our results 
align with prior salivary metaproteomics studies that 
employed longer measurement time, particularly in 
terms of bacterial taxonomic abundance and rela-
tive composition of human saliva [4, 57, 78]. The bac-
terial signature obtained from 16S rRNA data and 
metaproteomics analysis was vastly similar. However, 
slight discrepancies in abundance of the top20 bacte-
rial genera, particularly genus Corynebacterium, may 
stem from amplification-related variability inherent 
to 16S rRNA sequencing [83], highlighting the com-
plementary nature of these approaches. Our identifi-
cation of bacterial genera Corynebacterium, Neisseria, 
and Haemophilus, as potential salivary biomarkers of 
T2D, aligns with previous literature linking these gen-
era to metabolic syndrome, compromised immunity, 
and diabetes-related complications [56, 84–87]. For 
instance, an increased abundance of genus Corynebac-
terium has been previously observed in the patients 
with metabolic syndrome, where it displayed sig-
nificant correlation with fasting blood glucose levels 
[84]. Moreover, genus Corynebacterium is known to 
colonize individuals with compromised immune sys-
tem [85]. This aligns with our findings of enriched 
immunological processes, alongside upregulation of 
immunoglobulins and complement factors, in T2D 
patients. Furthermore, bacterial species Corynebacte-
rium matruchotii and Neisseria mucosa have been pre-
viously linked to mucosal inflammation and increased 
salivary glucose levels [86, 87]. Finally, the genus Hae-
mophilus has been suggested as a microbial biomarker 
in Chinese patients with type-2 diabetes [56]. These 
findings underscore the biomarker potential of these 
bacterial genera and their relevance in understanding 
T2D pathophysiology. Nevertheless, since these bac-
terial genera include multiple species, some of which 
are considered beneficial, while the others pathogenic, 
further studies should focus on species/strain level 
identification, as this taxonomic resolution is needed 
to fully understand the role of individual species/
strains in the pathophysiology of T2D.

Functional enrichment analysis of bacterial peptides 
unveiled oxidative stress-related terms, indicative of 
the potential role of microbial factors in exacerbating 
oxidative stress in T2D. Human peroxidases play a cru-
cial role in innate immunity, apoptosis, and cell signal-
ing. Excessive peroxidase activity can lead to oxidative 
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damage in cells and tissues, contributing to various 
diseases [88]. Oxidative stress, mediated by reactive 
oxygen species (ROS), is linked to the development of 
insulin resistance, β-cell dysfunction, impaired glucose 
tolerance,  type-2 diabetes, and diabetes complications 
[89]. Bacterial peroxidases have also been implicated 
in degrading phenolic compounds [90, 91], potentially 
exacerbating oxidative damage. Based on this, we can 
assume that bacterial redox machinery plays a role in 
the pathophysiology of T2D. We conducted enrich-
ment analysis on unique bacterial peptides from genera 
Neisseria and Corynebacterium, which showed signifi-
cant differences in abundance between the two patient 
groups. Specifically, glycolysis-related functions were 
enriched for the peptides from genus Corynebacterium 
including those involved in NAD( +) or NADP( +) bind-
ing and glyceraldehyde 3-phosphate dehydrogenase 
type I activity. Interestingly, an increase in the popula-
tion of Corynebacterium glutamicum has been previ-
ously linked to improved glucose metabolism in T2D 
mice [92]. Furthermore, previous studies have linked 
increased abundance of the genus Corynebacterium to 
high blood glucose levels in patients with metabolic 
syndrome [84]. Additionally, given its association with 
colonization of individuals with weakened immune sys-
tem [85], we hypothesize that genus Corynebacterium 
may exhibit opportunistic behavior while providing 
protection against T2D and its complications.

Moreover, our association analysis revealed clinically 
relevant links between bacterial peptides and cardio-
metabolic traits, suggesting a complex interplay between 
specific bacterial genera and insulin secretion. In  vitro 
validation of these peptides supported effects on insu-
lin secretion of some of these individual peptides, further 
suggesting their potential relevance in T2D pathophysiol-
ogy. In particular, peptide ALLENLQEGSVIK from genus 
Neisseria emerged as a promising candidate, increasing 
glucose-stimulated insulin secretion (~ 25%), which aligns 
with our clinical association results. To contenxtualize 
these results, the incretin GLP-1 and its analogues increase 
glucose-stimulated insulin secretion 2-3 fold in INS-1 cells 
[93–95]. While these findings provide intriguing insights 
into the potential impact of bacterial peptides on insulin 
secretion, it is important to stress that their combined 
effects were not tested, and that the abovementioned iden-
tifications were carried out in saliva samples, thus leaving 
unclear the mechanism of their potential influence on host 
insulin secretion by pancreatic β-cells.

Overall, our study provides a comprehensive overview 
of the T2D salivary microbiome and its intricate rela-
tionship with host proteomics and metabolic regulation. 
Leveraging the power of DIA-PASEF methodology, our 
study offers valuable insights into T2D pathophysiology 

and highlights the promise of metaproteomics in clinical 
research. Nevertheless, the limitation of this study, which 
includes small sample size, cross-sectional study design, 
underscores the need for further validation of our find-
ings in larger and prospective cohorts of individuals with 
diabetes and elevated diabetes risk.

Conclusions
In conclusion, our results showed significant salivary 
metaproteome differences between T2D patients and 
healthy controls and discovered disease-specific bacterial 
genera, which possess biomarker potential. Our findings 
offer solid evidence of altered immune-, lipid-, and glu-
cose-metabolism regulatory systems, as well as increased 
oxidative stress and possible precancerous changes in 
T2D saliva. This metaproteomics dataset can serve as a 
valuable resource for the scientific community.
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Additional file 9: Supplementary Figure 1. Principal component analysis of 
salivary proteins. A) Percentage of explained variance, calculated for the 
10 principal components of principal component analysis. X-axis depicts 
the component (PC1-PC10), while y-axis shows the corresponding % of 
variance, explained by each component; B) Top25 separation drivers for 
principal components PC1 and PC2. X-axis depicts % of contribution, 
while y-axis - the corresponding protein-coding gene names.

Additional file 10: Supplementary Figure 2. Correlation of bacterial genera 
between the two datasets (metaproteomics and 16S rRNA). Scatter plot, 
demonstrating correlation between genus abundances, detected by the 
two sequencing methodologies (metaproteomics vs 16S rRNA sequenc-
ing), where MS on the y-axis stands for metaproteomics and 16S rRNA on 
the x-axis – for 16S rRNA sequencing. The correlation was estimated, using 
statistically-significant Pearson correlation coefficient.

Additional file 11: Supplementary Figure 3. Extended version of the clinical 
association analysis. Clinical association analysis of all bacterial peptides 
from genera Corynebacterium, Haemophilus and Neisseria, arranged as 
a supervised hierarchical clustering and visualized, as a heatmap, based 
on scaled log2-transformed peptide intensities. Colors indicate specific 
classes of cardiometabolic traits used in association analysis, as well as 
bacterial genera.

Additional file 12: Supplementary Figure 4. Annotated mirror MS/MS spec-
tra for validation of bacterial peptides. Annotated mirror MS/MS spectra, 
used for verification of peptide identity by synthetic peptide hybrid library 
search. The spectra of the six bacterial peptides from genera Neisseria and 
Corynebacterium, validated as a result of above mentioned analysis, are 
included.

Additional file 13: Supplementary Figure 5. Normalized insulin secre-
tion of bacterial peptides. Screen of nine bacterial peptides on insulin 
secretion at low glucose (baseline, 2 mM glucose) and high glucose (20 
mM) compared to vehicle control in INS-1 β-cell line. Bar plots depict-
ing absolute values (normalized to protein content) of the baseline (A) 
and high-glucose (B) insulin secretion for each of the screened bacterial 
peptides. C) Difference in stimulation index (ratio of insulin secretion at 
high glucose to insulin secretion at low glucose) of all nine bacterial pep-
tides compared to vehicle control. Peptides AQYLLESLVK, LLELTPALYVGK 
and DNTYATLIVPVGTK (genus Neisseria) nominally decreased stimulation 
index. Data was screened with multiple unpaired t-tests and depicted as 
% difference from vehicle control values of individual batches (batches 
indicated by symbols). D) Stimulation index (absolute and % change from 
vehicle control) of peptide ALLENLQEGSVIK compared to vehicle control. 
Data was tested with unpaired t-test (batches indicated by symbols).
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