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Abstract: The main categories of transition metal–mercury heterometallic compounds are
briefly summarized. The attention is focused on complexes and clusters where the {Hg-Y}
fragment, where Y represents a halide atom, interacts with transition metals. Most of the
structurally characterized derivatives are organometallic compounds where the transition
metals belong to the Groups 6, 8, 9 and 10. More than one {Hg-Y} group can be present
in the same compound, interacting with the same or with different transition metals. The
main synthetic strategies are discussed, and structural data of representative compounds
are reported. According to the isolobality with hydrogen, {Hg-Y} can form from one to
three M-{Hg-Y} bonds, but further interactions can be present, such as mercurophilic and
Hg···halide contacts. The formal oxidation state of mercury is sometimes ambiguous and
thus {Hg-Y} can be considered as a Lewis acid or base on varying the transition metal
fragment. Density functional theory calculations on selected Group 6 and Group 9 model
compounds are provided in order to shed light on this aspect.
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1. Transition Metal–Mercury Derivatives: General Aspects
Transition metal–mercury complexes were among the first compounds investigated in

the field of direct metal–metal bonding. The fact that mercury can be readily attached to a
large variety of transition metals has stimulated its use as a building block in the synthesis
of mixed-metal clusters. Several examples of coordination and organometallic compounds
where mercury formally behaves as a coordinating atom are thus present in the literature.
As described in previous reviews [1–5], transition metal derivatives with mercury in the
coordination sphere can be cataloged in few main categories.

The first possibility concerns species having general formula LnMm-Hg-Hg-MmLn,
where the {Hg-Hg} group bonds two transition metal fragments. In most cases, the formal
oxidation state of mercury is Hg(I). Recent examples are mixed-metal clusters having
formulae [Hg2{(C6Cl5)2Pt(µ-OH)2Pt(C6Cl5)2}2]2− [6] (Figure 1a), [Hg2{Re7C(CO)21}2]4− [7]
(Figure 1b), [Hg2M2(P2phen)3]2+ [M = Pd, Pt; P2phen = 2,9-bis-(diphenylphosphino)-
1,10-phenanthroline] [8] (Figure 1c) and [Hg2{Pt3(RNC)3}2(diphos)3] [diphos = 1,5-
bis(diphenylphosphino)pentane, 1,6-bis(diphenylphosphino)hexane; RNC = aromatic
isocyanide] [9] (Figure 1d). The structure of [Hg2{(C6Cl5)2Pt(µ-OH)2Pt(C6Cl5)2}2]2− is
formally described as two [(C6Cl5)2Pt(µ-OH)2Pt(C6Cl5)2]2− anions bridged by a [Hg2]2+

cation. Each mercury atom interacts with two platinum centers. The Hg-Hg distance

Molecules 2025, 30, 145 https://doi.org/10.3390/molecules30010145

https://doi.org/10.3390/molecules30010145
https://doi.org/10.3390/molecules30010145
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-9450-0481
https://orcid.org/0000-0001-6169-3822
https://orcid.org/0000-0002-4259-1027
https://doi.org/10.3390/molecules30010145
https://www.mdpi.com/article/10.3390/molecules30010145?type=check_update&version=1


Molecules 2025, 30, 145 2 of 27

is 2.552(3) Å, comparable with the Hg-Hg bond in mercurous nitrate, 2.5049(6) Å [10].
The Hg-Pt bond lengths are between 2.6629(10) and 2.9865(9) Å. [Hg2{Re7C(CO)21}2]4− is
composed of two carbidoheptarhenate clusters linked by a [Hg2]2+ cation, with Hg-Hg
distance equal to 2.610(4) Å. The six Hg-Re bonds are in the 2.911(3)–2.965(3) Å range. In
the Group 10 clusters [Hg2M2(P2phen)3]2+, the phosphine ligands coordinate the zero-
valent M centers that interact with a [Hg2]2+ cation [Hg-Pd 2.7419(5)–2.7960(5) Å, Hg-Pt
2.7823(5)–2.8447(6) Å]. [Hg2]2+ is also coordinated by the nitrogen atoms and exhibits
Hg-Hg bond lengths comprised between 2.6881(4) Å [M = Pd] and 2.7362(6) Å [M = Pt].
In the [Hg2{Pt3(RNC)3}2(diphos)3] clusters, the diphosphines bridge two {Pt3(µ-RNC)3}
triangles, forming a cage where two mercury atoms are enclosed. The Hg-Hg distances
are between 2.826(2) and 2.8424(2) Å, while the Hg-Pt bonds are in the 2.858(3)–2.980(3)
range. Different from the previous examples, the mercury centers are considered as zero-
valent, which highlights the sometimes ambiguous oxidation state of mercury in transition
metal derivatives.
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[Hg{Ni(PNP)}2] [PNP = pyrrolate-based pincer ligand] [11] (Figure 2a) and [Hg{W(η5-

C5H5)(CO)3}2] [12] (Figure 2b). The Hg-Ni bonds in [Hg{Ni(PNP)}2] are 2.6488(4) and 

2.6491(4) Å, while Hg-W distance of 2.7513(3) Å was measured for the two mercury-

wolfram bonds in [Hg{W(η5-C5H5)(CO)3}2]. The mercury center can also join transition 

metal clusters. The structure of [Hg{Ru6C(CO)16}2]2– is composed of two 

carbidohexaruthenate fragments, each one forming two Hg-Ru bonds falling in the 

2.787(2)–2.902(1) Å range [13]. In [Hg{Ru3(μ3-ampy)(CO)9}2] [Hampy = 2-amino-6-

Figure 1. Molecular structures of (a) [Hg2{(C6Cl5)2Pt(µ-OH)2Pt(C6Cl5)2}2]2− [6];
(b) [Hg2{Re7C(CO)21}2]4− [7]; (c) [Hg2Pd2(P2phen)3]2+ [P2phen = 2,9-bis-(diphenylphosphino)-
1,10-phenanthroline] [8]; (d) [Hg2{Pt3(RNC)3}2(diphos)3] [R = 2,6-Me2C6H3; diphos = 1,6-
bis(diphenylphosphino)hexane] [9]. Color map: Hg, light grey; Pt, light violet; Re, blue; Pd, greenish
blue; Cl, light green; P, orange; O, red; N, light blue; C, grey. Hydrogen atoms omitted.

In another group of compounds, a single mercury atom can behave as bridge be-
tween two or more transition metals. Selected examples are the trinuclear derivatives
[Hg{Ni(PNP)}2] [PNP = pyrrolate-based pincer ligand] [11] (Figure 2a) and [Hg{W(η5-
C5H5)(CO)3}2] [12] (Figure 2b). The Hg-Ni bonds in [Hg{Ni(PNP)}2] are 2.6488(4) and
2.6491(4) Å, while Hg-W distance of 2.7513(3) Å was measured for the two mercury-wolfram
bonds in [Hg{W(η5-C5H5)(CO)3}2]. The mercury center can also join transition metal clus-
ters. The structure of [Hg{Ru6C(CO)16}2]2− is composed of two carbidohexaruthenate
fragments, each one forming two Hg-Ru bonds falling in the 2.787(2)–2.902(1) Å range [13].
In [Hg{Ru3(µ3-ampy)(CO)9}2] [Hampy = 2-amino-6-methylpyridine], two trinuclear ruthe-
nium fragments are connected by a single mercury atom, forming four Ru-Hg bonds
with lengths comprised between 2.839(1) and 2.859(1) Å [14]. Ruthenium clusters hav-
ing formulae [HgRu6(CO)22]2− (Figure 2c), [Hg2Ru7(CO)26]2−, [Hg3Ru8(CO)30]2− and
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[Hg4Ru10(CO)32]4− were obtained by reacting [HRu3(CO)11]− or [HRu4(CO)12]3− with
mercury(II) acetate or chloride [15]. The Hg-Ru bonds vary from 2.6726(13) to 2.9079(10) Å.
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The definition of the most correct formal oxidation state of mercury in 

heteropolymetallic species is generally not straightforward. Recently, Frenking, 

Malischewski and co-workers investigated the [Hg{Fe(CO)5}2]2+ (Figure 3a) and 

[Hg{Fe(CO)4}2]2– (Figure 3b) trinuclear species, characterized by Hg-Fe distances equal to 

2.5745(7) and 2.546(2) Å, respectively [19–21]. According to the energy decomposition 

Figure 2. Molecular structures of (a) [Hg{Ni(PNP)}2] [PNP = 2,5-bis(di-tert-
butylphosphanylmethyl)-pyrrolate] [11]; (b) [Hg{W(η5-C5H5)(CO)3}2] [12]; (c) [HgRu6(CO)22]2− [15];
(d) [Ir(CˆNˆC)(COD)HgIrCl2(COD)] [H2CˆNˆC = 2,6-bis(4-tert-butylphenyl)pyridine; COD = 1,5-
cyclooctadiene] [16]. Color map: Hg, light grey; Ir, dark blue; W, blue; Ru, bluish green; Ni, green; Cl,
light green; P, orange; O, red; N, light blue; C, grey. Hydrogen atoms omitted.

Mercury can also bridge transition metals with different coordination spheres. Recent
compounds of this type are the polynuclear clusters [Ir2Cl2(µ-Cl)2(COD)2{HgIrCl(κ2C,N-
HCˆNˆC)(COD)}2] and [Ir(CˆNˆC)(COD)HgIrCl2(COD)] (Figure 2d) [H2CˆNˆC = 2,6-bis(4-
tert-butylphenyl)pyridine; COD = 1,5-cyclooctadiene]. The first structure can be for-
mally described considering a divalent mercury center between a dinuclear [Ir2Cl2(µ-
Cl)2(COD)2]2− cluster and a [IrCl(κ2C,N-HCˆNˆC)(COD)]− complex [Hg-Ir bonds 2.6314(3)
and 2.5829(3) Å], while in the second compound Hg(II) joins the [Ir(CˆNˆC)(COD)]−

and [IrCl2(COD)]− complexes, with Hg-Ir bond lengths equal to 2.5841(3) and 2.6656(3)
Å [16]. Finally, mercury can bridge different transition metals. [Hg2{Co6C(CO)12}{W(η5-
C5H5)(CO)3}2]2− [17] is composed by a carbidohexacobaltate cluster connected to two
{W(η5-C5H5)(CO)3} fragments by means of two mercury centers, each one forming three
Hg-Co bonds [2.711(2)–2.7261(19) Å] and a Hg-W bond [2.781(2) Å]. In [{Re(CO)4Mo(η5-
C5H5)(CO)2(µ-PCy2)}Hg{W(η5-C5H5)(CO)3}] [Cy = cyclohexyl], mercury joins a dinuclear
Re-Mo cluster with a {W(η5-C5H5)(CO)3} fragment [18]. The Hg-M bonds are equal to
2.790(1) Å [M = Re], 2.940(1) Å [M = Mo] and 2.780(1) Å [M = W].

The definition of the most correct formal oxidation state of mercury in heteropoly-
metallic species is generally not straightforward. Recently, Frenking, Malischewski and
co-workers investigated the [Hg{Fe(CO)5}2]2+ (Figure 3a) and [Hg{Fe(CO)4}2]2− (Figure 3b)
trinuclear species, characterized by Hg-Fe distances equal to 2.5745(7) and 2.546(2) Å,
respectively [19–21]. According to the energy decomposition analysis with natural orbitals
for chemical valence, in both cases the mercury center is best described as Hg(0) instead of
Hg(II), thus behaving as a σ-donor toward the iron fragments.
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Figure 3. Molecular structures of (a) [Hg{Fe(CO)5}2]2+ [19]; (b) [Hg{Fe(CO)4}2]2− [20]. Color map:
Hg, light grey; Fe, reddish orange; O, red; C, grey.

The description of clusters containing more than one mercury atom in the structure
must also account for mercurophilicity, i.e., the metallophilic interactions possibly occur-
ring among mercury centers, in particular if belonging to the same compound [15,22–25].
Despite the fact that the examples of mercurophilic interactions in the literature are less
abundant than those concerning aurophilicity, the possibility of closed-shell Hg(II)···Hg(II)
interactions should be taken into account when the Hg···Hg distance is in the range of the
Van der Waals contact (about 3.5 Å) or lower. For instance, a dimeric [Hg2]4+ unit with sub
van der Waals Hg(II)···Hg(II) distance, 2.820(3) Å, is present in [Hg2{Os9(C)(CO)21}2]4− (Fig-
ure 4a) [26]. Such a compound derives from the cluster [Hg3{Os9(C)(CO)21}2]2− (Figure 4b),
where a [Hg3]6+ triangular unit bridges two carbidoennaosmiate fragments. The Hg···Hg(II)
distances in the trimercury fragment are comprised between 2.920(7) and 2.931(6) Å [27].
The shortest Os-Hg bond length measured for these clusters is 2.696(5) Å. As another exam-
ple, the structure of the cation [Hg8{Ir(η5-C5Me5)(CO)}6] contains a central {Hg4} fragment
with Hg···Hg distances between 2.982(2) and 3.0278(18) Å. Each mercury of {Hg4} bonds
two iridium centers [28]. The compound also contains two {Hg3} triangles with Hg···Hg
distances in the 2.962(2)–3.078(2) Å range.
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In the last category of compounds, mercury is bonded to one or two Y ligands and di-
rectly to a metal center, with the formation of species having general formula LnMm-HgYy.
The Y ligands can have different nature, according to the typical coordination chemistry
of mercury [29–33]. Given the noticeable stability of the Hg-C σ-bonds, transition metal
organomercury derivatives were investigated in detail. Mercury is usually bonded to two C-
donor fragments that are part of the ancillary ligands surrounding the transition metal. Very
short metallophilic interactions between Hg(II) and either Pd(II) or a Group 11 M(I) center
were recently observed using quinolin-8-yl fragments able to form Hg-C together with M-N
bonds [34]. Figure 5a shows the molecular structure of the Au(I) derivative, characterized
by Hg(II)···Au(I) distance equal to 2.596(3) Å. Organomercury-bridged diphosphines are
another class of compounds able to form heteropolymetallic complexes with short metal–
mercury interactions [35–38]. The structure of a Pd(II) derivative [Hg(II)···Pd(II) 2.9828(6)
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Å] is shown in Figure 5b. Two Hg···M interactions can be present in the same molecule
if the diphosphine behaves as a bridging ligand, as occurs in the bis(rhodium) complex
formed with the ligand (η5-C5H5)Fe(PPh2C5H3-Hg-C5H3PPh2)Fe(η5-C5H5) and in the Au(I)
and Au(III) derivatives [{Au(Ar)}2{Hg(C6H4PPh2)2}] and [{AuCl2(Ar)}2{Hg(C6H4PPh2)2}]
[Ar = halide-substituted aryls] (see for instance Figure 5c) [39,40]. The Hg···Au(I) distances
are between 3.1222(3) and 3.1950(3) Å, while the Hg···Au(III) distances are longer, 3.3973(3)
Å. As another example, the reaction of a Cu(I) precursor with a Hg2N4-donor macrocycle
afforded a heterometallic species with intramolecular Hg···Cu [2.919(7)–2.921(7) Å] and in-
termolecular Hg···Hg [3.203(4) Å] metallophilic contacts [41,42]. Unsupported interactions
between HgR2 (R = organometallic ligand) and Group 10 or Group 11 transition metal com-
plexes were however reported [43–45]. For instance, in the anion [{AuHg2(o-C6F4)3}{Hg3(o-
C6F4)3}]− the two metallacycles are connected by a short Hg(II)···Au(I) contact, 3.097(2) Å,
and the computed interaction energy is around 47.7 kcal mol−1 (Figure 5d).
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Figure 5. Molecular structures of (a) [Au{Hg(C9H6N)2}]+ [34]; (b) [PdCl2{Hg(C5H3PPh2-Fe-
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Color map: Hg, light grey; Au, yellow; Pd, greenish blue; Fe, reddish orange; Cl, light green; P,
orange; F, greenish yellow; C, grey. Hydrogen atoms omitted.

2. Heterometallic Transition Metal Complexes with Mercury Dihalides
Divalent mercury halides are among the most common HgY2 compounds in the

chemistry of mercury [46]. The interaction between transition metals in low oxidation
state and mercury(II) halides was observed in a number of cases while studying the Lewis
basicity of metal carbonyl complexes [47–54]. The synthetic approach was based on the
direct reaction of a suitable transition metal carbonyl precursor with HgY2. Calorimetric
measurements on the reaction between Group 6 transition metal carbonyl derivatives and
mercury(II) halides in 1,2-dichloroethane solution indicated that the Hg-M bonds formed
are at least as strong as the interactions of divalent mercury with conventional Lewis
bases. In some cases, the Gibbs energy variation for the reaction is negative by about
7 kcal mol−1 [55]. Another reaction pathway involves the formal insertion of metallic
mercury in the M-Y bond, even if such a reaction should be considered a redox process.
For instance, dinuclear {Fe-HgI2} complexes with π-acceptor ligands surrounding the
iron center were obtained by reacting [FeI2(CNR)4] [R = alkyl, aryl] with mercury in the
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presence of isocyanides and phosphines [56,57]. Yamamoto and co-workers isolated a
product having formula [Ni(HgI2)(CNR)4] [R = 2,6-Me2C6H3] by reacting [NiI2(CNR)2]
with mercury in the presence of isocyanide. Moreover, the authors assumed the formation
of a transient [Ni(HgI2)(CNR)2] species while investigating the electrochemical behavior of
[NiI2(CNR)2] with a mercury electrode [58].

The M-HgY2 interaction is generally described as a donation of electron density from
the transition metal in a low oxidation state, behaving as Lewis base, to HgY2, which acts as
Lewis acid. However, computational studies on [Ru(M’Cl2)(CO)3(PPh2py)2] [M’ = Zn, Cd,
Hg; PPh2py = diphenyl-2-pyridylphosphine] revealed that such an assumption is correct
for M’ = Zn, while the Ru←M’ back-donation is relevant for both M’ = Cd and M’ = Hg [59].

One of the earliest examples of M-HgY2 derivatives investigated by means of single-
crystal X-ray diffraction is [Co(HgCl2)(η5-C5H5)(CO)2] (Figure 6a), showing a Hg-Co bond
length equal to 2.578(4) Å. The compound was obtained from [Co(η5-C5H5)(CO)2] and
HgCl2 [60]. It is worth noting that the use of the related isocyanide precursor [Co(η5-
C5H5){CNC(O)C6H5}2] afforded a less stable heterobimetallic product [61]. Other species
investigated by means of X-ray diffraction are [Fe(HgI2){CN(p-tolyl)}5] [Hg-Fe 2.551(1)
Å] (Figure 6b) [56] and [Fe(HgCl2)(CO)2(PMe2Ph)2{CS2C2(CO2Me)2}] [Hg-Fe 2.546(1) Å]
(Figure 6c) [62,63]. Structurally characterized examples of trinuclear metal complex show-
ing bridging coordination mode for HgCl2 are [Pt2(HgCl2)Cl2(dppm)2] (Figure 6d) and
[Rh2(HgCl2)(η5-C5H5)2(µ-dppm)(µ-CO)] [dppm = bis(diphenylphosphino)methane]. In
the first species, the two Hg-Pt bond lengths are between 2.6991(8) and 2.7153(7) Å, con-
tributing to the formation of an “A-frame” structure with HgCl2 at one vertex of the
trimetallacycle [64]. Relevant parameters for the trinuclear rhodium derivative are Hg-Rh
distances comprised between 2.692(1) and 2.744(2) Å and Hg-Cl bonds comprised between
2.534(3) and 2.581(3) Å [65].
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Figure 6. Molecular structures of (a) [Co(HgCl2)(η5-C5H5)(CO)2] [60]; (b) [Fe(HgI2){CN(4-
MeC6H4)}5] [56]; (c) [Fe(HgCl2)(CO)2(PMe2Ph)2{CS2C2(CO2Me)2}] [62]; (d) [Pt2(HgCl2)Cl2(dppm)2]
[dppm = bis(diphenylphosphino)methane] [64]. Color map: Hg, light grey; Pt, light violet; Co,
blue; Fe, reddish orange; I, purple; Cl, light green; S, yellow; P, orange; O, red; C, grey. Hydrogen
atoms omitted.
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HgY2 can also bond with transition metal clusters through the interaction with
halides. For instance, in the structure of [Pt2(dppp)2{(µ3-Cl)2HgI2}] [dppp = 1,3-
bis(diphenylphosphino)propane], HgI2 is connected to the chloro-ligands bridging the Pt
centers, and only a weak Hg···Pt interaction [3.1744(4) Å] is present [66].

The bond between the transition metal fragment and HgY2 can be enforced in the
presence of suitable ancillary ligands. For instance, the complex [Fe(CO)4(PEtPhpy)] [PEt-
Phpy = 2-(ethylphenylphosphino)pyridine] undergoes an addition reaction with HgCl2 to
afford the binuclear derivative [Fe(HgCl2)(CO)4(PEtPhpy)] (Figure 7a), where a Hg-Fe bond
[2.608(1) Å] is present together with a Hg-N interaction [2.530(4) Å] [67]. In the compound
[Fe(HgI2)(CO)3(PPh2py)2], obtained following the same approach, the interaction between
HgI2 and the transition metal fragment is essentially due to the Hg-Fe bond [2.6780(2)
Å], even if two weak mercury–nitrogen interactions are present, the shortest one with
Hg-N distance equal to 2.658(2) Å [68]. In related complexes having the general formula
[Fe(HgY2)(CO)3(Ph2Ppym)2] [Y = Cl, Br, I; Ph2Ppym = 2-(diphenylphosphino)pyrimidine],
the Hg-Fe distances are comprised between 2.616(2) and 2.665(2) Å. In the case of Y = Cl,
the mercury center weakly interacts with the nitrogen atoms of the pyrimidine rings [Hg-N
2.669(8) and 2.677(9) Å], while only the Fe-Hg bond is present for Y = Br and Y = I [69]. In the
Group 8 derivatives [M(HgI2)(CO)3(PPh2CH2morph)2] [M = Fe, Ru; PPh2CH2morph = N-
(diphenylphosphinomethyl)morpholine], the M-Hg bonds are 2.665(1) Å [M = Fe] and
2.7075(4) Å [M = Ru]. The shortest Hg-N distances are above 2.7 Å, indicating very
weak mercury–nitrogen interactions [70,71]. On the other hand, in the complex [Pt{2,6-
(Me2NCH2)2C6H3}{µ-(p-tolyl)NC(H)N(iPr)}HgBrCl] (Figure 7b) a formamidinate ligand
behaves as bridge between a {Pt(NˆCˆN)} fragment and HgClBr. The Hg-N bond length
is short, 2.156(11) Å, comparable with the Pt-N(formamidinate) one, 2.155(9) Å. Thanks
to the Hg-Pt bond, 2.8331(7) Å, the platinum center assumes a pseudo-square-pyramidal
geometry [72].
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Figure 7. Molecular structures of (a) [Fe(HgCl2)(CO)4(PEtPhpy)] [PEtPhpy = 2-
(ethylphenylphosphino)pyridine] [67]; (b) [Pt{2,6-(Me2NCH2)2C6H3}{µ-(p-tolyl)NC(H)N(iPr)}
HgBrCl] [72]. Color map: Hg, light grey; Pt, light violet; Fe, reddish orange; Br, dark orange; Cl, light
green; P, orange; O, red; C, grey. Hydrogen atoms omitted.

The formation of a Mm-HgY2 bond is not the only potential outcome from the re-
action between a mercury(II) halide and a transition metal precursor or from the inser-
tion of mercury in the M-Y bond. One of the most common possibilities is the presence
in the molecular structure of fragments having general formula {Hg2Y2(µ-Y)2}, which
can act as formal terminal ligands [73] or behave as bridges between two transition
metal centers, these last connected [74,75] or not [76–78] by a M-M bond. The struc-
tures of [Ir{Hg(µ-Cl)2HgCl2}Cl(CO)(dppm){(µ-dppm)AuCl}] [Hg-Ir 2.618(3) Å], [Ru2{Hg(µ-
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Cl)2HgCl2}(C10H8N2)(CO)4(PiPr3)2] [C10H10N2 = 1,8-diaminonaphthalene; Hg-Ru 2.758(1)
and 2.775(2) Å; Ru-Ru 2.827(2) Å] and [Ni(CNAr)4{HgI(µ-I)2HgI}Ni(CNAr)4] [Ar = 4-Br-
2,6-Me2C6H2; Hg-Ni 2.619(3) Å] are shown as examples in Figure 8a–c. As for HgY2, the
interaction of {HgY(µ-Y)2YHg} with the transition metal fragment can be supported by the
coordination of suitable donor groups present in the ancillary ligands, as shown by Zhang
and co-workers using 2-pyridylphosphines as bridging ligands between iron carbonyls and
mercury [79]. For instance, in the structure of [Fe{Hg(µ-Cl)2HgCl2}(CO)4(µ-PPh2py)] one
of the mercury centers interacts both with iron [Hg-Fe 2.570(2) Å] and with nitrogen [Hg-N
2.483(11) Å]. Hill and Kirk recently provided another example with the arsolyl-complex
[{HgCl(µ-Cl)2HgCl}{Co(η5-C4Me4As)(CO)2}2]. Two isomers of the compound exist, which
differ in the mutual syn or anti positions of the {Co(η5-C4Me4As)(CO)2} fragments with
respect to the rhomboidal {HgCl(µ-Cl)2HgCl} core. Besides the Hg-Co bonds [2620(1)–
2.6702(9) Å], Hg-As interactions are present, with distances comprised between 2.6334(6)
and 2.7268(9) Å [80]. One of the isomers is shown in Figure 8d.
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Figure 8. Molecular structures of (a) [Ir{Hg(µ-Cl)2HgCl2}Cl(CO)(dppm){(µ-dppm)AuCl}] [73];
(b) [Ru2{Hg(µ-Cl)2HgCl2}(C10H8N2)(CO)4(PiPr3)2] [C10H10N2 = 1,8-diaminonaphthalene] [75];
(c) [Ni(CNAr)4{HgI(µ-I)2HgI}Ni(CNAr)4] [Ar = 4-Br-2,6-Me2C6H2] [77]; (d) [{HgCl(µ-
Cl)2HgCl}{Co(η5-C4Me4As)(CO)2}2] [80]. Color map: Hg, light grey; Au, yellow; Ir, dark
blue; Ru, bluish green; Ni, green; Co, blue; I, purple; Br, dark orange; Cl, light green; As, violet; P,
orange; O, red; C, grey. Hydrogen atoms omitted.

It is worth noting that the nuclearity of the {HgY2}x fragments can be also higher.
The compound [{Hg2(µ3-Cl)2(µ-Cl)2(HgCl2)2}{Mo(η6-C6H3Me3)(CO)3}2] (Figure 9a) is com-
posed of two organometallic molybdenum complexes joined by a {HgY2}4 unit. Two of the
four mercury centers form Hg-Mo bonds [2.745(1) Å] [81]. The reaction of [Pt(C∧P)(acac)]
[C∧P = CH2-C6H4-P(o-tolyl)2; acac = 2,4-pentanedionato] with HgBr2 afforded the struc-
turally characterized polynuclear species [{Hg3(µ-Br)4Br2}{Pt(C∧P)(acac)}2] (Figure 9b),
where the terminal mercury centers of the trimercury hexahalide fragment form two un-
supported Hg-Pt bonds [2.808(1) Å]. The central mercury atom shows an uncommon
square-planar environment [82]. The main coordination modes of the {HgY2}n fragments
described in this section are sketched in Scheme 1.
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3. Transition Metal–Mercury Monohalide Derivatives
The apparently simplest cases of transition metal–mercury halide derivatives are

species having general formula LnMn-HgY, where a mercury monohalide formally behaves
as a ligand in the coordination sphere of a transition metal center. Intriguing features
are the isolobality of the {HgY} fragment with the hydrogen atom and the possibility of
intramolecular {YHg···HgY} or intermolecular {YHg···YHg} interactions (vide infra).

As for the LnMn-HgY2 derivatives, a common synthetic approach is based on the
reaction of HgY2 with suitable precursors (Equation (1)); thus, the formation of LnMn-HgY
instead of LnMn-HgY2 can depend upon the experimental conditions.

[LnMn] + HgY2 → [LnMn-HgY]Y (1)

For instance, on increasing the [Co(η5-C5H5)(CO)2]:HgCl2 ratio, the product iso-
lated was not [Co(HgCl2)(η5-C5H5)(CO)2] [60], but a 1:3 adduct whose X-ray structure re-
vealed the presence of [Co(HgCl)(η5-C5H5)(CO)2]Cl (Figure 10a) and two additional HgCl2
molecules [83]. The cation contains a Hg-Co bond [2.504(9) Å] significantly shorter than that
found in [Co(HgCl2)(η5-C5H5)(CO)2] [2.578(4) Å]. A short Hg-Cl bond is present [2.348(16)
Å] together with other three Hg---Cl contacts, all above 2.8 Å. The {Co-Hg-Cl} fragment is
bent, with an angle of 153.5(5)◦. As another example, [Ir(η5-C5Me5)(CO)2] reacts with an
excess of HgCl2 to produce the heterometallic complex [Ir(HgCl)(η5-C5Me5)(CO)2][HgCl3].
Lowering the amount of HgCl2 caused the formation of [Ir(HgCl2)(η5-C5Me5)(CO)2] as a
secondary product [84]. The X-ray crystal structure of [Ir(HgCl)(η5-C5Me5)(CO)2][HgCl3]
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shows a nearly linear {Ir-Hg-Cl} group [Hg-Ir 2.5870(11) Å, Hg-Cl 2.354(5) Å, Ir-Hg-Cl
172.12(15)◦]. Long Hg···Cl interactions [2.914(6)–3.011(5) Å] connect the cation to the
[HgCl3]− anion.

Other approaches for the synthesis of {M-Hg-Y} derivatives are based on the cleavage
of metal–metal bonds by HgY2, using substrates such as LnM-Hg-MLn trinuclear complexes,
M-SnR3 organostannyl species and dinuclear M-M clusters (Equations (2)–(4)) [85–91]. For
instance, species having formulae [M(HgY)(η5-C5H5)(CO)n] [M = Mo, n = 3; M = W, n = 3;
M = Fe, n = 2; Y = Br, I] and [Co(HgY)(CO)3L] [Y = Cl, Br; L = CO or phosphine] were
prepared from the corresponding {M-Hg-M} precursors [85,86].

[LnM-Hg-MLn] + HgY2 → 2 [LnM-HgY] (2)

[LnM-SnR3] + HgY2 → [LnM-HgY] + SnYR3 (3)

[LnM-MLn] + HgY2 → [LnM-HgY] + [LnM-Y] (4)

The oxidative addition of HgY2 to a metal center in low oxidation state can
also afford {M(HgY)(Y)} complexes (Equation (5)), as shown by the reaction between
[Mo(CO)4(phenMe2)] [phenMe2 = 2,9-dimethyl-1,10-phenanthroline] and HgCl2, leading to
[Mo(HgCl)Cl(CO)3(phenMe2)] [92]. {PtIV(HgY)Y} derivatives prepared through oxidative
addition of HgY2 to divalent platinum complexes are further examples of such a synthetic
strategy, deeply investigated by Puddephatt and co-workers [93–96]. Transition metal
hydrides can also behave as precursors for the preparation of mercury monohalide deriva-
tives, thanks to the formal exchange between isolobal {HgY} and {H} fragments (Equation
(6)). Examples are [Co(HgY)L4-n(CO)n] [L = phosphite; n = 0–2] complexes obtained from
the corresponding hydrides and HgY2 [97].

[LnM] + HgY2 → [Ln(Y)M-HgY] (5)

[LnM-H] + HgY2 → [LnM-HgY] + HY (6)

Besides [Co(HgCl)(η5-C5H5)(CO)2]Cl and [Ir(HgCl)(η5-C5Me5)(CO)2][HgCl3], sev-
eral structurally characterized organometallic {M-Hg-Y} derivatives containing a single
{HgY} unit are present in the literature, in particular for Group 6 transition metals. In
[Mo(HgCl)(η5-C5H4R)(CO)3] [R = H, Me], the molybdenum center is seven-coordinated,
and the Hg-Mo distance is unaffected by the substitution of the cyclopentadienyl ring
[2.683(1) Å for R = H, 2.680(2) Å for R = Me]. The Hg-Cl bonds are comprised between
2.442(3) Å [R = H] and 2.398(5) Å [R = Me]. The {Mo-Hg-Cl} fragment is more bent in
the cyclopentadienyl derivative [160.02(9)◦] with respect to the methylcyclopentadienyl
complex [172.0(1)◦]. Both the compounds show contacts between {HgCl} fragments be-
longing to neighboring molecules, with Hg···Cl distances slightly above 3.0 Å [98–100].
[Mo(HgCl)(η5-C5H4Me)(CO)3] is depicted as an example in Figure 10b. Further analogous
compounds with substituted cyclopentadienyl rings were synthesized and characterized,
and the interest was focused on the 95Mo and 199Hg chemical shift values [101]. The cy-
clopentadienyl rings can be formally replaced by isolobal ligands, such as boratabenzenes.
The structure of the complex [Mo(HgCl)(η5-3,5-Me2C5H3BNiPr2)(CO)3}] is comparable
with that of [Mo(HgCl)(η5-C5H4Me)(CO)3] [102]. The Mo-Hg bond appears scarcely af-
fected also by the replacement of one of the carbonyl ligands with a trivalent Group 15
ligand. For instance, the Hg-Mo distance in [Mo(HgI)(η5-C5H4Me)(CO)2(AsPhMe2)] is
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2.685(3) Å, in line with the previous examples. The Hg-I bond length is 2.720(3) Å and
the Mo-Hg-I angle is 167.40(8)◦. The intramolecular Hg···I distances are long, 3.561(3)
Å [103]. The related [W(HgCl)(η5-C5H5)(CO)2(PPh3)] complex, obtained by reacting
[Hg{W(η5-C5H5)(CO)3}2] with PPh3 in the presence of chlorinated solvents, shows Hg-
W and Hg-Cl bond lengths respectively equal to 2.667(1) and 2.382(4) Å and a W-Hg-
Cl angle of 173.8(1)◦ [104]. For what concerns non-cyclopentadienylic Group 6 deriva-
tives, the structures of [Mo(HgCl)Cl(CO)3(N-N)] [N-N = 2,2′-bipyridine, 2,9-dimethyl-1,10-
phenanthroline] complexes were reported. The Hg-Mo bond lengths are between 2.700(7)
and 2.724(2) Å, slightly longer than in the previously described molybdenum-mercury
compounds [92,105].

No {M-Hg-Y} complex of Groups 3 and 4 elements is present in the literature. For what
concerns Group 5 derivatives, the proposed general formula for the unique compounds
synthesized is [Nb(HgY)2H(η5-C5H5)2]·xHgY2 [Y = Cl, Br, I; x = 0.5–1], but the character-
ization data are not supported by X-ray structure diffraction [106]. Crystal structures of
dinuclear {M-Hg-Y} compounds belonging to Group 7 are also absent. Despite the fact
that complexes of the type [M(HgY)(CO)5] [M = Mn, Re] were prepared from the cleavage
of M-Sn or M-LnII [LnII = divalent lanthanide] bonds by HgY2, the characterization data
are limited to elemental analyses and IR spectra [90,107]. Only spectroscopic data are
available also for the carbonyl complexes [Mn(HgBr)(η5-C5H4Me)(SiPh2Me)(CO)2] [108],
[Re(HgCl)(η5-C4H4BPh)(CO)3] [109] and [Re(HgY)2(η5-C5H5)(CO)2] [Y = Br, I] [110]. As
for [Nb(HgY)2H(η5-C5H5)2]·xHgY2, the last species is described as containing two {HgY}
fragments interacting with the same rhenium center. The only technetium derivative re-
ported is [Tc(HgBr)(NAr)3] [Ar = 2,6-diisopropylphenyl] [111], but also in this case the
X-ray structure is absent.

An example of a structurally characterized {M-Hg-Y} Group 8 derivative with unsup-
ported Hg-M interaction is mer-[Fe(HgBr)(SiMePh2)(PMe3)(CO)3]. The Hg-Fe and Hg-Br
bond lengths are 2.515(3) and 2.535(3) Å, respectively, and the Fe-Hg-Br angle is 161.0(1)◦.
The compound is a dimer at the solid state thanks to a second Hg···Br interaction, equal to
3.063(1) Å [112]. The compounds [{Fe(HgY)(CO)4}Hg{Fe(HgY)(CO)4}] [Y = Cl, Br] [113]
allow the comparison between the Hg-M bonds involving {HgY} and {µ-Hg} fragments
in the same molecule. The interactions of the iron centers with the bridging mercury
atom are longer [2.562(2)–2.570(2) Å for Y = Cl; 2.637(3)–2.638(4) Å for Y = Br] than those
with the mercury monohalides, in particular when Y = Br [2.518(2)–2.522(2) Å for Y = Cl;
2.351(3)–2.385(3) Å for Y = Br]. The structure of [{Fe(HgBr)(CO)4}Hg{Fe(HgBr)(CO)4}] is
depicted in Figure 10c. Besides the Hg-Y bonds, in both the structures additional Hg···Y
long interactions are present, above 3.1 Å. Another noticeable example of iron–mercury
complex is [Fe(HgCl)2(CO)4], discovered in 1928 [114], where two {HgY} fragments interact
with the same transition metal center. The structure of the related [Fe(HgBr)2(CO)4] com-
plex (Figure 10d) revealed the presence of mercurophilic interaction between the cis-{HgBr}
fragments, with Hg···Hg distance around 3.0–3.1 Å [115]. One or two carbonyl ligands of
[Fe(HgY)2(CO)4] can be replaced by N-donor ligands [53]. The synthesis and reactivity of
other {Fe-Hg-Y} complexes are reported in the literature, such as [Fe(HgY)(NO)(CO)3] [116]
and [Fe(HgY)(η5-C5H5)(CO)2] [90,117,118], but unfortunately data from single-crystal X-
ray diffraction were not collected. Bond lengths and angles are instead available for the
osmium derivative [Os(HgCl)(NO)Cl2(PPh3)2], formed by oxidative addition of HgCl2
to [OsCl(CO)(NO)(PPh3)2] and loss of the carbonyl ligand. The transition metal center is
six-coordinated and the Hg-Os distance is 2.577(6) Å. The {Os-Hg-Cl} fragment is almost
linear, being the angle 177(1)◦ [119].

Besides [Co(HgCl)(η5-C5H5)(CO)2]Cl [83] and [Ir(HgCl)(η5-C5Me5)(CO)2][HgCl3] [84],
examples of structurally characterized Group 9 {M-Hg-Y} complexes are [Co(HgY){P(OPh)3}4]
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[Y = Cl, Br] derivatives [120]. The Hg-Co distance is almost unaffected by the choice of
the halide, falling in the 2.481(2)–2.485(2) Å range. The Co-Hg-Y angles are also strictly
comparable, being 163.1(1) and 163.8(1)◦. Unfortunately, the bond lengths and angles are
not available for the related tetracarbonyl complexes [121]. In the case of iridium, crystal
data were reported for [Ir(HgCl)Cl2(CO)(PPh3)2], dimer at the solid state [Hg-Ir 2.570(1) Å,
[Hg-Cl 2.366(5) Å, Hg···Cl 3.148(5) Å, Ir-Hg-Cl 172.2(1)◦], and for the isomorphous bromo-
derivative [Ir(HgBr)ClBr(CO)(PPh3)2], both derived from the oxidative addition of HgY2

to Vaska’s complex trans-[IrCl(CO)(PPh3)2] [122]. Other compounds have the general for-
mula [Ir(HgCl){CCCW(TpR2)(CO)2}2(CO)(PPh3)2] [TpR2 = tris(pyrazol-1-yl)borate, tris(3,5-
dimethylpyrazol-1-yl)borate]. The Ir-Hg distances are between 2.5905(16) and 2.615(3) Å,
while the {Ir-Hg-Cl} fragments are almost linear [123]. A recent example of structurally
characterized Group 9–HgCl complex is [Ir(HgCl)(CˆNˆC)(COD)] [H2CˆNˆC = 2,6-bis(4-
tert-butylphenyl)pyridine] [16]. The Hg-Ir distance is 2.5705(3) Å and the Ir-Hg-Cl angle
is 171.64(4)◦.

X-ray data for binuclear {M-Hg-Y} compounds with the transition metal center belong-
ing to Group 10 and unsupported M-Hg bonds are available for M = Pd and M = Pt. As
described before, {PtIV(HgY)Y} complexes can be obtained from the oxidative addition of
HgY2 to suitable Pt(II) precursors, such as square-planar species with two C-donors and a
bidentate N-donor in the coordination sphere [93–96]. The Hg-Pt distance is usually slightly
above 2.5 Å and dimerization at the solid state can occur thanks to long Hg···Y interactions.
The structure of [Pt(HgBr)BrMe2(bpyBu2)] [bpyBu2 =4,4′-di(tert-butyl)-2,2′-bipyridine] is
shown as an example in Figure 10e. HgCl2 also reacts with the trinuclear cluster [Pt2Pd(µ-
dpmp)2{CN(2,6-Me2C6H3)}2]2+ [dpmp = bis(diphenylphosphinomethyl)phenylphosphine],
with the break of the Pt-Pd bond and the formation of [Pt2Pd(HgCl)(Cl)(µ-dpmp)2{CN(2,6-
Me2C6H3)}2]2+, where the {HgCl} fragment is bonded to palladium [Hg-Pd 2.5830(5) Å],
while the other halide interacts with one of the platinum centers. The mercury–palladium
bond was described as HgI-PdI, and the additional interaction of mercury with one
of the platinum atoms is suggested by the Hg···Pt distance equal to 2.8191(3) Å [124].
On considering another synthetic approach, the reaction of [PtH(PP3)]+ [PP3 = tris(2-
diphenylphosphinoethyl)phosphine] with PhHgCl gave [Pt(HgCl)(PP3)]+, where the {HgCl}
fragment occupies one of the apical positions of a trigonal bipyramid surrounding the plat-
inum center. The Hg-Pt bond length is 2.5511(9) Å and the Pt-Hg-Cl angle is 174.63(7)◦ [125].

As previously described for HgY2 and {HgY(µ-Y)2YHg}, also the interaction of the
{HgY} fragment with a transition metal center can be enforced by the presence of donor
atoms in the ancillary ligands able to interact with mercury. Functionalized phosphines such
as 2-pyridylphosphine, tri(2-furyl)phosphine and related species allowed the preparation of
compounds such as [Ru(HgCl)(PPh2py)2(CO)3][HgCl3], [Fe(HgI)(CO)3(Ph2PQu)2][HgI3]
[PhPQu = 2-diphenylphosphino-4-methylquinoline], [M(HgCl)Cl2(CO)(PPh2py)2] [M = Rh,
Ir] and [Rh(HgCl)(CO)Cl2{P(C4H3O)3}2], where Hg···N or Hg···O interactions support
the Hg-M bonds [126–129]. In the cis-[M(HgY)2(PPh2py)(CO)3] [M = Ru, Y = Br; M = Os,
Y = Cl] derivatives [130], one of the two {HgY} fragments shows an unsupported bond
with the transition metal [Hg-Ru 2.602(2) Å; Hg-Os 2.627(1) Å], while the other one also
interacts with the nitrogen atom of the pyridine fragment [Hg-Ru 2.628(2) Å, Hg-N 2.772(2)
Å; Hg-Os 2.651(1) Å, Hg-N 2.67(1) Å]. Despite this difference, the Hg-Y bonds and M-Hg-Y
angles in the same molecule are very similar [Hg-Br 2.540(3) and 2.538(4) Å; Hg-Cl 2.392(6)
and 2.400(5) Å; Ru-Hg-Br 165.4(1) and 169.5(1)◦; Os-Hg-Cl 177.5(1) and 176.4(1)◦]. The
structure of the osmium derivative is shown in Figure 11a.

The possibility of quite strong Hg-N interactions with the {M-Hg-Y} fragment is
highlighted by the crystal structure of [Fe{HgCl(py)}2(CO)4], where the Hg center forms
bonds with Fe [2.552(8) Å], Cl [2.61(1) Å] and the nitrogen atom of pyridine [2.51(6) Å].
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The description of the compound at the solid state must, however, also account for a
further intermolecular Hg···Cl interaction equal to 2.771(1) Å [131]. Another example
is the triazenido-complex [Ir(HgCl){EtN3(4-Me-C6H4)}2(COD)] [Hg-Ir 2.618(1) Å], where
one of the two triazenido-ligands bridges the iridium and mercury centers [Hg-N 2.42(1)
Å] (Figure 11b). Mercury also forms an intramolecular [2.41(1) Å] and an intermolecular
[3.08(1) Å] Hg-Cl bond [132].
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grey. Hydrogen atoms omitted.

{HgY} can formally behave both as a terminal and bridging ligand. For example,
treatment of the trinuclear clusters [Fe3E(CO)9]2− [E = S, Se] with HgI2 afforded the
{HgI}-bridged species [Fe3(HgI)E(CO)9]− (Figure 12a, E = S). The mercury center forms
in both the cases two almost identical Hg-Fe bonds [2.6384(8) and 2.6385(7) Å for E = S;
2.605(2) and 2.608(2) Å for E = Se]. The Fe-Hg-Fe angles of the metallacycles are be-
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tween 64.23(2) and 67.26(6)◦, while the Hg-I bonds are between 2.641(1) and 2.6985(4)
Å [133,134]. Another Group 8 cluster where {HgY} forms two Hg-M bonds [2.612(3) and
2.862(3) Å] is [Ru5C(HgCl)(CO)14(µ-Cl)], which is reported as a dimer because of the pres-
ence of an additional long intermolecular Hg···Cl interaction [2.961(11) Å] in addition
to the Hg-Cl bond [2.412(10) Å]. However, the dissociation of the dimer in solution was
proposed [13]. The previously described [Hg{Ru3(µ3-ampy)(CO)9}2] cluster [14] reacts
with HgBr2 to form [Ru3(HgBr)(µ3-ampy)(CO)9], where a {Ru2Hg} triangle is present
[Hg-Ru 2.735(2) and 2.744(2) Å, Ru-Hg-Ru 63.79(6)◦]. Roughly comparable species are
the clusters [Os3(HgCl)(µ3-C2Ph2)(µ-Cl)(CO)9] and [Ru3(HgBr)(CO)9(C6H9)], both show-
ing dimerization at the solid state thanks to intermolecular Hg···Y interactions [135,136].
Dimerization at the solid state is not the only possibility when interactions among {HgY}
fragments belonging to different molecules occur. An example is provided by the struc-
ture of [Os3(HgI)(CO)10(µ-η1-Ph)], which is reported as a tetramer. A pseudo-cubic central
{Hg4I4} unit is present in the X-ray structure, where each mercury atom is connected to three
iodides [2.9112(8), 2.9645(8) and 3.524(1) Å]. The I-Hg-I angles are 87.29(2) and 91.11(2)◦.
Moreover, each mercury center forms two Hg-Os bonds [2.7930(6) and 2.7978(7) Å] [137].

Examples of clusters with bridging {HgY} based on metal centers belonging to
other Groups are [Rh2(HgCl)(µ-H)(CO)2{µ-(PhO)2PN(Et)P(OPh)2}2] [Hg-Rh 2.711(1) and
2.778(1) Å] [138], [Re2(HgI)(CO)8(µ-η1-C6H5)] [Hg-Re 2.7843(8) and 2.8051(7) Å] [139],
[{Re2(HgCl)(CO)8(µ-PCy2)] [Hg-Re 2.777(1) and 2.784(1) Å] and [{Re(CO)4Mo(η5-C5H5)
(CO)2(HgCl)(µ-PCy2)] [18]. In the last compound (Figure 12b), there are Hg-Re [2.707(1) Å]
and Hg-Mo [2.896(1) Å] bonds and the Re-Hg-Mo angle is 73.6(1)◦. Intermolecular Hg···Y
interactions at the solid state are common for these species.

Despite the presence of two identical transition metals, the structure of [RhCl(PPh3)
(CO)(HgCl)(µ-pz)2Rh(CO)(PPh3)] [pz = pyrazolate] is described as a {HgCl} fragment
bridging Rh(I) and Rh(III) centers, with Hg-RhI and Hg-RhIII distances respectively equal
to 2.804(3) and 2.586(2) Å [140]. The nature of the M-Hg bonds is a matter of discussion
also in trinuclear platinum-mercury derivatives. The compound [HgBr{PtMe2Cl(bpyBu2)}
{PtMe2(bpyBu2)}] [95,96] shows a covalent PtIV-HgBr bond [2.5767(7) Å], but the same {HgBr}
fragment is also involved in a second Pt→Hg donor-acceptor interaction with a Pt(II)
center [2.6973(4) Å]. Yamaguchi and Yoshiya isolated two coordination isomers of a
trinuclear heterometallic derivative having general formula [HgPt2(CH3)2Cl4(phen)]2]
[phen = 1,10-phenanthroline]. In the first isomer, [Hg{PtMe2Cl(phen)}2], the mercury
atom forms two covalent Hg-Pt bonds [2.5459(8) and 2.5483(7) Å] and the two platinum
centers are, including the bonds with mercury, six-coordinated. In the other isomer,
[{PtMe2(phen)}{HgCl}{PtMe2Cl(phen)}] (Figure 12c), {HgCl} behaves as bridge between
two platinum fragments. A covalent bond is present with the six-coordinated platinum
[Hg-Pt 2.5744(6) Å], while a longer dative Pt→Hg bond, 2.6635(7) Å, joins a square-planar
platinum fragment and {HgCl}, with the formation of a square-pyramidal geometry [141].

{HgY} can also interact with three metal centers of the same cluster, as observable
in the structures of [Ir6(HgCl)(CO)15]− and [Ir6(CO)14(HgCl)2]2− (Figure 13a,b), where
one or two faces of the {Ir6} octahedra are capped by {HgCl} fragments, with the for-
mation of three Hg-Ir bonds in the 2.768(2)–2.808(2) Å range [142,143]. Capping {HgY}
fragments are present also in the structure of [Pt6(HgI)2(µ-CO)6(µ-dppm)3], with Hg-Pt
distances varying from 2.770(2) to 2.867(1) Å [144]. A yet more complex situation was
observed in the cluster [{Hg2Br2}{Pt3(HgBr)(µ-CO)3(PPhCy2)3}2] [145], where four {HgBr}
fragments are present. Two of them compose a central {Hg2Br2} square-planar arrange-
ment of two mercury atoms and two bridging bromine atoms, with Hg-Br bond lengths
around 2.7 Å. The other two {HgBr} behave as capping ligands toward the two {Pt3}
units. Each mercury atom forms three Hg-Pt bonds [Hg-Pt 2.853(1) Å]. The three M-Hg
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bonds can have quite different lengths, as in the clusters [Os10C(HgBr)(CO)24]− [Hg-Os
bonds between 2.730(2) and 2.924(2) Å] [146], [Pd4(HgBr)2(CO)4(PEt3)4] [Hg-Pd bonds
between 2.704(1) and 2.993(1) Å] [147,148], [Pt4(HgBr)2(µ-CO)4(PPh3)4] [Hg-Pt bonds be-
tween 2.736(1) and 3.113(1) Å] [149] and [Pt4(HgI)2(µ-CO)4(PMe2Ph)4] [Hg-Pt between
2.716(3) and 3.163(3) Å] [150]. The transition metals can be also different, as occurs in the
cluster [Pt3Ru6(HgI)(µ3-H)2(CO)21]−, where the mercury center forms two Hg-Ru [2.741(2)–
2.774(2) Å] and one Hg-Pt [2.893(1) Å] bonds [151]. The presence of M–M interactions
is, however, not mandatory. In [Rh3(HgCl)(µ-Cl)3(dpmppp)L2]+ [dpmppp = meso-1,3-
bis[(diphenylphosphinomethyl)phenylphosphino]propane; L = CO, CN(2,6-Me2C6H3)] the
three rhodium centers are connected by a tetradentate phosphine, three bridging chloro-
ligands and a {HgCl} fragment forming three Hg-Rh bonds in the 2.6408(8)–2.7414(9) Å
range [152]. In [Pt3(HgCl)(µ-OH)3(C6F5)6]2− (Figure 13c), the three platinum atoms are
connected by three µ-hydroxo ligands and {HgCl} [Hg-Pt 2.750(1)–2.875(1) Å] [153]. The
main coordination modes of {HgY} described in this section are sketched in Scheme 2.
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Figure 12. Molecular structures of (a) [Fe3(HgI)S(CO)9]− [133]; (b) [{Re(CO)4Mo(η5-
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Figure 13. Molecular structures of (a) [Ir6(HgCl)(CO)15]− [142]; (b) [Ir6(CO)14(HgCl)2]2− [143];
(c) [Pt3(HgCl)(µ-OH)3(C6F5)6]2− [153]. Color map: Hg, light grey; Pt, light violet; Ir, dark blue; Cl,
light green; F, greenish yellow; O, red; C, grey. Hydrogen atoms omitted.
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Scheme 2. Sketches of the main coordination modes of {HgY} described in Section 3. Y = halide,
E = donor atom.

4. Computational Investigations on {M-Hg-Y} Derivatives
As revealed by the previous examples, the formal oxidation states in transition metal–

mercury monohalide derivatives are sometimes ambiguous; thus, the {HgY} fragment can
be considered as a Lewis acid or base on varying the transition metal fragment. [M(HgY)(η5-
C5H5)(CO)3] [M = Cr, Mo, W; Y = Cl, Br, I] and [M(HgY)(η5-C5H5)(CO)2]+ [M = Cr, Mo, W;
Y = Cl, Br, I] were selected as model compounds to investigate the M-HgY bonds from a
computational point of view. The intermolecular interactions were omitted. Cartesian coor-
dinates of all the optimized geometries from density functional theory (DFT) calculations
are provided as Supplementary Materials, together with computed Hg-M and Hg-Y bond
lengths and M-Hg-Y angles (Table S1). The stationary points obtained for [Cr(HgCl)(η5-
C5H5)(CO)3] and [Co(HgCl)(η5-C5H5)(CO)2]+ are depicted as examples in Figure 14. The
M-Hg bond lengths show a slight increase (0.02 Å or less) moving from Y = Cl to Y = I.
The M-Hg-Y angles are between 175.0 and 177.5◦ for Group 6 derivatives and between
177.3 and 179.7◦ for Group 9 complexes. The lower linearity of the {M-Hg-Y} fragments
experimentally observed in a number of cases appears to be attributable to intermolecular
interactions such as Hg···Y contacts.
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and products of the heterolytic Hg-M dissociation reactions [C-PCM/r2SCAN-3c calculations]. Color
map: Hg, light grey; Co, blue; Cr, light blue; Cl, light green; O, red; C, grey; H, white. (3, −1)
BCPs represented as small light yellow spheres. Selected computed bond lengths (Å) and angles (◦):
[Cr(HgCl)(η5-C5H5)(CO)3], Hg-Cr 2.611, Hg-Cl 2.431, Hg-Cr-Cl 175.0; [Co(HgCl)(η5-C5H5)(CO)2]+,
Hg-Co 2.495, Co-Cl 2.378, Hg-Co-Cl 179.6. Computed values at Hg-M (3, −1) BCPs [a.u.]: M = Cr, ρ
0.054, V −0.048, E −0.015, ∇2 ρ 0.074; M = Co, ρ 0.065, V −0.059, E −0.017, ∇2ρ 0.102.
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The Gibbs energy variation for the heterolysis reactions [M(HgY)(η5-C5H5)(CO)x]n+→
[M(η5-C5H5)(CO)x](n+1)+ + [HgY]− and [M(HgY)(η5-C5H5)(CO)x]n+ → [M(η5-C5H5)
(CO)x](n−1)+ + [HgY]+ [n = 0, x = 3, M = Group 6; n = 1, x = 2, M = Group 9] were
calculated by means of DFT calculations in the presence of acetone as continuous medium
(Table 1). The first dissociation affords [HgY]− anions that behave as Lewis bases toward
divalent Group 6 and trivalent Group 9 metal centers. Mercury can be considered as Hg(0).
On the other hand, the [HgY]+ cations generated by the second pathway contain divalent
mercury, and they interact with transition metal fragments that behave as Lewis bases
thanks to their electron-rich metal centers.

The heterolysis with the lowest Gibbs energy variation should suggest the most
reasonable formal oxidation states for mercury and transition metals in the complexes. As
observable in Table 1, the Group 6 and Group 9 derivatives here considered have opposite
behavior. The dissociation of [HgY]− from [M(HgY)(η5-C5H5)(CO)3] [M = Cr, Mo, W] is
the most favorable path, so the compounds appear better described as M(II) complexes
where the coordination sites are occupied by three carbonyls, a cyclopentadienyl ligand
and [HgY]−. It is worth noting the low influence of the nature of both M and Y on the
∆G values, comprised between 51.1 and 55.4 kcal mol−1. The scarce energy variations
on changing Y are in part attributable to the weak interactions between mercury and
halides in [HgY]−. On the contrary, the heterolytic dissociations of the Hg-M bonds in
[M(HgY)(η5-C5H5)(CO)2]+ [M = Co, Rh, Ir] should preferentially afford the [HgY]+ cations.
Therefore, in the Group 9 derivatives, the mercury center is probably best described as
Hg(II), behaving as Lewis acid towards electron-rich M(I) complexes. As in the previous
cases, the choice of M scarcely affects the Gibbs energy variations. On the other hand, the
dissociation requires less energy on increasing the atomic number of the halide, probably
because of the increased stability of [HgY]+ with softer halides.

Table 1. Computed Gibbs energy variations [kcal mol−1; C-PCM/r2SCAN-3c calculations] for the
heterolysis of the M-Hg bonds in selected complexes. C-PCM/r2SCAN-3c, acetone as continu-
ous medium.

Complex [M(HgY)Ln]n+ →
[MLn](n−1)+ + [HgY]+

[M(HgY)Ln]n+ →
[MLn](n+1)+ + [HgY]−

[Cr(HgCl)(η5-C5H5)(CO)3] 76.8 52.5
[Cr(HgBr)(η5-C5H5)(CO)3] 73.2 51.1
[Cr(HgI)(η5-C5H5)(CO)3] 67.2 51.1
[Mo(HgCl)(η5-C5H5)(CO)3] 78.6 53.1
[Mo(HgBr)(η5-C5H5)(CO)3] 74.8 51.6
[Mo(HgI)(η5-C5H5)(CO)3] 68.6 51.3
[W(HgCl)(η5-C5H5)(CO)3] 80.1 55.4
[W(HgBr)(η5-C5H5)(CO)3] 76.2 53.7
[W(HgI)(η5-C5H5)(CO)3] 69.9 53.4
[Co(HgCl)(η5-C5H5)(CO)2]+ 51.1 87.1
[Co(HgBr)(η5-C5H5)(CO)2]+ 47.8 85.9
[Co(HgI)(η5-C5H5)(CO)2]+ 42.7 86.7
[Rh(HgCl)(η5-C5H5)(CO)2]+ 51.9 81.2
[Rh(HgBr)(η5-C5H5)(CO)2]+ 48.5 80.1
[Rh(HgI)(η5-C5H5)(CO)2]+ 43.3 80.8
[Ir(HgCl)(η5-C5H5)(CO)2]+ 55.9 87.6
[Ir(HgBr)(η5-C5H5)(CO)2]+ 52.3 86.2
[Ir(HgI)(η5-C5H5)(CO)2]+ 46.8 86.7
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The outcome of the charge decomposition analysis on [Cr(HgCl)(η5-C5H5)(CO)3], par-
titioned as [Cr(η5-C5H5)(CO)3]+ and [HgCl]−, was {HgCl}→{Cr(η5-C5H5)(CO)3} donation
of 0.222 electrons, while the opposite process resulted limited to 0.083 electrons. The same
analysis on [Co(HgCl)(η5-C5H5)(CO)2]+, partitioned as [Co(η5-C5H5)(CO)2] and [HgCl]+,
afforded {Co(η5-C5H5)(CO)3}→{HgCl} donation of 0.258 electrons, and only 0.021 electrons
resulted back-donated. Roughly comparable values were obtained on changing the halide
and the metal center, as reported in Table S2.

The Atoms-in-Molecules (AIM) analysis on [Cr(HgCl)(η5-C5H5)(CO)3] and [Co(HgCl)
(η5-C5H5)(CO)2]+ revealed the presence of Hg-M (3, −1) bond critical points (BCPs) charac-
terized by quite high values of electron density (ρ) and absolute values of potential energy
density (V). The energy density (E) values are negative and the Laplacian of electron density
(∇2ρ) is positive, in line with Bianchi’s definition of metal–metal bond [154]. Selected data
for the two compounds are collected in the caption of Figure 14. The occupied molecular
orbitals mainly responsible for the Hg-M σ-overlaps are shown in Figure 15.

The AIM data for the other compounds, summarized in Table S3, indicate scarce
influence of the nature of the halide on the ρ and V values at Hg-M (3, −1) BCP. For what
concerns the Hg-Cl (3, −1) BCPs, the ρ and V values highlight a stronger bond in the cobalt
derivative [ρ = 0.084 a.u., V = −0.094 a.u.) respect to the chromium complex [ρ = 0.075 a.u.,
V =−0.082 a.u.]. Such a result appears in line with the greater Lewis acid behavior proposed
for the mercury center in [Co(HgCl)(η5-C5H5)(CO)2]+ respect to [Cr(HgCl)(η5-C5H5)(CO)3].
The AIM data at Hg-Y (3, −1) BCP remain roughly constant by replacing the metal center
with heavier congeners, as observable in Table S3. The different strength of the Hg-Cl bonds
was confirmed by the computed Mayer bond orders [155], equal to 0.670 in [Co(HgCl)(η5-
C5H5)(CO)2]+ and 0.580 in [Cr(HgCl)(η5-C5H5)(CO)3]. Despite all the differences, the Hg-M
Mayer bond order values in [Cr(HgCl)(η5-C5H5)(CO)3] and [Co(HgCl)(η5-C5H5)(CO)2]+

are strictly comparable, respectively equal to 0.650 and 0.646.
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5. Computational Methods
The geometry optimizations were carried out with the r2SCAN-3c method [156], based

on the meta-GGA r2SCAN functional [157] combined with a tailor-made triple-ζ Gaussian
atomic orbital basis set, with relativistic effective core potentials for mercury and the heavier
atoms [158,159]. The method also includes refitted D4 and geometrical counter-poise
corrections for London dispersion and basis set superposition error [160,161]. The C-PCM
implicit solvation model was added, considering acetone as continuous medium [162]. IR
simulations were carried out using the harmonic approximation, from which zero-point
vibrational energies and thermal corrections (T = 298.15 K) were obtained. Calculations
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were carried out using ORCA version 5.0.3 [163,164] and the output files were analyzed
with Multiwfn version 3.8 [165].

6. Conclusions
The chemistry of heteropolymetallic transition metal–mercury compounds is complex

and fascinating, and the examples provided in this review do not complete the portrait
of possibilities offered by the presence of M-Hg bonds. As an example, iron–mercury
clusters with high nuclearities and intriguing structures were isolated and characterized
by Fenske and co-workers by reacting [Fe(HgY)2(CO)4] derivatives with phosphines and
related species [166].

The present review is focused on mercury monohalides, whose modes of interaction
with transition metal fragments are qualitatively comparable with those of the hydrogen
atom thanks to the isolobal analogy. The {HgY} fragment, however, offers peculiar possibil-
ities, such as the displacement of the halide and the presence of intra- and intermolecular
mercurophilic and mercury–halide interactions. Mercury is also of interest because of the
high atomic number and the consequent relativistic effects induced in transition metal com-
pounds. Despite the well-known toxicity of mercury, which limits the use of its derivatives
in synthetic chemistry, mercury monohalides can be considered as unusual ligands able
to promote uncommon chemical and physical features in organometallic compounds, of
potential interest in the fields of catalysis and functional materials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules30010145/s1, Table S1: Selected computed bond lengths
and angles for [M(HgY)(η5-C5H5)(CO)3] [M = Cr, Mo, W; Y = Cl, Br, I] and [M(HgY)(η5-C5H5)(CO)2]+

[M = Cr, Mo, W; Y = Cl, Br, I]; Table S2: Output of the charge decomposition analysis on [M(HgY)(η5-
C5H5)(CO)3] [M = Cr, Mo, W; Y = Cl, Br, I], partitioned as [M(η5-C5H5)(CO)3]+ and [HgY]−, and
on [M(HgY)(η5-C5H5)(CO)2]+ [M = Cr, Mo, W; Y = Cl, Br, I], partitioned as [M(η5-C5H5)(CO)2]

and [HgY]+; Table S3: AIM data for the Hg-M and Hg-Y (3, −1) BCPs in [M(HgY)(η5-C5H5)(CO)3]
[M = Cr, Mo, W; Y = Cl, Br, I] and [M(HgY)(η5-C5H5)(CO)2]+ [M = Cr, Mo, W; Y = Cl, Br, I]; List S1:
Cartesian coordinates of the DFT-optimized structures.
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