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Abstract 

Background A subset of developmental disorders (DD) is characterized by disease-specific genome-wide meth-
ylation changes. These episignatures inform on the underlying pathogenic mechanisms and can be used to assess 
the pathogenicity of genomic variants as well as confirm clinical diagnoses. Currently, the detection of these episig-
nature requires the use of indirect methylation profiling methodologies. We hypothesized that long-read whole 
genome sequencing would not only enable the detection of single nucleotide variants and structural variants 
but also episignatures.

Methods Genome-wide nanopore sequencing was performed in 40 controls and 20 patients with confirmed or sus-
pected episignature-associated DD, representing 13 distinct diseases. Following genomic variant and methylome 
calling, hierarchical clustering and dimensional reduction were used to determine the compatibility with microarray-
based episignatures. Subsequently, we developed a support vector machine (SVM) for the detection of each DD.

Results Nanopore sequencing-based methylome patterns were concordant with microarray-based episignatures. 
Our SVM-based classifier identified the episignatures in 17/19 patients with a (likely) pathogenic variant and none 
of the controls. The remaining patients in which no episignature was identified were also classified as controls 
by a commercial microarray assay. In addition, we identified all underlying pathogenic single nucleotide and struc-
tural variants and showed haplotype-aware skewed X-inactivation evaluation directs clinical interpretation.

Conclusion This proof-of-concept study demonstrates nanopore sequencing enables episignature detection. In 
addition, concurrent haplotyped genomic and epigenomic analyses leverage simultaneous detection of single 
nucleotide/structural variants, X-inactivation, and imprinting, consolidating a multi-step sequential process into a sin-
gle diagnostic assay.

Keywords Long-read sequencing, Developmental disorders, Methylation, Methylome, Episignatures, Nanopore 
sequencing, X-inactivation, Support vector machine

Background
The epigenome plays a central role in regulating differ-
ential gene expression. Epigenetic variation is therefore 
involved in several adaptative but also pathological pro-
cesses. Repeat expansion-associated modifications of 
promotor methylation have long been recognized as a 
cause of developmental disorders (DD) [1, 2]. Imprinting 
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defects are also known to disturb development, growth, 
and metabolism [3]. More recently, methylome studies 
in patients with unexplained DD revealed rare epige-
netic changes in 23% of patients with a 2.8-fold excess 
of de novo epivariants [4], suggesting that these may be 
involved in their etiology. Yet, apart from a handful of 
targeted methylation assays for well-known imprinted 
regions, epigenomic analyses are currently not routinely 
performed in the diagnostic work-up of patients with 
DD.

Besides localized epigenetic variants, genome-wide 
methylation studies in DD have recently revealed multi-
loci, disorder-specific methylation disturbances, called 
episignatures. Episignatures have initially been identified 
in disorders caused by known chromatin and/or methyla-
tion regulatory gene disruptions [5]. An increasing num-
ber of disorders are characterized by episignatures and 
recognizable methylation pattern changes have now been 
detected in over 60 diseases [6]. For some, such as certain 
microdeletion syndromes [7], the mechanism causing 
reproducible genome-wide methylation changes remains 
unclear. Mapping the methylome in DD will therefore 
improve our understanding of pathogenic mechanisms 
and might leverage new insights in the origins of phe-
notypic variability. In addition, episignatures have a 
high diagnostic value in assessing the pathogenicity of 
genomic variants of unknown significance (VUS) and in 
confirming clinical diagnoses in patients for which the 
underlying genomic variant could not be identified [8].

The current standard method used to identify episigna-
tures in DD is based on bisulfite conversion of methylated 
cytosines followed by methylation analysis using Illumina 
Epic/Infinium methylation microarrays [6]. Microarray-
based episignature analysis is proposed on the publicly 
available EpiGenCentral platform for a subset of diseases 
[9] and a larger panel of episignatures can be evaluated 
through the commercialized EpiSign assay [10]. A clinical 
implementation study of this method reported the detec-
tion of an episignature in 11% of patients with DD with-
out conclusive genetic finding and in 35% of patients with 
a VUS in a gene for which an episignature is described 
[10], demonstrating its diagnostic value. One drawback 
of this assay is that it represents an extra step in the diag-
nostic odyssey of patients which comes with additional 
diagnostic delays and increased costs.

With the advent of long-read sequencing technologies, 
detection of single nucleotide variants (SNVs), structural 
variants (SVs), and base modifications in a single assay 
becomes reality [11]. Both prevailing long-read meth-
odologies, nanopore (Oxford Nanopore Technologies) 
and single molecule real-time sequencing (PacBio), ena-
ble methylation detection from the native DNA strands 
without amplification, bisulfite, or enzymatic conversion 

biases [12]. Moreover, the generated long reads enable 
haplotyping [13], allowing the phasing of genetic and 
epigenetic variation. Recent studies showed the ability 
of targeted nanopore sequencing to detect X-chromo-
some inactivation (XCI) [14], methylation disturbances 
at imprinted loci [15], and short tandem repeats causing 
DD [16] as well as the concurrent detection of specific 
SNVs, SVs, and methylation changes for tumor classifica-
tion [17].

Considering the potential of nanopore sequencing to 
detect localized methylation levels and disease states, 
we reasoned it should be possible to map methylome-
wide disturbances in chromatinopathies. Hence, we 
explored the potential to concurrently detect episigna-
tures and underlying pathogenic variants. We performed 
long-read whole genome nanopore sequencing (lrWGS) 
of 20 patients representing 13 different rare DD with 
known episignatures, as well as 40 controls. We report 
non-inferiority of nanopore sequencing for detecting 
episignatures and demonstrate concurrent detection of 
underlying SNVs or SVs. We also confirm the detection 
of imprinting as well as haplotype-aware skewed XCI in 
an untargeted setting. In addition, our results illustrate 
some limitations of current episignatures. Overall, our 
study underscores the diagnostic value of lrWGS which 
might ease rare diseases diagnosis by offering simultane-
ous genome and epigenome analysis.

Methods
Study cohort
Twenty patients with a confirmed or a suspected DD for 
which an episignature is described (Table  1, Additional 
file 1: Table S1), as well as 40 healthy controls, from the 
Center of Human Genetics of Leuven were prospectively 
recruited. For the first phase of our study, we included 
11 patients (EPI_01 to EPI_11) representing four dis-
eases as well as five controls. Seven patients were initially 
sequenced: two with Kabuki, Sotos, and Wiedemann-
Steiner syndrome, and one with Cornelia de Lange 
syndrome. Subsequently, one additional patient was 
recruited for each of these four diseases. The samples of 
these four extra individuals were blinded by the recruit-
ing physician for subsequent analyses. For the second 
phase, nine additional patients (EPI_12 to EPI_20) with 
different confirmed or suspected diseases were included 
to increase the amount of evaluated episignatures as well 
as 35 other controls. Two of the patients were selected 
based on the presence of a VUS and not a (likely) path-
ogenic variant, as evaluation and illustration of one of 
the major applications of episignature detection. The 
genomic variants of all patients had been identified by 
chromosomal microarray, targeted Sanger sequencing, 
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or trio-based exome sequencing (WES) (Additional file 1: 
Table S1).

Long‑read sequencing
At inclusion, one blood sample (EDTA) was collected 
from the participants and fresh or frozen (− 80 °C) blood 
was used for HMW DNA extraction (Promega Wiz-
ard®, Monarch®). For four patients and two controls, 
DNA extracted with the automated Revvity—Chemagic® 
workflow and stored at − 20 °C was retrieved (Additional 
file  2: Table  S2). Libraries were prepared from 3  µg of 
DNA using the Oxford Nanopore Technologies (ONT) 
Ligation Sequencing Kit (SQK-LSK110). Each sample 
was loaded on a R.9.4.1 Flow Cell and reloaded once after 
24–48  h, for a total sequencing period of 72–96  h on a 
PromethION®. From HMW DNA extracted from fresh 
blood, we obtained a median output of 95.6  GB and a 
median N50 of 40.4 kb. Using frozen blood, the median 
output was 116.25  GB, and the median N50 31.9  kb. 

Using stored non-HMW DNA, the median output and 
N50 were 113.7  GB and 17  kb, respectively (Additional 
file 2: Table S2).

For patient EPI_13, additional urine and buccal swab 
samples were collected. DNA extraction of these tissues 
was performed using the Qiagen® and MagCore® chem-
istries, respectively. Using the SQK-LSK110 chemistry 
and R.9.4.1 Flow Cells, we generated an output of 100 GB 
for the urine (N50 = 9.79 kb) and 146.7 GB for the buccal 
swab (N50 = 7.25 kb).

(Modified) basecalling, mapping, SVs and SNVs calling
To extract methylation information from raw ONT data, 
we performed modified basecalling with Dorado (v0.3.0) 
using the dna_r9.4.1_e8_sup@v3.3_5mCG model [17]. 
After basecalling, reads were aligned to hg38 with mini-
map2 (v2.24) [19]. Subsequently, bedMethyl files, used in 
downstream analysis, were generated from aligned BAM 
files using modkit (v0.1.13 with pileup –preset traditional 

Table 1 Concurrent detection of episignatures (SVM-based) and underlying genomic variants. The seven first columns of the table 
describe patient characteristics and (likely) pathogenic genomic variants or VUS (marked by a “?”) detected by standard of care 
methods. The next column indicates the result of the SVM-based classifier for each sample. Patients for which no episignature is 
identified by the classifiers are classified as control (italic). The last column specifies the ranking of the underlying genomic variant 
in the fast track analysis of a phenotype-drive prioritization tool (Geneyx) [18]. For the variants prioritized in a subanalysis, both the 
subanalysis (structural variant (SV) or X-linked (XL)) and the ranking in the subanalysis are provided. *Manual curation of the gene was 
needed for the identification of this mosaic variant given Clair3 was targeting heterozygous SNVs

Study ID Age Sex Gene Transcript Variant Syndrome SVM classifier result SV/SNV ranking

EPI_01 12 F KMT2D NM_003482.4 c.8311C > T p.(Arg2771*) Kabuki Kabuki 1

EPI_02 24 F KMTD2 NM_003482.4 c.8304_8307del 
p.(Ser2768Argfs*18)

Kabuki Kabuki 1

EPI_03 7 M NSD1 NM_022455.5 c.6188 T > C p.(Leu2063Pro) Sotos Sotos 1

EPI_04 6 M NSD1 NM_022455.5 c.3659_3660del 
p.(Glu1220Alafs*5)

Sotos Sotos 1

EPI_05 11 M KMT2A NM_001197104.2 c.6571C > T p.(Arg2191*) Wiedemann-Steiner Wiedemann-Steiner 1

EPI_06 22 M KMT2A NM_001197104.2 c.10168C > T p.(Gln3390*) Wiedemann-Steiner Wiedemann-Steiner 1

EPI_07 14 F SMC3 NM_005445.4 c.720_722del p.(Asp240del) Cornelia de Lange Cornelia de Lange 3

EPI_08 46 M KMT2D NM_003482.4 c.16517_16518del 
p.(Glu5506Glyfs*5)

Kabuki Kabuki 1

EPI_09 2 M NSD1 NM_022455.5 c.4905C > G p.(Cys1635Trp) Sotos Sotos 1

EPI_10 5 M KMT2A NM_001197104.2 c.3460C > T p.(Arg1154Trp) Wiedemann-Steiner Wiedemann-Steiner 1

EPI_11 5 M SMC3 NM_005445.4 c.2166_2167insCCC GAG  
p.(Glu722_Thr723insProGlu)

Cornelia de Lange Cornelia de Lange 4

EPI_12 13 F SMARCA2 NM_003070.5 c.3476G > A p.(Arg1159Gln) Nicolaides-Baraitser Nicolaides-Baraitser 1

EPI_13 15 F PHF6 NM_001015877.2 c.306del p.(Tyr103Thrfs*40) Börjeson-Forssman-
Lehmann

control 1

EPI_14 14 F KANSL1 NM_015443.4 c.1419dup p.(Arg474Thrfs*3) Koolen-De Vries Koolen-De Vries 1

EPI_15 2 months M EHMT1 NM_024757.5 c.3717-2A > G Kleefstra Kleefstra 2

EPI_16 3 M chr7:g.72900001_76430000del Williams-Beuren Williams Beuren SV: 1

EPI_17 4 M EP300 NM_001429.4 g.41168065_41171580del Rubinstein-Taybi Rubinstein-Taybi SV: 1

EPI_18 3 M ZNF711 NM_001330574.2 c.1361A > G p.(His454Arg) MRX97? control 4

EPI_19 3 M KMT2D NM_003482.4 c.3002_3005del 
p.(Leu1001Profs*15)

Kabuki Kabuki Absent*

ATRX NM_000489.6 c.7263_7265del p.(Gln2425del) ATRX? XL: 1

EPI_20 5 M UBE2A NM_003336.4 c.19C > T p.(Arg7Trp) MRXSN control 2
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–only-tabs) [20]. Methylation was visualized with Methy-
lartist [21] and Integrative Genomics Viewer (IGV) [22].

To evaluate concurrent detection of the underlying 
genomic variants, SNVs were called with Clair3 (v1.0.4) 
[23], which was also used to generate haplotagged BAM 
files. SVs were called using Sniffles2 (v2.0.2) [24, 25]. 
To improve the sensitivity for large copy number vari-
ants (> 50  kb), known to be difficult to detect with cur-
rent nanopore SV callers [25], we applied QDNAseq 
(v1.3.8) [26], a read-depth based software. Presence of 
the genomic variant was verified in the Geneyx platform 
v6.0. [18], enabling phenotype-driven as well as ACMG 
classification based variant prioritization to perform a 
fast analysis in the absence of parental data.

Detection of differentially methylated regions: imprinting 
and X‑inactivation
Imprinting was assessed by quantifying and visualizing 
methylation of both haplotypes at six loci located in three 
imprinted regions associated with DD (11p15.5, 14q32, 
and 15q11-q13). The following CpGs were assessed: 242 
CpGs at the H19 (chr11:1,997,509–2003349, hg38), 194 
CpG at the KCNQ1 (chr11:2,698,155–2,701,028, hg38), 
188 CpG at the MEG3 (chr14:100,824,185–100827640, 
hg38), 45 CpG at the MEG8 (chr14:100,904,325–100905081, 
hg38), 116 CpG at the SNRPN (chr15:24,954,564–24,956,828, 
hg38), and 52 CpG at the MAGEL2 (chr15:23,647,178–
23,648,424, hg38) imprinted loci.

To evaluate XCI, we assessed methylation at two vali-
dated loci, also recently targeted by CRISPR-Cas9 nano-
pore sequencing for this purpose: 115 CpGs at the AR 
gene loci (chrX:67,543,761–67,546,170, hg38) and 57 
CpGs at the RP2 gene loci (chrX:46,836,539–46,837,273, 
hg38) [14]. In addition, 99 CpGs in the promotor region 
of PHF6 were evaluated (chrX:134,372,110–134374891, 
hg38).

Differential methylation at these loci was quantified 
and visualized in the six females of our cohort. Loci 
with < 10 × total coverage or < 5 × coverage for one of 
the haplotypes were excluded from subsequent analyses 
(16/120 loci for imprinting evaluation and 3/18 loci for 
XCI analyses).

For the mothers of EPI_18 and EPI_19, XCI was evalu-
ated by the standard of care method, i.e., comparing the 
relative amount of PCR amplification products of both 
AR gene CAG-repeat haplotypes after methylation-sensi-
tive restriction enzyme digestion.

Distinction of episignatures by dimensional reduction 
and clustering
Thirty-four disease-specific episignatures have been iden-
tified through microarrays and published by Aref-Eshghi 
et al. [5]. The most significant microarray probes for each 

disease and methylation levels at these loci have been 
made available. We extracted the DNA methylation beta 
values from this published dataset at all episignatures 
probes’ loci for the 34 diseases and the included control. 
This extraction provided, for every episignature locus, 
one array-based example of the episignature in presence 
of the disorder and 34 examples of methylation levels at 
these loci in the absence of the disorder. Using pyliftover 
[27], all the probes (loci) encoding episignatures were 
lifted from hg19 to hg38. During the liftover, only a single 
CpG locus in the SBBYSS episignature was lost. Methyla-
tion levels were extracted from the nanopore sequencing 
data at the episignature loci using hg38 coordinates. Dur-
ing this process, the percentage of methylated reads was 
extracted from bedMethyl files. Using python (v3.9.15), 
three approaches were used to determine the similar-
ity between array- and nanopore-based episignatures: 
UMAP (umap-learn_v0.5.4 [28], n_neighbors = 2) and 
t-SNE (sklearn_v1.2.2 [29], n_components = 2, perplex-
ity = 2) for dimensional reduction, and hierarchical clus-
tering (scipy_v1.9.3 [30], seaborn_v0.12.2 [31]). These 
three approaches were first applied using seven samples, 
representative of four diseases (EPI_01 to EPI_07) as 
well as five healthy controls, and repeated including four 
blinded samples (EPI_08 to EPI_11).

Development of a SVM classifier
We adopted the one-vs-all approach and trained 34 indi-
vidual support vector machines (SVMs) using disorder 
episignature loci DNA methylation median beta values 
[5]. A linear kernel (sklearn v1.2.2 [29]) was used to train 
the SVMs, as it demonstrated strong performance with 
the given dataset. All parameters, excluding class_weight, 
were set to their default values as provided by sklearn 
v.1.2.2 [29]. SVMs were trained to predict the presence of 
a specific disorder episignature considering all the other 
cases as controls. Each SVM was trained using 35 array 
derived episignatures [5]: one “positive” episignature 
representing the disorder of interest and the 34 “nega-
tive” episignatures, representative of the other disorders 
as well as a control dataset, all being used as control. 
While this approach guaranteed one and 34 examples 
of methylation values in the presence and in the absence 
of the disorder, respectively, it also introduced an unbal-
ance between the positive (disorder presence) and nega-
tive (disorder absence) classes that could affect the SVM 
training. To overcome this issue, we adjusted the weight 
of the classes during the training process. Due to the 
limited number of positive samples (only one per SVM), 
alternative methods for addressing class imbalance, such 
as data augmentation or sampling strategies, were not 
feasible. Therefore, class weights were adjusted, with the 
positive class weight set to ten, and the negative class 
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weight set to one. The value of ten for the positive class 
was chosen heuristically after experimenting with differ-
ent values.

To predict each sample’s class, we ran all the 34 SVM 
classifiers on the 20 patient samples and 40 control sam-
ples and assigned the sample to the class with the highest 
confidence score. Confidence scores represent the deci-
sion function indicating the signed distance of a sample 
from the separating hyperplane. If none of the classifiers 
returned a positive confidence score or all the confidence 
scores were < 0.30, the sample was classified as control.

Results
Imprinting detection
To verify the haplotype-aware methylation detection, 
six loci localized in three imprinted regions (11p15.5, 
14q32, and 15q11-q13) were investigated in six 
patients (Fig.  1, Additional file  4: Fig. S1). Visualizing 

both haplotypes’ methylation, we observe consistent 
methylation of most CpGs of one allele in contrast to 
the absence of methylation of most CpGs of the other 
haplotype at the different loci in all patients. The 
H19 imprinted region is less covered than the other 
imprinted loci after phasing in several individuals, 
probably because of its location in a repetitive genomic 
region. Further quantification of methylation at these 
six imprinted loci shows mean percentages of methyla-
tion between 89.3 and 96.3% for the methylated hap-
lotypes and 4.1 to 16.5% for the unmethylated alleles 
(Additional file 4: Fig. S1, Additional file 3: Table S3A). 
These results are concordant with expectations of 
mono-allelic expression at imprinted loci and illustrate 
direct allelic methylation measurement as comparison 
to standard technologies where disturbances of one 
allele’s methylation are inferred from total methylation 
levels.

Fig. 1 Detection of differential methylation at imprinted loci. Haplotype aware methylation visualization [21] of EPI_02 at 6 imprinted loci 
(middle and right part). The maternal allele is represented in orange and paternal allele in blue. The upper part of each plot represents the reads, 
with methylated CpGs visualized as black circles. In the lower part of each plot, after translation from genome to CpG-only coordinate space, 
raw log-likelihood ratios are plotted above a smoothened graph of methylation fraction. The left part illustrates gene localization and expression 
at these 3 imprinted loci. Active genes are represented as full boxes with arrows, whereas untranslated genes are represented by empty boxes. Full 
circles represent methylated CpG islands whereas empty circles represent unmethylated CpG islands
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Episignature distinction using microarray data as reference
To evaluate the potential of nanopore sequencing-based 
episignature detection, seven patients representing four 
different diseases (Kabuki, Sotos, Wiedemann-Steiner, 

and Cornelia de Lange syndromes) were initially 
sequenced. Two-dimensional reduction analyses of 
episignatures (Fig.  2A, Additional file  5: Fig. S2), com-
paring our samples to the microarray-based disease 

Fig. 2 Nanopore methylation analysis enables to distinguish disease samples from controls and other diseases samples. UMAP scatter plots 
(A), hierarchical clustering (B, left part), and heatmaps (B, right part) based on methylation levels at Sotos, Kabuki, Wiedemann-Steiner (WDSTS), 
and Cornelia de Lange (CdLS) syndromes episignature loci. Nanopore sequencing data of five healthy controls and 11 (seven known and four 
blinded) patients with one of the four disorders are represented, along with the array-based reference for the respective episignature. Patients 
sequenced with nanopore cluster in close proximity to their respective array-based episignature reference. Blinded samples can be assigned 
the correct diagnosis



Page 7 of 13Geysens et al. Genome Medicine            (2025) 17:1  

reference as well as five healthy controls, co-located 
nanopore methylation values close to the reference 
microarray data for each disease sample at their disease-
specific loci.

To further confirm the hypothesis that nanopore-based 
methylome analysis can be used to recognize episigna-
tures, we sequenced an additional four blinded cases 
(one of each disease). Hierarchical clustering (Fig. 2B) of 
methylation levels at the disease’s episignature loci com-
bined with the microarray methylome profiles used as a 
reference clustered all blinded samples with the disease 
reference and other samples with the same disorder. Sim-
ilarly, the blinded samples clustered with samples with 
the same disease in the UMAP analysis (Fig. 2A). Meth-
ylation levels at other disease-specific loci are discrimi-
native for some diseases (e.g., CdLS and WDSTS loci 
for Sotos), but not for all (e.g., Kabuki loci for Sotos), as 
was shown in the original publications [5]. Moreover, the 
heatmaps show how strong the methylation differences 
are in some diseases (e.g., Sotos), but subtle in others. 
Nonetheless, even in those diseases with small methyla-
tion variation, hierarchical clustering enables to recog-
nize each sample’s disease.

SVM‑based episignature detection
Our primary results showed, through different 
approaches, a high similarity between the microar-
ray reference [5] and nanopore episignatures. However, 
methods like UMAP require interpretation upon visual 
representation, and in the case of hierarchical cluster-
ing, determining the cutoffs or number of clusters is not 
trivial. For this reason, we developed an automated and 
generic approach to screen samples for 34 shared episig-
natures [5] using SVM classifiers. Our classifiers were 
tested on the 11 patients assessed in our first analyses and 
nine additional samples, representing 13 diseases, as well 
as 40 controls. In 17/20 patients with a (suspected) DD, 
the classifiers recognized an episignature and assigned 
the sample to the right disease (Table 1). All healthy indi-
viduals were classified as controls.

For patient EPI_19, both a maternally inherited, 
hemizygous c.7263_7265del p.(Gln2425del) VUS in 
ATRX and a pathogenic but mosaic c.3002_3005del 
p.(Leu1001Profs*15) variant in KMT2D (present in 
10–21% of cells according to WES and Sanger sequenc-
ing) were identified. The detection of the mosaic KMT2D 
variant was driven by clinical suspicion, but an additional 
ATRX syndrome could not be excluded solely based on 
the patient’s phenotype. The SVMs classified this patient 
as Kabuki syndrome, the syndrome caused by patho-
genic variants in KMT2D, but not as ATRX syndrome. 
Interestingly, the confidence score value returned by 
the SVM was lower compared to other Kabuki patients: 

0.70 in EPI_19 in contrast to 1.94, 1.78, and 2.30 for the 
three other Kabuki samples (Additional file 6: Table S4), 
likely as consequence of the mosaic status of the KMT2D 
variant. Similarly, EpiSign [10] also identified the Kabuki 
and not the ATRX signature. In addition, XCI testing 
was performed in the mother and showed a 41/59 inac-
tivation ratio. Hence, there is no skewed XCI in mater-
nal blood. Moreover, segregation analysis showed the 
presence of the ATRX c.7263_7265del p.(Gln2425del) 
variant in a healthy brother of the patient, further sup-
porting the ATRX variant to be benign. Together with the 
result of our classifier, those results indicate the KMT2D 
c.3002_3005del p.(Leu1001Profs*15) variant to be patho-
genic, but not the ATRX c.7263_7265del p.(Gln2425del) 
variant.

In three samples (EPI_13, EPI_18, and EPI20), the clas-
sifier did not recognize any of the reference episignatures 
(Table  1). For those cases, clinical testing using EpiSign 
also returned negative.

Supporting evidence from phased X‑inactivation analysis
Patient EPI_13 had a diagnosis of Börjeson-Forssman-
Lehmann syndrome (BFLS), after identification of a de 
novo pathogenic c.306del p.(Tyr103Thrfs*40) variant in 
PHF6. BFLS is an X-linked disorder with variable pene-
trance and expression in females. Functional mosaicism, 
a phenomenon where the allele on which the pathogenic 
variant is located is active in some but not all cells due 
to XCI, can explain, at least in part, this variation [32]. 
Hence, we hypothesize that the female patient with 
BFLS (EPI_13) might express the allele with the patho-
genic variant in relevant tissues but have skewed XCI in 
blood with predominant inactivation of the abnormal 
allele. This could explain the absence of episignature 
in blood. Methylation analysis of the two AR, RP2, and 
PHF6 promotor haplotypes on the patient’s blood sam-
ple showed divergent methylation levels between both 
haplotypes: 75%:2% at the AR loci, 80%:5% at the RP2 
loci, and 79%:10% at the PHF6 loci (coverage of 37 × for 
the three loci). These results point to skewing of XCI. In 
comparison, 26 to 68% of the reads of each of the two 
haplotypes are methylated at these loci in the five other 
females of the cohort (Fig. 3, Additional file 3: Table S3B). 
Evaluation of XCI of the patient’s urine and buccal swab 
samples also revealed an imbalanced inactivation, the 
percentages of methylation of both alleles being meas-
ured at 76%:19% (AR) and 75%:12% (RP2) for the urine 
sample and 71%:3% (AR) and 83%:3% (RP2) for the buccal 
swab sample (Additional file 4: Fig. S1).

To further substantiate our hypothesis, we confirmed 
EPI_13’s PHF6 c.306del p.(Tyr103Thrfs*40) pathogenic 
variant to be localized on the hypermethylated inac-
tive allele by haplotyping. Phasing is enabled by the long 
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reads spanning the 5′UTR differentially methylated 
region to the pathogenic variant. Taking further advan-
tage of this property, we could determine that the de 
novo PHF6 pathogenic variant occurred on the maternal 
allele. Available trio WES data showed an informative 
maternally inherited SNV 521 base pairs downstream 
of the pathogenic variant and nanopore long reads co-
localized these two variants to be in cis (Fig. 4). The RP2 
locus did not contain any informative SNV. The AR dif-
ferentially methylated region, however, also contained an 
informative SNV which confirms the inactivation of the 
mutated maternal allele (Additional file 7: Fig. S3). These 
results support the hypothesis that this variant is patho-
genic but, due to skewed X-inactivation, is not causing an 
epigenetic fingerprint in white blood cells.

Concurrent epigenetic and genetic diagnosis
Given that long-read sequencing offers genome in par-
allel with methylome sequencing, we wanted to evalu-
ate and confirm the potential of long-read sequencing to 
enable concurrent episignature, SV, and SNV detection. 
Hence, we assessed whether the (likely) pathogenic vari-
ants (or VUS for EPI_18 and EPI_19) could be detected 
in the nanopore sequencing data. Eighteen of 19 underly-
ing SNVs were detected using the standard bioinformatic 
analysis (see “Methods”). The mosaic KMT2D variant in 
EPI_19 was only present in 17% (5/29) of the nanopore 
reads and could not be detected. However, the variant 

allele frequency in previous short-read WES was also 
too low (22%, 38/174 reads) to be detected after default 
variant allele frequency-based filtering. Both short- and 
long-read methods did allow the KMT2D variant detec-
tion after manual curation driven by clinical suspicion. 
Two patients were heterozygous for a pathogenic SV 
and both were detected: the multi-exonic deletion in 
the EP300 gene in EPI_17 and the 7q11.23 microdele-
tion in EPI_16. Additionally, the long-read sequenc-
ing data allowed mapping the breakpoints of the EP300 
deletion (NM_001429: g.41168065_41171580del, hg38). 
The Geneyx platform [18] was used to prioritize vari-
ants based on the patients’ phenotype and ACMG variant 
classification, in the absence of parental data. All (likely) 
pathogenic variants were ranked in the top 4 variants to 
evaluate, most of them being ranked as first (Table  1). 
The only variant that was not prioritized is the VUS in 
ATRX that was ranked as first variant in the X-linked 
analysis. Both SVs were also ranked first in the SV suba-
nalysis of the tool.

Discussion
Episignatures are diagnostically important. Their pres-
ence provides evidence for the pathogenicity of VUS or 
can act as biomarker for a disease when the underlying 
genomic variant cannot be identified [6, 8]. This proof-
of-concept study illustrates the potential of lrWGS for 
episignature detection. Despite known technological 

Fig. 3 Evaluation of X-inactivation. Phased nanopore sequencing methylation levels at AR and RP2 loci, as well as at the promotor of the PHF6 gene, 
in patient EPI_13 (top) and EPI_01 (bottom). Orange and blue represent the two different haplotypes of each sample. In the upper part of each 
plot, the genome coordinates, genes, and reads are illustrated. On each read, modified bases are represented by full, dark circles, unmodified bases 
by open circles. In the lower part of the plot, after translation from genome to CpG-only coordinate space, raw log-likelihood ratios are plotted 
above a smoothened graph of methylation fraction [21]. About half reads of each allele are methylated at the three loci in patient EPI_01 whereas 
in patient EPI_13 one allele (orange) is methylated in all reads in contrast to the other one which is unmethylated
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differences, we show that microarray reference data 
can be used for several diseases. Moreover, nanopore 
sequencing enables to concurrently identify the episig-
nature inducing SNVs and SVs. In addition, we show 
that phased methylation maps inform about imprint-
ing and skewed XCI. Altogether, long-read sequencing 
haplotype-aware mapping of genetic and methylation 
variation provides a comprehensive genome analysis, 
combining several analyses that currently require multi-
ple technologies.

While this study opens the door for concurrent 
genomic and episignature assessment, it also illustrates 
limitations of current episignatures. In samples clas-
sified as control, no episignature was identified by the 
standard microarray-based assay neither, excluding inter-
technology biases as the main cause for these negative 
results. For two of the genes of which the episignature 
could not be detected, UBE2A and PHF6, the reference 
microarray data we used is based on a limited sam-
ple set [5] without test nor validation cohort and might 

Fig. 4 Phasing of methylome and genome variation. Visualization of EPI_13’s Oxford Nanopore long-read sequencing and Illumina short read 
exome sequencing BAM files in IGV [22], focusing on the PHF6 gene. The long reads spanning the promotor differentially methylated region 
(DMR) and the pathogenic c.306delA variant (marked by the red thunderbolt sign) are shown in the upper image. Methylation is marked in red; 
unmethylated CpGs are represented in blue. The lower box is zooming into the region of the pathogenic variant (marked by a dotted line) 
and the closest informative SNV (marked by a blue star), showing both the long-read sequencing data of the index as well as trio short read exome 
sequencing data of the index and her parents
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therefore be imprecise. Both genes, as well as ZNF711, 
are also listed among the genes for which the commer-
cial microarray assay is reported to have a lower sensi-
tivity [33]. Moreover, in the last years, sub-episignatures 
have been described for different types of variants in 
the same gene [34, 35]. While not yet been reported for 
UBE2A and ZNF711, such sub-episignatures could con-
found the classification of EPI 18 and EPI_20, which both 
harbor missense variants. Segregation, maternal XCI 
analyses, and functional analyses performed in a previous 
study have confirmed the pathogenicity of the c.19C > T 
p.(Arg7Trp) variant in UBE2A identified in EPI_20 [36]. 
Further segregation analyses could not be performed for 
the c.1223A > G p.(His408Arg) VUS in ZNF711 identi-
fied in EPI_18. However, further XCI analysis in the car-
rier mother of this individual, showing a random XCI, is 
an additional argument against the pathogenicity of the 
ZNF711 variant. In this case, the absence of the disease-
associated episignature might therefore indicate the 
variant to be benign. However, one must carefully draw 
conclusions based on the absence of episignatures as a 
sub-episignature cannot be excluded. An evaluation of 
published episignatures also recently showed their high 
specificity but variable sensitivity [37].

Another constraint highlighted by this study is XCI. For 
the PHF6 c.306del p.(Tyr103Thrfs*40) variant (EPI_13), 
we hypothesized that skewed XCI in white blood cells 
might lead to predominant expression of the normal 
allele, resulting in a normal methylation pattern. Skewed 
XCI has already been reported in other females with 
BFLS [38]. Using haplotype-aware nanopore methyla-
tion mapping, we confirmed the unbalanced XCI in this 
patient and subsequently localized the variant on the 
inactivated allele. As the patient presents high pheno-
typic similarities with BFLS, we hypothesized that other 
tissues probably lack XCI skewing and might present the 
episignature. However, both urine and buccal swab sam-
ples also showed predominant inactivation of the affected 
allele. Other tissues could be investigated to substantiate 
our hypothesis further, but this requires more invasive 
procedures and might require tissue-specific epigenomic 
maps, which are currently lacking. Concurrent XCI 
and episignature evaluation in blood of carrier mothers 
of males with an X-linked disease episignature could, 
therefore, provide an indirect alternative to validate this 
hypothesis in the future.

An important potential pitfall in the diagnostic pro-
cess of DD is mosaicism. Post-zygotic de novo patho-
genic variants can lead to mosaic variants which often 
escape detection by the default variant calling algo-
rithms. Interestingly, our classifier did detect the episig-
nature in a mosaic heterozygous patient (EPI_19), albeit 
with a lower confidence score, reflecting the low-grade 

mosaicism for the pathogenic variant. Mosaicism 
detection can be improved by including mosaic sam-
ples in the training set and lowering the positive confi-
dence score threshold [39]. Episignature evaluation was 
important in this boy as it contributed to classifying the 
X-linked ATRX variant as benign and reassuring the 
parents of low recurrence risk for future pregnancies. 
The ATRX episignature has indeed been reported as 
having a high sensitivity [37], and this conclusion was 
corroborated by segregation and maternal XCI analy-
ses. Episignature detection can also potentially direct 
the clinical diagnostic laboratory to search for mosaic 
variants in specific genes, which would, as this KMT2D 
mosaic variant, be missed without targeted reanalysis 
of the data.

The correlation between microarray- and nanopore-
based methylomes has been estimated at around 0.85 
[40]. Here we show that despite these inter-assay biases 
and the subtle methylation changes that characterize 
the episignatures of some disorders, publicly available 
microarray-based methylation ratio profiles and/or posi-
tions [5] can be used for nanopore sequencing episigna-
ture detection for several disorders. Still, it is likely that 
comparing nanopore methylation to microarray refer-
ence data reduces the sensitivity. To further benchmark 
our approach, we explored the EpiGenCentral platform 
together with their episignatures to analyze a subset of 
our samples (Additional file 8: Table S5A). This compari-
son highlighted some challenges when using tools pri-
marily developed for microarray data with lrWGS, and 
the classification outcomes were highly variable (Addi-
tional file 8: Table S5B). This underscores the importance 
of developing episignature tools that are specifically opti-
mized for lrWGS technologies. Microarray references 
also have the disadvantage of being based on a restricted 
amount of CpGs, varying with the product’s version and 
each sample’s hybridization [41]. We envision that large-
scale nanopore sequencing of patients and controls in the 
future will leverage high-resolution whole methylomes, 
enabling refinement of existing episignatures, potentially 
improving their sensitivity and specificity, and likely lead-
ing to the discovery of new episignatures.

Important drawbacks of lrWGS platforms have long 
been their lower accuracy and high costs. However, the 
costs of nanopore sequencing have been dropping and 
currently (for 30 × , genome-wide lrWGS) slightly exceed 
the costs of clinical episignature testing by microarrays 
in a large-scale setting. With the improving accuracy of 
lrWGS chemistries and analytical tools, the cost-effec-
tiveness balance might change as concurrent genetic and 
epigenetic testing would enable to replace the combina-
tion of WES and methylation-sensitive microarray analy-
ses. The other side of the coin of all the analyses enabled 
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by lrWGS remains the high amount of resources that are 
needed to store, process, and analyze the data.

Conclusion
lrWGS enables concurrent phased genome and methyl-
ome variant detection, opening the door to large-scale 
studies about genomic and epigenomic variation and 
their interactions. While this study has used nanop-
ore sequencing, other sequencing platforms combining 
methylation and base calling will probably produce simi-
lar results. XCI and imprinting detection have already 
been demonstrated with single-molecule real-time 
sequencing too [42, 43]. With its improving SNV call-
ing accuracy [11] and more comprehensive SV detection, 
it seems likely that long-read sequencing will be imple-
mented as the first-tier test for the diagnosis of DD in the 
future. Beyond known and potential new episignatures, 
we envision that shedding light on secondary epivaria-
tion will improve our understanding of genomic, espe-
cially non-coding, variants, and give us new insights into 
molecular mechanisms underlying diseases. In addition, 
an excess of de novo primary epivariants has been identi-
fied in patients with unexplained DD [4], and the pres-
ence of such epivariants has been associated with outlier 
gene expression [1]. Further exploration of the whole epi-
genome might, therefore, help us solve another part of 
the remaining unexplained DD.
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score < 0.3) are classified as control.
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Screenshots of the visualization of EPI_13’s Oxford Nanopore long read 
sequencing BAM files in IGV [22] at the AR gene locus.
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description: short description of the analysis performed on EpiGenCentral 
platform [9]. B- Classification results: classification results from the EpiGen-
Central platform.
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