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Abstract

Interest in supporting Federated Learning (FL) using blockchains has grown significantly in 

recent years. However, restricting access to the trained models only to actively participating 

nodes remains a challenge even today. To address this concern, we propose a methodology that 

incentivizes model parameter sharing in an FL setup under Local Differential Privacy (LDP). The 

nodes that share less obfuscated data under LDP are awarded higher quantum of tokens, which 

they can later use to obtain session keys for accessing encrypted model parameters updated by 

the server. If one or more of the nodes do not contribute to the learning process by sharing their 

data, or share only highly perturbed data, they earn less number of tokens. As a result, such 

nodes may not be able to read the new global model parameters if required. Local parameter 

sharing and updating of global parameters are done using the distributed ledger of a permissioned 

blockchain, namely HyperLedger Fabric (HLF). Being a blockchain-based approach, the risk of a 

single point of failure is also mitigated. Appropriate chaincodes, which are smart contracts in the 

HLF framework, have been developed for implementing the proposed methodology. Results of an 

extensive set of experiments firmly establish the feasibility of our approach.

INDEX TERMS

Encrypted model parameter; federated learning; HyperLedger fabric; local differential privacy; 
session key

I. INTRODUCTION

The goal of Federated Learning (FL) is to dynamically train a machine learning (ML) model 

through participation of independent but collaborating clients (interchangeably called nodes) 
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[1]. A central entity designated as the server commences the learning process by selecting 

a model and setting its initial parameters. Over multiple rounds, the nodes train the model 

with their local datasets, send the updated gradients to the server, and receive the newly 

computed global weights from the server. Model training stops once convergence is achieved 

or after a certain maximum number of rounds have been completed [2], [3]. However, the 

standard implementations of FL are susceptible to various kinds of security and privacy 

attacks, such as data [4] and model poisoning [5], [6], interference [7] and Byzantine attacks 

[8], model extraction attacks [9], evasion attacks [10], etc. This happens particularly because 

the updated model data is shared across the clients.

To guard against inference and other forms of privacy attacks, FL is combined with 

Local Differential Privacy (LDP) [11], [12]. In the resulting LDP-FL technique, the nodes 

obfuscate their gradients using a privacy parameter ϵ before sharing the same with the 

server. While LDP-FL addresses the problem of privacy leakage, it cannot guard against 

server failure, which can have a catastrophic impact on the entire FL process [13], [14], 

[15], [16]. Blockchains have been introduced to provide a more robust approach to FL 

wherein a well formed smart contract acts as the server and the clients constitute the 

nodes of the blockchain [17]. It makes FL inherently fault tolerant and attack resilient 

since the same set of transactions is available to all the peer nodes of the blockchain after 

consensus-based validation. Another challenge in widespread adoption of FL in general, 

and LDP-FL in particular, is an inherent lack of commitment from the nodes in sharing 

their model parameters. This is primarily because there is no incentivization framework that 

would encourage the nodes to do so. For example, even if a node obfuscates its parameters 

to a great extent by choosing a small value of ϵ (and hence, higher privacy), it can still access 

the same updated model as any other node that uses a higher value of ϵ.

In a recent work [18], we attempted to address the above mentioned challenges of 

FL by combining LDP-FL with incentivization in a permissioned blockchain framework 

[15]. The approach named as BTLF (Blockchain-based TBI-LDP-FL), uses a token-based 

incentivization (TBI) mechanism in which participating nodes receive tokens if they share 

their model parameters. Such tokens can subsequently be used for accessing global model 

weights. The number of tokens awarded is in proportion to the value of ϵ so that the 

nodes are encouraged not to excessively obfuscate the data they share, beyond their own 

privacy requirement. While the approach does alleviate some of the concerns identified in 

the literature, it also has its own dependencies. The threat model assumed in [18] is that 

the nodes behave non-maliciously and appropriately deduct tokens while passing on updated 

model weights to their clients. Such an assumption may not hold in real life scenarios where 

the permissioned blockchain nodes are authenticated but not necessarily trusted.

Considering the above limitation of the previous work, in this paper, we propose a novel 

cryptographically protected methodology that encrypts updated weights using a session 

key for each FL round. The key is shared with the clients only after deducting an 

appropriate quantum of tokens, thereby ensuring fair use of incentives. A set of well-

formed chaincodes handle all the operations, thus ensuring correctness and integrity of 

the system. We have implemented the proposed approach named SBTLF (Secure-BTLF) 

using the HyperLedger Fabric-based permissioned blockchain framework and evaluated it 
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extensively under different FL setups. Our evaluation indicates that the proposed approach 

of privacy-preserved FL framework through the cryptographically protected token-based 

incentivization mechanism converges well with the desired accuracy while introducing 

minimal overhead on the clients for additional memory usage. The main contributions of 

this paper are summarized below.

1. We propose a token-based incentivization mechanism for federated learning 

with local differential privacy in a permissioned blockchain setting that prevents 

non-malicious behavior from the participating nodes while passing the model 

parameters.

2. To alleviate the above shortcoming, we propose a novel cryptographically-

protected methodology called SBTLF to encrypt the model parameters using 

a session key shared with the FL clients only after deducting an appropriate 

quantum of tokens. This step provides an added layer of security over our earlier 

work [18] to eradicate the impact of malicious nodes that mishandle the token 

deduction protocol.

3. We have implemented SBTLF using HyperLedger Fabric and tested it 

thoroughly under various scenarios. The proposed method ensures secure and 

privacy-preserving model training with marginal overhead regarding memory 

requirements for additional cryptographic computations.

The rest of the paper is organized as follows. Section II provides some background on 

federated learning, differential privacy, and blockchains. The proposed SBTLF framework is 

described in Section III. Details of HyperLedger Fabric-based implementation of SBTLF is 

presented in Section IV. Section V discusses the results of an extensive set of experiments 

carried out on an end-to-end working SBTLF system. Section VI reviews recent literature 

and we finally conclude with future directions for research in Section VII.

II. PRELIMINARIES

This section introduces some of the basic concepts underlying the work presented later in 

the paper.

A. FEDERATED LEARNING

Federated learning (FL) [1] orchestrates collaborative training of local deep neural network 

(DNN) models among N distributed clients connected to a central server. The process 

commences with the server randomly initializing the model parameters, denoted as μo, which 

are then distributed to the clients to initialize their respective model copies. Each client 

independently trains its model using local dataset for multiple epochs, eventually producing 

updated model parameters, μu. The process of federated learning in each round includes 

averaging all the μu ‘s received from the clients to obtain μfed (the parameters of the global 

model). Such an iterative process, known as a federation round, continues until μfed either 

converges or a predetermined number of rounds is completed [19]. It has been shown that 

μfed produces almost the same accuracy as that of a local model trained on the complete data 

[20].
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It is well known that collection and analysis of user data at scale is a driving force behind the 

recent progress in machine learning. However, data collected from users tend to be private 

and also sensitive. Further, the same can potentially be linked to other more confidential 

information. Owing to this, users are often sceptical about divulging their personal data, 

especially in the face of new and emerging technologies for in-depth data mining and 

analytics. To regulate the activities of corporate firms with respect to consumer data they 

have access to, various countries have enacted privacy laws such as General Data Protection 

Regulation (GDPR) [21] and California Consumer Privacy Act (CCPA) [22]. Therefore, 

privacy preservation when dealing with data has become an urgent issue that needs to be 

addressed [23]. Privacy concerns in the context of Federated Learning have been raised as 

well, especially due to its potential vulnerability to inference attacks [24].

B. DIFFERENTIAL PRIVACY

Differential privacy is a mathematical framework for ensuring privacy of individuals in 

datasets, first proposed in [25]. It allows data to be analyzed without revealing sensitive 

information about any particular user in the dataset, thereby providing a strong guarantee 

of the individual’s privacy. According to their definition, the outcome of the mechanism 

should not be significantly affected by the presence or absence of any particular record in the 

dataset. Hence, for any two datasets that differ in only one record, if the probability of any 

outcome occurring is nearly the same, then the mechanism is considered to be differentially 

private.

In the traditional model of differential privacy, also known as centralized differential privacy 

(CDP), there exists a trusted aggregator or curator which collects and holds the sensitive data 

of all the individuals as shown in Fig. 1(a). It is responsible for protecting their privacy by 

adding a measured amount of noise, i.e., perturbing the data by infusing sufficient noise to 

the output. Effectively, the goal is to mask the contribution of individual data elements and 

yet preserve overall analysis accuracy. The aggregator, however, has to first collect original 

data of the users before releasing the perturbed aggregated information publicly [23].

A concern with CDP is that there is an implicit but complete trust on the data curator, 

which may not always be the situation in real world. Even the largest and most reputable 

companies cannot guarantee their customers’ privacy and may fall victim to data breaches. 

To address this problem, a mechanism called local differential privacy (LDP) has been 

proposed. In LDP, a user’s data is perturbed locally before it is sent to the aggregator (Fig. 

1(b)). The original data is only accessible to the owner, which provides a much stronger 

privacy guarantee for the user. In the LDP model, a curator holds only a perturbed version 

of the data and not the original data. Also, all the training and any form of querying is 

performed on this perturbed dataset only. Thus, LDP protects against data disclosure even 

to the untrusted curators and relieves the burden on the trusted data curators to keep data 

secure [23]. LDP is often defined in terms of what is known as ϵ-Local Differential Privacy. 

As defined in [26], a randomized mechanism M is said to satisfy ϵ-Local Differential 

Privacy if and only if for any pair of input values v and v′ ∈ D and for any possible output 

S ⊆ Range ℳ ,
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Pr ℳ v ∈ S ≤ eϵPr ℳ v′ ∈ S

(1)

Here ϵ > 0 is the privacy budget; the smaller the value of ϵ, the stricter protection with lower 

data availability, and vice versa.

Federated Learning is a natural application domain for LDP and has been investigated 

from different aspects and application domains [27], [28], [29], [30], [31], [32]. Several 

relaxations of differential privacy also exist [33], [34], which could allow for a better 

privacy-utility trade off.

C. PERMISSIONED BLOCKCHAINS AND HYPERLEDGER FABRIC

A blockchain is a decentralized append-only ledger, where the blocks are added by a set 

of distributed validators, who either mine a new block by solving a cryptography puzzle or 

generate and validate the new block through collective attestations. A block in a blockchain 

contains a set of ordered transactions, representing the execution steps of the world state 

of the system. Blockchain helps a set of participants, called nodes, execute transactions 

without explicitly trusting each other. The transactions become immutable once a block is 

added to the blockchain ledger. Considering the nature of participants, there are two possible 

types of blockchains – open or permissionless blockchain, where the participants do not 

need any authentication or pre-authorization to join the blockchain network, and closed or 

permissioned blockchain, where the participants are authorized and authenticated through 

some membership services.

HyperLedger Fabric (HLF) provides a modular and extensible open-source platform to 

deploy and operate permissioned blockchains. It is hosted by the Linux Foundation [35] and 

provides a modular language platform to implement smart contracts. The current state of 

the ledger is termed as the World State that represents the latest values of all committed 

transactions. Organizations in HLF are the entities that constitute the decentralized network. 

Each organization has its own peers with specific roles and permissions in the network. The 

Peers maintain the ledger and handles the state updated based on the transactions. They 

are responsible for endorsing, validating, and committing transactions in the underlying 

blockchain.

In HLF, the smart contracts are termed as Chaincodes, which implement the business logic 

governing the blockchain transactions. Chaincodes are executed on the HLF distributed 

ledger network and provide rules and agreements to govern how the data will be accessed, 

updated, and validated within the HLF network. An Asset in HLF is a physical or a digital 

entity having certain value which is owned or controlled by an organization or an individual. 

Assets can be tangible (e.g., real estate, vehicles) or intangible (e.g., intellectual property, 

patents), and can be represented digitally on the blockchain ledger. In HLF, transaction 

validation is done through Endorsements, where a specific member of endorsing peers 

validate and support the transactions before committing them to the ledger. The endorsement 
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policies are configured to ensure security and reliability of the network by enforcing that the 

transactions meet the criteria set by the organizations.

Based on these preliminaries, we next describe the SBTLF framework.

III. PROPOSED APPROACH

In this section, we outline our proposed approach SBTLF that integrates symmetric key 

cryptography and private data collections of HLF along with LDP and incentivization 

mechanisms for Federated Learning. Fig. 2 shows a high-level flow diagram of SBTLF.

A. CREATION OF HLF NETWORK

Before the Federated Learning process commences, participating organizations collaborate 

to form a consortium within the HLF network. Each organization registers itself to 

the consortium and creates a private data collection between the central server and the 

organization. Within an organization, multiple peers may be enrolled. Additionally, a 

single peer can serve as an interface for interactions with multiple clients. However, each 

client must undergo registration and authorization processes before being able to submit 

transaction proposals.

Algorithm 1:

Pseudo Code for Client.

1: (m, w) init().

2: while till convergence or maxRounds reached do

3: w trainModel(m, w)
4: w′ LDP(w, ϵ) ▷ Perturb local model parameters

5: putParameters w′, ϵ
6: wenc getEncryptedGlobalParams round
7: requestSessionKey(round)

8: key getSessionKey round
9: w decrypt wenc, key
10: end while

B. BLOCKCHAIN-BASED LDP-FL

Once registered, each client follows the pseudo code given in Algorithm 1. Here, m
represents the model and w the set of model weights. ϵ is the privacy budget of the particular 

client. w enc denotes the encrypted model weights. Upon initiation, the client initializes a 

deep neural network (DNN) model with randomized parameters as shown in Line 1 of the 

algorithm (Step 1 of Fig. 2) Subsequently, this model undergoes training using the available 

local dataset for multiple epochs, resulting in updating of the model parameters. The updated 

model parameters are then subjected to perturbation, following the prescribed privacy factor 

ϵ of the LDP technique.1 The clients then submit their perturbed weights to the peers of the 

blockchain network to be securely written onto the HLF ledger (Step 2 of Fig. 2). Note that 
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training is done entirely off chain on the local system of the client, and only the perturbed 

model weights are uploaded to the ledger via a chaincode.

Algorithm 2:

Pseudo Code for Server.

1: while next round local parameters available do

2: μu getLocalParameters(n)
3: aggregate 0
4: forμu in μudo

5:  aggregate aggregate + μu[i]
6: end for

7: μfed
aggregate

num

8: μfede = symmetricEncrypt μfed, key

9: putEncryptedParams μfede

10: clientKeyRequests ← getKeyRequests()

11: for org, round in clientKeyRequests do

12:  putSymmetricKey(org, round, keyround)

13: end for

14: end while

After writing the perturbed weights in the ledger, clients can submit a transaction through 

the peers for the encrypted global parameters. They make a request for the session key as 

shown in Line 7 of the algorithm by invoking the chaincode. After submitting the request, 

the client will get the session key, which can be used for decrypting the model parameters 

using symmetric key cryptography. This process continues until convergence is achieved or a 

maximum predefined number of rounds is reached.

Algorithm 2 shows the pseudo code followed by the server. Here, μu is the array of model 

weights received by the server from the clients and n is the number of clients whose 

parameters are being fetched by the server. μfed denotes the aggregated model weights 

calculated off-chain. org stands for the identifier of the organization which has requested the 

symmetric key for decryption and round represents the round number of the FL process for 

which the key has been requested.

The server gets a random subset of clients’ local model parameters from the ledger, 

which are aggregated off-chain as shown in Lines [3–7] of the algorithm. The aggregated 

parameters μfed  are then encrypted using symmetric key encryption with a randomly 

generated key. This is the session key and is stored off-chain as metadata for the round (Step 

3 of Fig. 2). The encrypted parameters μfede  are written to the ledger (Step 4 of Fig. 2). 

Writing encrypted global parameters ensures that no client can access the global parameters 

1LDP mechanism as mentioned in [31].

DE CHAUDHURY et al. Page 7

IEEE Trans Priv. Author manuscript; available in PMC 2025 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



without obtaining the session key. When a client requests for a session key, tokens from its 

corresponding organization get deducted (Step 5 of Fig. 2). Section III-C discusses about the 

token incentivization in this setting. The clients can check the model accuracy by running it 

on its local dataset (Step 6 of Fig. 2).

The server periodically checks if there are any pending requests from clients for the session 

key. If there is any, the server writes the session key of the requested round in the private 

data collection of the requested client’s organization. This ensures that no one except the 

server and the requested client’s organization members will be able to access the session 

key, and hence, the global parameters updated in that round. This process continues until 

there are no more local parameters available.

C. TOKEN-BASED INCENTIVIZATION

The method proposed in BTLF [18] involves assigning tokens to individual clients within 

an organization. Updates to these tokens are then performed on the specific client’s holding 

whenever relevant events occur. This method, however, could result in a scenario where 

different clients within the same organization possess varying numbers of tokens. To address 

this inconsistency, in SBTLF, we transition to an accreditation system where tokens are 

assigned to the organization as a whole rather than the individual clients. In this approach, 

any event triggering a token update, regardless of whether it is initiated by or for a specific 

client, modifies the organization’s token pool.

The events that update an organization’s tokens are as follows:

1. A client requests a session key for a round that has not been previously accessed 

by any client within the organization. A fixed number of tokens from the 

organization are deducted.

2. Server gets the client’s local parameters for a round. The number of tokens 

awarded T  to the organization is as per (2).

T =
client ∈ C

0.5 + ϵclient − ϵmin
2 ϵmax − ϵmin

(2)

where C is the set of random clients of the organization selected for aggregating 

weights. ϵmin and ϵmax respectively denote the lowest and highest values of ϵ among 

those clients chosen by the server.

Any client within the organization has the ability to request for the session key of a specific 

round. Once obtained, all clients from that organization can utilize this key to decrypt global 

parameters. While clients could technically aggregate the local parameters off-chain, this 

process would demand a considerable amount of computing power, surpassing what a single 

server could manage when aggregating the local parameters. Consequently, clients are more 

inclined to engage in the FL process, utilizing tokens to participate, rather than individually 

aggregating all parameters off-chain.
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It may further be argued that a client could potentially obtain the most updated weights 

without having contributed except in the initial and final phases to training. However, it 

would be difficult for any client to determine when the final round is going to happen since 

that requires it to read the weights for determining the accuracy level. Also, in order to 

guard against such a situation, values of tokens can be made to degrade over rounds. As a 

result, the clients will not be able to save their tokens for only a final round acquiring of 

model weights. Introducing this feature does not have any significant impact on the overall 

methodology.

IV. IMPLEMENTATION DETAILS

In this section, we give a detailed description of our implementation of the SBTLF 

framework in HyperLedger Fabric, a modular and extensible open-source system 

specifically designed for deploying and operating permissioned blockchains [35]. In HLF, 

a chaincode is a collection of smart contracts, representing the business logic governing 

transactions within the network. It is run on the HLF distributed ledger network and 

facilitates execution of transactions. An asset in HLF refers to any digital or physical 

entity that has value and is owned or controlled by an organization or an individual. While 

there are several competing LDP-FL approaches available, the mechanism proposed in [31] 

has been used in our work due to its practical approaches towards supporting LDP-FL in 

real-life applications.

A. CHAINCODE IMPLEMENTATION

Within an HLF network, each client and the server functions as a node in the HLF 

infrastructure. If a client or server’s organization is not yet enrolled in the network 

upon logging in, the enrollment process is initiated. After the organization enrollment is 

completed, the client or server can proceed to enroll and register as a member or participant 

within that specific organization. The client and server backend are developed using Node.js, 

with support for HLF, and the chaincodes are written in Golang.

The chaincode asset definition is as follows:
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Layer struct: It stores the a DNN layer parameters written into the ledger. The Weights 

and Biases can be of any dimensions, for supporting wide variety of neural networks.

NeuralNetworkModel struct: It stores a list of layer parameters, so that each layer can 

be separately accessed.

OrgData struct: It is used to store the complete data (the DNN model, privacy budget ϵ, 

organization name) for a particular round, organization, client. The key for accessing the 

data to the struct is ORG_pl2x − amp − iso− lt;round > _pl2x − amp − iso − lt; orgName > 
_pl2x−amp − iso − lt; client Id >. This will ensure that complete ledger data is stored in the 

world state for easy access.

ServerData struct: Server writes the encrypted parameters into the ledger. The data field 

in this stores the encrypted parameters, while the round stores the current FL round.

CurrentOrgData struct: It is used as a metadata store for each organization.

1. Tokens: Current total number of avaiable tokens with the organization.

2. RoundSeen: This is a list of round numbers of already requested session keys. 

When a client requests session key of an already requested round (already 

requested even by any other client of the same organization), it gets the session 

key without the organization’s tokens getting deducted.
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3. LatestRound: This stores the latest round in which some client of the 

organization wrote parameters into the ledger.

KeyRequests struct: It is used to store the session key requests from different 

organizations. When a client requests a session key, the round, orgName of the client gets 

appended here if there are sufficient number of tokens. The server later queries the asset to 

get all the session key requests.

SessionKey struct: It is used to store the session key of a particular round in the private 

data collection. A particular round’s session key can be accessed by the client using the 

round number.

The following are the chaincode functions that can be invoked:

Client Chaincode Functions:

1. PutClientParams(data, epsilon, round): Uploads the client’s model parameters 

to the blockchain ledger for the current round.

2. GetEncryptedParams(round): Fetches the encrypted global model weights 

from the ledger.

3. RequestKey(round): Requests the session key from the server by paying tokens, 

if available.

4. GetSessionKey(round, privateDataCollection): Retrieves the session key from 

the private data collection shared between the client’s organization and the 

server’s organization.

Server Chaincode Functions:

1. GetAllParams(num, seed): Fetches the uploaded model parameters from the 

ledger for the selected set of clients.

2. SelectRandomSet(num, seed, round): Selects a random subset of num clients to 

fetch the local model parameters.

3. PutGlobalParams(data): Uploads the aggregated global model weights to the 

ledger, after encrypting using the session key.

4. GetRequests(): Gets the set of all clients who have requested the session key for 

the current round by paying tokens.

5. PutSessionKey(round, privateDataCollection): For each client that has requested 

the key, puts the session key into the private data collection shared between the 

client’s organization and the server’s organization.

B. CLIENT AND SERVER WORKFLOW

After registration, each client initializes a pre-configured deep neural network (DNN) model 

equipped with randomly generated weights and biases. In each round, the client trains 

the model using the current model parameters and the local training data for a number 
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of local epochs. The updated parameters are then written to the ledger by invoking the 

PutClient-Params (data, epsilon, round) function of the chaincode. This transaction is 

endorsed by the endorsers in accordance with the endorsement policy. Subsequently, data 
and epsilon are filled into the Data and Epsilon field of the OrgData asset for that client 

along with the orgName for the current round, and the LatestRound field is updated with 

the latest round number round for the CurrentOrgData asset.

Given that the system operates asynchronously, issues such as node failure or network 

disturbances may cause the client to fail to update local parameters and hence, its round 

number may fall behind. If the round number is updated as RC + 1, where RC is the latest 

round in which client C wrote param-eters to ledger, these parameters will not be considered 

by the server since it continues updating global parameters for several rounds and only 

requests the next round’s parameters from the clients. To address this, the round RC of the 

client C is updated as max RC + 1, RS + 1 , where RS denotes the latest rounds in which 

the server wrote the parameters into the ledger. This approach ensures that even if a client 

remains inactive for a period of time and subsequently rejoins the network, its data is still 

considered during the aggregation process.

After aggregation by the server, each client is able to fetch the encrypted global parameters 

that have been uploaded to the ledger by the server, using the GetEncrypted-Params 

(round) function. However the client can only decrypt and read the global parameters if 

it possesses the session key. If the client possesses an adequate number of tokens, it can 

request the server for the session key using the RequestKey (round) function. Invoking 

this chaincode updates the KeyRequests in the ledger. The server places the session key 

into the private data collection shared between the client’s organization and the server’s 

organization, ensuring that unauthorised users cannot access the session key. Upon receiving 

the key, the client’s available tokens decrease by the cost of reading from the ledger. If 

the client requests the session key for a round it has previously requested, the cost to read 

that round’s session key will be zero. Now, the client fetches the key from its private data 

collection using the GetSessionKey (round, privateDataCollection) function and decrypts 

the global weights. The local parameters are then updated with the global model parameters. 

The process then repeats, starting a new round until convergence or maximum predefined 

rounds are reached. In each round, the server obtains the local parameters of a subset 

of size num clients by invoking the GetAllParams(num, seed) chaincode function. This 

function returns a random subset of num clients’ local parameters for the round RS + 1, 

where RS represents the server’s previous round number when it aggregated the parameters 

(the previous federated learning round) and wrote the global parameters to the ledger. The 

random subset selection of clients by the chaincode is as follows:

1. All the clients which have written their local parameters in a round RS + 1 are 

extracted.

2. The list of these clients is then randomly shuffled.

3. First num clients are selected from the list.
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For each selected client, tokens are awarded as part of incentivization process based on 

the privacy budget ϵ. Subsequently, the server aggregates all the local model parameters 

off-chain. A random session key is generated for the symmetric encryption process of these 

aggregated parameters or the global parameters (params). These params are then encrypted 

with the generated session key using symmetric key encryption. These encrypted parameters 

are written into the ledger by invoking PutGlobalParams(encryptedParams).

The Server periodically invokes GetRequests() chaincode function. It returns a list of 

{orgName, round}, where orgName represents the organization which requested the session 

key for round. The server services their requests by invoking PutSessionKey(round, 

privateDataCollection) for each request, where private-DataCollection is the requested 

organization’s private data collection. This process happens till there are no new local 

parameters written into ledger.

Note that, in Steps (1)–(3) above, in each FL round, only a random fraction of the clients is 

selected for model update. This is done primarily for the sake of efficiency, as experiments 

have shown diminishing returns for adding more clients beyond a certain point [1]. Hence, in 

our work also, we randomly selected a subset of clients out of those that have written their 

local parameters in the blockchain. The reason for letting any number of clients write their 

weights to the ledger is primarily for ease of implementation. There are two choices - either 

only the randomly selected clients write their weights to the ledger, or any available clients 

write their weights and then the server randomly selects the clients for the current round. 

Since one or more clients may not be active even though they were selected, the server will 

have to again select their replacements. This causes synchronization difficulty especially in 

the blockchain environment. Hence, we choose the second option. Besides, this approach 

avoids having to implement a polling mechanism to notify the selected clients and then fetch 

their weights. Selecting the clients randomly only from those that have written their weights, 

circumvents both the problems. It also lets our method work when the server selects all the 

clients who have written their weights for the current round. Thus, the overall methodology 

can be executed seamlessly for both the scenarios.

V. EMPIRICAL EVALUATION

In this section, we present the results of our empirical evaluation with the implementation 

mentioned in the last section. The dataset and experimental setup is first described followed 

by the results.

A. MODEL ARCHITECTURE AND DATASET PREPARATION

While the proposed architecture for SBTLF is ML model and dataset agnostic, for our 

experiments, we have used a Convolutional Neural Network (CNN) model for image 

classification. The classification task considered is to identify the handwritten digits in the 

MNIST dataset [36], where each image is a gray scale 28 × 28pixel representation of a 

digit (0–9). The first layer in the model is a convolutional layer with 16 filters and a 3 × 

3 convolutional kernel. Rectified Linear Unit (ReLU) activation is applied. Next, a 2 × 2 

max pooling layer is employed to down-sample spatial dimensions, before passing to the 

third layer. This is again a convolutional layer with 32 filters, a 3 × 3 kernel and ReLU 
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activation. Another 2 × 2 max pooling operation is applied before flattening the output from 

the convolutional layers into a 1D array. Then, a dense layer is added with 128 units and 

ReLU activation. Finally, the output layer is applied comprising 10 neurons, representing 

the 10 possible classes (digits 0–9). Softmax activation is employed to obtain the class 

probability distribution. The Adam Optimizer was chosen as the optimization algorithm, 

allowing adaptive learning rate modifications during training. Categorical cross entropy was 

used as the loss function since it is suitable for multi-class classification tasks with one-hot 

encoded labels. Model performance was evaluated using the accuracy metric.

B. DETAILED RESULTS

As there are many design parameters affecting the accuracy of SBTLF, we carried out a 

number of experiments. In each, some of the parameters are kept fixed while varying the 

rest.

In Fig. 3(a)–(c), we make each client run local training on its dataset with the current set of 

weights and the same value of ϵ for 5 epochs. The updated weights are written to the ledger 

once these epochs are completed. There are 50 samples for each digit used in training. We 

show the impact of variation in the number of FL rounds on accuracy for different values of 

the privacy parameter ϵ, for each of the clients. From the figures, it is observed that while 

ϵ = 1 leads to poorer training, as the value of ϵ is increased, accuracy goes up significantly 

with the number of federated learning rounds.

The same experiments were next repeated by setting the number of epochs to 10 and the 

corresponding results are shown in Fig. 4(a)–(c). While a trend similar to that in Fig. 3(a)–

(c) is seen, it is observed that for the same number of FL rounds and the value of ϵ, a higher 

accuracy is obtained and convergence is attained more quickly when the number of epochs 

used for local training is more.

In Figs. 5(a)–(c), we make each client train their local models for 5 epochs with 15 samples 

per digit. We observe a similar trend as the previous two experiments, showing that increase 

in ϵ increases the testing accuracy, which is as expected. We also see that the model itself 

does converge for lower values of ϵ even though the accuracy is a bit lower.

In the experiments so far, we used the same value of ϵ for all the clients. We next vary its 

value for different clients. In Fig. 6, the ϵ values are 7, 10 and 12 for Clients 1, 2 and 3, 

respectively. The intent is to study the impact of the absolute as well as relative variation 

in the value of ϵ across clients. From the plots, it is seen that ϵ has a strong impact on 

accuracy. As is seen from the figure, when one of the clients (Client 1) has ϵ = 7, the 

accuracy drops significantly, since lower ϵ implies higher data obfuscation and hence higher 

privacy. Conversely, Client 3 having ϵ = 7 has better accuracy due to less data perturbation.

Finally, we run the entire setup with each client having a different value of ϵ for each round 

as shown in Fig. 7. This is to study the general progression of accuracy versus number of FL 

rounds in a real-life implementation of the system, wherein each client may wish to tailor its 

privacy budget after each round according to the results of the previous round. We see that 

even when the value of ϵ is different for different rounds, the models are converging.
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Besides demonstrating the accuracy of the complete system, we also show the scalability 

of the system in terms of memory consumption in Fig. 8. It is observed that the number 

of clients does not affect the memory consumption significantly. On the other hand, as ϵ is 

varied from 1 to 15, memory requirement goes up by approximately one GB. It also needs 

to be noted that, in an actual deployment, each node will run on a different machine. In our 

experiments, they have been made to run on the same machine. Thus, overall, SBTLF is 

highly scalable and can be effectively used to train ML models using federated learning with 

local differential privacy.

C. COMPARISON WITH EXISTING WORK

There is no work in the literature that can be directly compared quantitatively with our 

approach. Hence, we qualitatively compare it with the state-of-the-art in Table 1. It is 

seen that the proposed approach has more features than any of the other comparators. 

Specifically, while our initial work called BTLF [18] supports most of the features, yet 

it cannot prevent malicious behavior of nodes from subverting the goal of incentivization. 

For example, if a peer node behaved maliciously, the global parameters could be accessed 

without any additional token costs to the clients. Also, a malicious node could deduct 

tokens without delivering the global parameters to the client. Further, since each peer 

node maintains a replicated copy of the blockchain ledger, in BTLF, they could retrieve 

consolidated global parameters directly from the ledger. The improved version SBTLF as 

presented in the current paper addresses all such concerns and can be meaningfully used 

by enterprises in building ML models through federated learning with LDP and appropriate 

incentivization.

It may be noted that, the nodes/clients themselves could possibly aggregate the individual 

local parameters of other nodes as the parameters are written to a ledger. This way, clients 

can get most recent global parameters without using its available tokens. However, we argue 

that if a client aggregates the local parameters of all other clients, it will need to spend its 

own computational power, which is more expensive than simply spending its tokens. Thus, 

the proposed approach discourages such behavior of clients.

VI. RELATED WORK

Several work in the literature [16], [37], [38], [39], [46], [47], [48], [49], [50], [51] 

have explored decentralized federated learning by integrating FL with blockchain-based 

decentralized execution. While majority of these [37], [38], [47] mainly focus on secured 

decentralized training of the FL model through multiple clients, some [48], [50], [51] 

have also considered application-specific use cases for decentralized machine learning. A 

recent research by Hai et al. [51] introduce an innovative integration of FL and blockchain 

technology in developing a medical records recommendation system. Pokhrel and Chai 

[16] present FL with blockchain for autonomous vehicles along with automobile design 

challenges.

In yet another domain-specific application, Liu et al. [52] have discussed a secure FL 

framework for 5G networks, where both effective learning and security have a significant 

role. In recent years, there has been some research towards preserving privacy in federated 
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learning. For example, Bhowmick et al. [53] introduce a method that protects against the 

reconstruction of parameters, thus enhancing privacy in FL. In contrast, Hao et al. [27] 

focus on efficiency and confidentiality in federated deep learning. In [54], the authors 

have developed a fully decentralized FL framework by using blockchains for implementing 

gradient updates. The proposed approach reduces the cost of gradient descent while prevents 

data and model poisoning in FL. Several other recent work [55], [56], [57], [58], [59] have 

attempted to ensure security in FL through blockchain-based gradient updates. In addition, 

application-specific approaches have been developed to ensure security in FL [60], [61]. 

Although they have explored secure and privacy-preserving decentralized model training 

through blockchain-based FL, the primary focus is on model privacy rather than data 

privacy for individual clients participating in the federated training procedure. LDP  becomes 

essential in this context to ensure data privacy for the individual clients participating in the 

model training procedure.

While some efforts have been made to employ blockchain in the context of federated 

learning [15], limited research has focused on incorporating LDP in this domain. Critical 

design choices necessitate careful evaluation, including determining whether the same nodes 

perform all three crucial operations: model parameter calculation, LDP-related computation, 

and distributed ledger updating. Notably, in domains like the Internet of Things (IoT), 

where end devices may lack adequate computational power, allocating tasks to edge nodes 

has significant implications on device privacy. In [62], the authors have developed an 

incentivization mechanism over blockchain for cross-silo federated learning, where the 

organizations cooperatively train a global model with their local datasets, whereas some 

organizations may work as free-riders. The proposed approach aims at improving the social 

efficiency through an incentivization mechanism over the blockchain framework.

Among the various application-specific domains, Li et al. [44] consider FL for segmenting 

brain tumors. In contrast, Lu et al. [28] integrate differential privacy with federated 

learning in mobile edge computing. They emphasize the importance of privacy-preserving 

approaches in urban settings. Zhao et al. [30] further extended the scope of privacy 

preservation in federated learning by integrating blockchain technology into the mix. They 

specifically targeted IoT devices, providing a unique perspective on privacy challenges and 

solutions in this rapidly evolving domain. Likewise, the focus of the work proposed in [30] 

is LDP-based FL for the Internet of Things. In a more general setting, the work of Truex et 

al. [29] gives a formal privacy guarantee for LDP in federated learning.

Existing literature provides limited insights into the development of appropriate incentive 

schemes for federated learning. Kong et al. [63] propose an incentivization mechanism that 

does not monetize data like the other approaches. Instead, model performance is used as the 

reward, i.e., those making more significant contributions can access more accurate models. 

It has been shown that clients will benefit by sharing as much data as they possess to 

participate in federated learning under this incentive mechanism. Some blockchain-based FL 

techniques have been proposed using specific cryptocurrencies as incentives [64]. However, 

the potential legal implications of such currencies can impact participants’ willingness to 

engage. Xu et al. [26] model incentivization in federated learning with differential privacy in 

industrial IoT as a Stackelberg game with the aggregating server as the leader and the client 
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nodes as followers. The server tries to maximize the utility of its available total budget by 

appropriately rewarding the clients for data sharing. Another line of work [65], [66] uses 

incentive compatibility to enable rational behavior. A systematic and comprehensive survey 

on incentivization in federated learning can be found in [45].

In contrast, as proposed in this paper, the token-based incentive approach SBTLF 

circumvents these issues and allows for seamless integration across multiple blockchain 

networks, directly or through appropriate conversion factors. Aligning the incentive quantum 

with the LDP privacy factor ϵ will foster fairness and encourage active participation in the 

federated learning process. However, several research challenges are associated with such 

an integrated approach. First, the entire process should work autonomously by executing 

well-developed chaincodes. While the actual local model training works off-chain, model 

parameter sharing, crediting, and debiting of tokens, as well as global parameter calculation 

and dissemination, happen on-chain. Further, the incentivization scheme must be fair and 

depend on the privacy budget level for the individual clients. Thus, LDP and TBI are to 

be designed in an integrated manner, which should also be amenable to implementation as 

chaincodes on a permissioned blockchain network.

VII. CONCLUSION

We have proposed a novel approach named SBTLF for LDP-FL coupled with token-

based incentivization. Our implementation of such decentralized Federated Learning within 

HyperLedger Fabric, a permissioned blockchain, addresses critical issues surrounding client 

selection fairness and server trustworthiness. By utilizing a chaincode to randomly sample 

a subset of nodes, we ensure that transactions are endorsed by all endorsers, adhering to 

the endorsement policy and there is no selection of a single client by malicious servers. 

Furthermore, we highlighted the asynchronous nature of the system and explained how 

updating the client’s round number in relation to the server’s round number and the client’s 

previous round number helps reduce the challenges posed by this asynchronicity to some 

extent.

Finally, the integration of token-based incentivization enhances the practicality of the system 

by encouraging clients to train their models and share data to reap the benefits of FL. Usage 

of symmetric key encryption to encrypt and protect global parameters ensures that only the 

deserving clients have access to the global model weights.

We plan to augment SBTLF by considering other LDP mechanisms as well as extending 

to more relaxed differential privacy models such as sensitive privacy [33], [34]. We would 

also like to evaluate with larger datasets that may have different data distributions. It will be 

interesting to consider various kinds of adversarial attacks on LDP-FL and how these can be 

guarded against in SBTLF. Validation of the parameters used could additionally be done as 

in some recent work [67].
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FIGURE 1. 
Two forms of differential privacy models - centralized and local.

DE CHAUDHURY et al. Page 24

IEEE Trans Priv. Author manuscript; available in PMC 2025 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. 
Overview of the SBTLF framework.
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FIGURE 3. 
Model accuracy progression over Federated Learning rounds, for different values of epsilon. 

The client model is trained for 5 epochs in each round over 50 samples per digit.
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FIGURE 4. 
Model accuracy progression over federated learning rounds, for different values of epsilon. 

The client model is trained for 10 epochs in each round over 50 samples per digit.
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FIGURE 5. 
Model accuracy progression over federated learning rounds, for different values of epsilon. 

The client model is trained for 5 epochs in each round over 15 samples per digit.

DE CHAUDHURY et al. Page 28

IEEE Trans Priv. Author manuscript; available in PMC 2025 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 6. 
Variation of accuracy with number of FL rounds with different clients using different but 

fixed privacy budgets.
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FIGURE 7. 
Variation of accuracy with number of FL rounds with different clients using varying privacy 

budgets for each round.
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FIGURE 8. 
Memory consumption for different ϵ values and number of clients.
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LISTING 1:

Function Declarations of Chaincodes Invoked by Client

func PutClientParams (data string, epsilon float64, round int) {}

func GetEncryptedParams (round int) {)

func RequestKey (round int) {}

func GetSessionKey (round int, privateDataCollection string) {}
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LISTING 2:

Function Declarations of Chaincodes Invoked by Server.

func GetAllParams (num int, seed int) {)

func SelectRandomSet (num int, seed int, round int) {}

func PutGlobalParams (data string) {}

func GetRequests () {}

func PutSessionKey (round int, privateDataCollection string) {}
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