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Abstract
It is hypothesised that peripheral immune states responding to regional environmental
triggers contribute to central neurodegeneration. Region-specific genetic selection pressures
require this hypothesis to be assessed in an ancestry specific manner. Here we utilise
genome-wide association studies and expression quantitative trait loci from African, East
Asian and European ancestries to show that genes causing neurodegeneration are
preferentially expressed in innate rather than adaptive immune cells, and that expression of
these genes mediates the risk of neurodegenerative disease in monocytes in an
ancestry-specific manner.
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Main
The role of ancestry-specific risk is increasingly recognised in neurodegenerative diseases
(NDDs). Rectifying the historical focus on European populations, recent efforts have
explored the clinical and genetic diversity of conditions such as Alzheimer’s (AD) and
Parkinson’s diseases (PD), and Frontotemporal dementia (FTD)1–4. This includes
appreciation of the differences in the prevalence and pathology of NDDs across
populations5,6, as well as differences in the genetic architecture of both monogenic and
complex forms of disease3,4,7,8. Central to this has been the discovery of novel disease loci in
ancestry-specific genome-wide association studies (GWAS) of NDDs7–11, and of variability of
gene expression in post-mortem brains6,12. Despite these studies being limited by relatively
small case numbers, they have identified novel risk loci with unexpectedly large effect sizes,
emphasising the significant effect ancestry can have in neurodegeneration.

Simultaneously, the immune system is increasingly implicated in NDDs, including AD, PD
and FTD. Within the CNS, the role of microglia, the parenchymal myeloid cells of the CNS,
as well as immune related macro-glial states are gaining prominence13–15. Furthermore, both
positron emission tomography (PET) based imaging approaches, as well as cerebrospinal
fluid (CSF) biochemical analyses have demonstrated increases in inflammatory biomarkers
in NDDs, with levels correlated to clinical outcomes. This central immune response is
mirrored peripherally, and there is suggestive evidence that the peripheral response is
fundamentally involved in disease pathogenesis16,17. Clinically, NDDs can commence with a
peripheral prodrome, for example, anosmia and constipation in PD. Epidemiological data
shows that NDDs have followed viral pandemics throughout history18, and that recent viral
infection increases the risk of NDD19,20. Interestingly, this appears to occur without evidence
of replicating viral particles, raising the possibility of a virally-triggered peripheral immune
state that affects CNS function. Indeed, the concept of brain-immune crosstalk has been
advanced with the potential to explain how environmental factors might contribute to
neurodegenerative risk21, and underpinning recent therapeutic strategies to treat these
diseases22–24.

In this work, we hypothesise that genes causally linked to AD, PD and FTD are themselves
active in the peripheral immune response, and that this activity contributes to the risk of
disease in an ancestry-specific manner. There is already some evidence to support this idea
in PD, where studies in mice have shown that alpha-synuclein (SNCA), the major constituent
of Lewy bodies and a cause of PD, has a protective role against viral infection centrally25,
and can mediate antigen presentation and the inflammatory response in the peritoneum26.
Similarly, common pathogenic variants in leucine-rich repeat kinase-2 (LRRK2) modulate
inflammation in response to CNS and systemic infections27,28, as does a pathogenic GBA1
variant with respect to viral encephalitis29. This association is also seen in AD and FTD,
where, respectively, TREM230,31 and C9orf7232 have peripheral immunomodulatory effects.
Genetic analyses have linked the heritability of NDDs with peripheral immune cell types33,34.
However, the risk of NDDs caused by the expression of genes in peripheral immune cells
across diverse ancestries has not been investigated.

To study this, we systematically explored the role of 39 NDD genes causally implicated in
AD, PD or FTD across peripheral immune cells (Supplementary Table 1, Methods). Given
that both ancestry and activation state are well recognised to affect gene expression in
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peripheral immune cells, we used a multi-ancestry study of 22 different cell-types to study
gene expression35. This dataset was derived from 222 African (n = 82), East Asian (n = 60)
and European (n = 80) donors, either at baseline or after activation with SARS-CoV-2 or
Influenza A viruses.

We found that 32 of the 39 NDD-causing genes (82%) were expressed across peripheral
immune cells (Figure 1a). Using phenotypic QTL data, we noted that 29 of these 32 genes
(91%) were also causally associated with a white blood cell count metric in peripheral blood.
Indeed, 20-83% of the NDD-causing genes, including APOE, SNCA and MAPT, were loci
that influenced macrophage, monocyte, lymphocyte or total white cell count in at least one
ancestry (Figure 1b, Supplementary Figure 1).

Next, we explored the expression patterns of NDD-causing genes by cell type, activation
state, and ancestry. Over 80% of these genes showed maximal expression in innate immune
cell types, most commonly in monocytes (16 out of 34 cell types) and NK cells (8 out of 34
cell types, Figure 1d). Genes with maximal expression in myeloid cell types (including
APOE, PSEN1, TREM2, LRRK2 and C9orf72 in monocytes; and APP and PSEN2 in
dendritic cells) showed greatest cell-type specificity (mean τ-statistic = 0.82, Figure 1e). In
contrast, genes with maximal expression in NK cells were more broadly expressed (mean
τ-statistic 0.63, p value for two sample T-test = 0.01). Three NDD genes (TREM2, APOE and
LRRK2) showed high specificity (τ-statistic > 0.9) to unstimulated activation states as
compared to those treated with influenza or SARS-CoV-2 (Figure 1f). Notably, these three
genes all had maximal expression in monocytes. Myeloid cells also showed the greatest
number of genes differentially expressed across ancestries (European relative to African
ancestry) with 10 genes identified, including APP, BIN1, GBA1, RAB32, C9orf72 and GRN
(Figure 1c). Taken together, these results show that genes central to NDDs are preferentially
expressed in peripheral immune cells of myeloid lineage, and that these cells contain the
greatest proportion of cell type- and ancestry-specific NDD gene expression.

We then explored whether the expression of these genes in the periphery might be causally
linked with disease. To do this, we applied a well-established genetic approach,
colocalisation analysis, to explore the possibility that NDD gene expression in the peripheral
immune system might be a driver of disease risk36. This analysis uses a Bayesian approach
to ascertain the posterior probabilities that association signals of two traits at a genetic locus
share a causal variant (posterior probability of hypothesis 4, PPH4), or whether these
association signals are distinct (posterior probability of hypothesis 3, PPH3, Methods).
Crucially, these analyses were conducted in an ancestry-specific manner, as we reasoned
that the peripheral immune system would be the first to encounter geographically restricted
microbes and pollutants, leading to variable environmental selection pressures37. This
required use of very recently produced ancestry-specific GWAS, as well as corresponding
ancestry-aware functional genomic annotations, namely expression quantitative trait loci
(eQTL). We utilised the eQTL available from the same multi-ancestry study used to explore
gene expression above, due to the availability of data across multiple populations, cell types
and activation states35.

We first explored ancestry-specific AD GWASs with multi-ancestry eQTL data. When using a
European AD GWAS38, we identified a colocalising signal in BIN1 in monocytes (PPH4 =
0.93, Supplementary Table 2, Supplementary Fig. 2). There was a positive correlation
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between effect sizes of the GWAS and eQTL single nucleotide polymorphisms (SNPs) at this
locus, suggesting that increased BIN1 expression in peripheral monocytes correlated with
increased risk of AD. While the role of BIN1 in modulating AD is known within the CNS39, this
result suggests a causative role for the gene in AD the periphery. Noting that BIN1 is not a
significant locus in the East Asian AD GWAS11, we found no colocalising signal at BIN1 when
this GWAS was tested against the multi-ancestry eQTL (Supplementary Table 3).

Focusing on PD, with a GWAS derived from individuals of European ancestry40, we identified
a colocalising signal within the PD-associated gene LRRK2, mediating the risk of PD and
gene expression in SARS-CoV-2-treated CD14 monocytes (Figure 2a, Supplementary Table
4, Supplementary Figure 3). To check whether this result was ancestry specific, we
undertook the same analysis with an East Asian PD GWAS9, finding that the result was
underpowered at this locus (PPH3 + PPH4 < 0.75, Figure 2a, Supplementary Table 5,
Supplementary Figure 4, Methods). Given this, we checked the East Asian GWAS against
an East-Asian-specific eQTL dataset41, finding the association signals underlying LRRK2
expression in monocytes were distinct from those underlying PD risk in all monocyte cell
types tested (PPH3 >0.99, Supplementary Table 6, Supplementary Figure 5).

Focusing on the SNCA locus, arguably the most important gene in PD, there was insufficient
power when the multi-ancestry eQTL was tested against both the European and East Asian
PD GWASs (PPH4 + PPH3 < 0.75, Figure 2a, Supplementary Table 4, 5). However, noting
that the PPH4/PPH3 ratio was high at 3.5, we checked this locus using an
East-Asian-specific PD eQTL and GWAS. We found that in this East-Asian-specific analysis
that there was a significant colocalisation in SNCA expression in CD16+ monocytes (Figure
2b, Supplementary Table 6, Supplementary Figure 5). Using the multi-ancestry eQTL with an
African PD GWAS, there was a suggestive but underpowered colocalising signal at BIN1 in
CD14+ monocytes (PPH4=0.71, PPH3+PPH4=0.73, PPH4/PPH3 ratio=39.9). We could not
validate this result in an African-specific eQTL dataset given the lack of power in the
available datasets (Supplementary Table 8).

As expected, at the LRRK2 locus, there was a positive correlation between effect sizes in
European populations, implying that increased LRRK2 expression associates with increased
PD risk (Figure 2b). In contrast,at the SNCA locus in East Asian populations, the correlation
between effect sizes was negative, suggesting that decreased SNCA expression in CD16+
monocytes was associated with increased PD risk. While this result appears to be
counter-intuitive given that increased SNCA in the CNS is associated with PD, this finding is
in keeping with multiple existing genomic and proteomic studies, which show that PD is
associated with a decreased SNCA RNA and protein in blood and CSF33,42–44.

In summary, we show that genes causally implicated in NDDs mediate the risk of these
diseases partially through effects in the peripheral immune system. Crucially, the expression
of these genes as well as the risk mediated by them were ancestry dependent. This
suggests not only that neurodegeneration has a peripheral component, but that across
different ancestries regional selection pressures may have differentially modulated disease
mechanisms. The results also suggest that genes that have a detrimental effect within the
CNS may be protective peripherally25,26. In addition to emphasising the importance of
ancestry-specific functional genetic annotations, this work defines innate immune cells, and
specifically monocytes, as potential targets for treatments for neurodegeneration.
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Methods

Neurodegenerative gene list curation
Genes causally implicated in AD were identified as described by Neuner et al45, selecting the
18 genes with increased confidence of causation. Fourteen genes causally implicated in PD
with high or very high confidence were selected as reported by Blauwendraat et al46, with the
addition of RAB32 whose role in PD has recently emerged47,48. Causative FTD genes were
selected from Antionioni et al49, including the 6 genes that contribute ≥1% of disease
frequency.

eQTL preprocessing
We systematically searched PubMed for eQTL studies of peripheral blood from the last 10
years with the following features: i) included more than 150 participants; ii) specifically stated
ancestry; iii) divided cells into clearly defined subtypes by single cell sequencing or
cytometric approaches; and iv) included an activation state generated either with an
immunogenic trigger or through the inclusion of participants with immunological disease. The
Aquino et al dataset35 was the only dataset identified that included participants from African,
Asian and European ancestry. Noting that it analysed 22 different cell types, and included
activation state data with samples stimulated with either SARS-CoV-2 virus or influenza A
virus, it was selected as the baseline dataset for this study. For colocalisation analyses, the
Aquino et al dataset was supplemented by use of Ota et al41, as a large dataset specific to
East Asian ancestry. The only African-specific ancestry eQTLs that were identified included
two datasets from African and African admixed populations, one exploring monocytes50, and
the other macrophages51.

Where relevant, summary statistics were processed by lifting over genomic locations from
GRCh37 to GRCh38. SNP genomic coordinates were mapped to Reference SNP cluster IDs
(rsIDs) using the SNPlocs.Hsapiens.dbSNP144.GRCh38 package, and ancestry-specific
minor allele frequencies were imported from the MafDb.1Kgenomes.phase3.GRCh38
package52.

Blood count phenotype-QTL processing
Significant associations between genetic variation and blood count metrics were derived
from a multi-ancestry phenotype QTL53. Significant traits between blood cell metrics of
interest (neutrophil, lymphocyte, monocyte and total white blood cell count) and NDD genes
were exported using Open Targets (https://genetics.opentargets.org/, RRID:SCR_014622)54.

Gene expression analysis
The gene expression and differential gene expression datasets used in this study were
generated by Aquino et al35. To facilitate comparison between cell types, the raw transcript
per million (TPM) for each gene was normalised by the maximum TPM per gene across cell
types and activation states, giving the metric of proportion of expression per gene. Noting
that cells in Aquino et al were treated with both influenza A and SARS-CoV-2 viruses, this
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was also normalised using the above approach. Of each cell type that showed maximal
expression of a gene, the maximal cell state was defined as the viral exposure that resulted
in the maximal expression of the gene for that celltype.

To measure the cell-type specificity of gene expression, the τ-statistic was calculated using
the method defined by Yanai et al55:

,τ =  𝑖=1

𝑁

∑ (1−𝑥
𝑖
)

𝑁 − 1  

where N is the number of tissues and xi is the expression profile component normalised by
the maximal component value. For each cell type that contained the highest expression per
gene, a further τ-statistic was calculated to measure cell-state specificity of response to viral
stimulation.

Differential gene expression analysis results were utilised from Aquino et al. They compared
European relative to African populations using a linear regression model, adjusted for
individual donor age, cellular mortality and cellular composition as described35.

GWAS preprocessing
GWAS summary statistics from 3 ancestry-specific studies of PD were used: European40,
African10, and East Asian9 ancestry. Two ancestry-specific GWAS studies were used for AD:
European38 and Asian11. Where relevant, summary statistics were processed by lifting over
genomic locations from GRCh37 to GRCh38. SNP genomic coordinates were mapped to
rsIDs using the SNPlocs.Hsapiens.dbSNP144.GRCh38 package
(https://bioconductor.org/packages/release/data/annotation/html/SNPlocs.Hsapiens.dbSNP1
44.GRCh38.html)56, and ancestry-specific minor allele frequencies were imported from the
MafDb.1Kgenomes.phase3.GRCh38 package
(https://www.bioconductor.org/packages/release/data/annotation/html/MafDb.1Kgenomes
.phase3.GRCh38.html)52.

Colocalisation analysis
To evaluate the probability that GWAS loci and eQTLs share a single causal variant, a
colocalisation analysis was performed using coloc (version 5.1.0.1,
https://cran.r-project.org/package=coloc) and colochelpR (version 0.99.1,
http://dx.doi.org/10.5281/zenodo.5011869)36,57. GWAS loci within 1 Mb significant GWAS
SNPs were explored. The prior probability that any random SNP in the region is associated
with the GWAS (p1) or eQTL (p2) was set to the default 10-4, whereas the prior probability
that any random SNP in the region is associated with both traits (p12) was set to 10−5. Using
a Bayesian approach, posterior probabilities were calculated for four different hypotheses
that together sum to 1. Hypothesis 1 and 2 measure associations of the GWAS locus or the
eQTL locus, where there is no sufficient power in the two studies to compare the two (as
defined by PPH4 + PPH3 < 0.75). Hypothesis 3 (PPH3) measures the probability that the
traits have distinct causal variants at a locus, while hypothesis 4 (PPH4) measures the
probability that a locus is colocalised as a result of a single causal variant.
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Statistical analysis
All statistical analysis was undertaken in R version 4.2.0 (RRID:SCR_001905,
https://www.r-project.org/).

Bibliography

1. Ben-Shlomo, Y. et al. The epidemiology of Parkinson’s disease. The Lancet 403,

283–292 (2024).

2. Dehghani, N., Bras, J. & Guerreiro, R. How understudied populations have contributed

to our understanding of Alzheimer’s disease genetics. Brain 144, 1067–1081 (2021).

3. Koros, C. et al. The Landscape of Monogenic Parkinson’s Disease in Populations of

Non-European Ancestry: A Narrative Review. Genes 14, 2097 (2023).

4. Reitz, C., Pericak-Vance, M. A., Foroud, T. & Mayeux, R. A global view of the genetic

basis of Alzheimer disease. Nat. Rev. Neurol. 19, 261–277 (2023).

5. Naslavsky, M. S. et al. Global and local ancestry modulate APOE association with

Alzheimer’s neuropathology and cognitive outcomes in an admixed sample. Mol.

Psychiatry 27, 4800–4808 (2022).

6. Schlesinger, D. et al. African ancestry protects against Alzheimer’s disease-related

neuropathology. Mol. Psychiatry 18, 79–85 (2013).

7. Kim, J. J. et al. Multi-ancestry genome-wide association meta-analysis of Parkinson’s

disease. Nat. Genet. 56, 27–36 (2024).

8. Lake, J. et al. Multi-ancestry meta-analysis and fine-mapping in Alzheimer’s disease.

Mol. Psychiatry 28, 3121–3132 (2023).

9. Foo, J. N. et al. Identification of Risk Loci for Parkinson Disease in Asians and

Comparison of Risk Between Asians and Europeans: A Genome-Wide Association

Study. JAMA Neurol. 77, 746–754 (2020).

10. Rizig, M. et al. Genome-wide Association Identifies Novel Etiological Insights Associated

with Parkinson’s Disease in African and African Admixed Populations. medRxiv

2023.05.05.23289529 (2023) doi:10.1101/2023.05.05.23289529.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2024. ; https://doi.org/10.1101/2024.11.20.624489doi: bioRxiv preprint 

https://www.r-project.org/
https://doi.org/10.1101/2024.11.20.624489
http://creativecommons.org/licenses/by/4.0/


11. Shigemizu, D. et al. Ethnic and trans-ethnic genome-wide association studies identify

new loci influencing Japanese Alzheimer’s disease risk. Transl. Psychiatry 11, 1–10

(2021).

12. Benjamin, K. J. M. et al. Analysis of gene expression in the postmortem brain of

neurotypical Black Americans reveals contributions of genetic ancestry. Nat. Neurosci.

27, 1064–1074 (2024).

13. Bartels, T., De Schepper, S. & Hong, S. Microglia modulate neurodegeneration in

Alzheimer’s and Parkinson’s diseases. Science 370, 66–69 (2020).

14. Sadick, J. S. et al. Astrocytes and oligodendrocytes undergo subtype-specific

transcriptional changes in Alzheimer’s disease. Neuron 110, 1788-1805.e10 (2022).

15. D’Sa, K. et al. Alpha-synuclein aggregates trigger anti-viral immune pathways and RNA

editing in human astrocytes. 2024.02.26.582055 Preprint at

https://doi.org/10.1101/2024.02.26.582055 (2024).

16. Berriat, F., Lobsiger, C. S. & Boillée, S. The contribution of the peripheral immune

system to neurodegeneration. Nat. Neurosci. 26, 942–954 (2023).

17. Castellani, G., Croese, T., Peralta Ramos, J. M. & Schwartz, M. Transforming the

understanding of brain immunity. Science 380, eabo7649 (2023).

18. Limphaibool, N., Iwanowski, P., Holstad, M. J. V., Kobylarek, D. & Kozubski, W.

Infectious Etiologies of Parkinsonism: Pathomechanisms and Clinical Implications. Front.

Neurol. 10, (2019).

19. Kettunen, P., Koistinaho, J. & Rolova, T. Contribution of CNS and extra-CNS infections to

neurodegeneration: a narrative review. J. Neuroinflammation 21, 152 (2024).

20. Levine, K. S. et al. Virus exposure and neurodegenerative disease risk across national

biobanks. Neuron 111, 1086-1093.e2 (2023).

21. Schwartz, M. & Deczkowska, A. Neurological Disease as a Failure of Brain–Immune

Crosstalk: The Multiple Faces of Neuroinflammation. Trends Immunol. 37, 668–679

(2016).

22. Rosenzweig, N. et al. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2024. ; https://doi.org/10.1101/2024.11.20.624489doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.20.624489
http://creativecommons.org/licenses/by/4.0/


macrophages to combat cognitive impairment in a tauopathy mouse model. Nat.

Commun. 10, 465 (2019).

23. Sarazin, M. et al. The path to next-generation disease-modifying immunomodulatory

combination therapies in Alzheimer’s disease. Nat. Aging 4, 761–770 (2024).

24. Schwartz, M. Can immunotherapy treat neurodegeneration? Science 357, 254–255

(2017).

25. Beatman, E. L. et al. Alpha-Synuclein Expression Restricts RNA Viral Infections in the

Brain. J. Virol. 90, 2767–2782 (2015).

26. Alam, M. M. et al. Alpha synuclein, the culprit in Parkinson disease, is required for

normal immune function. Cell Rep. 38, 110090 (2022).

27. Shutinoski, B. et al. Lrrk2 alleles modulate inflammation during microbial infection of

mice in a sex-dependent manner. Sci. Transl. Med. 11, eaas9292 (2019).

28. Fava, V. M. et al. Pleiotropic effects for Parkin and LRRK2 in leprosy type-1 reactions

and Parkinson’s disease. Proc. Natl. Acad. Sci. 116, 15616–15624 (2019).

29. Melamed, S. et al. Innate immune response in neuronopathic forms of Gaucher disease

confers resistance against viral-induced encephalitis. Acta Neuropathol. Commun. 8,

144 (2020).

30. Griciuc, A. & Tanzi, R. E. The role of innate immune genes in Alzheimer’s disease. Curr.

Opin. Neurol. 34, 228 (2021).

31. Matos, A. de O., Dantas, P. H. dos S., Queiroz, H. A. G. de B., Silva-Sales, M. &

Sales-Campos, H. TREM-2: friend or foe in infectious diseases? Crit. Rev. Microbiol. 50,

1–19 (2024).

32. McCauley, M. E. et al. C9orf72 in myeloid cells suppresses STING-induced

inflammation. Nature 585, 96–101 (2020).

33. Reynolds, R. H. et al. Local genetic correlations exist among neurodegenerative and

neuropsychiatric diseases. Npj Park. Dis. 9, 70 (2023).

34. Lona-Durazo, F., Reynolds, R. H., Scholz, S. W., Ryten, M. & Gagliano Taliun, S. A.

Regional genetic correlations highlight relationships between neurodegenerative disease

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2024. ; https://doi.org/10.1101/2024.11.20.624489doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.20.624489
http://creativecommons.org/licenses/by/4.0/


loci and the immune system. Commun. Biol. 6, 1–11 (2023).

35. Aquino, Y. et al. Dissecting human population variation in single-cell responses to

SARS-CoV-2. Nature 621, 120–128 (2023).

36. Wallace, C. Eliciting priors and relaxing the single causal variant assumption in

colocalisation analyses. PLoS Genet. 16, e1008720 (2020).

37. Brodin, P. & Davis, M. M. Human immune system variation. Nat. Rev. Immunol. 17,

21–29 (2017).

38. Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional

pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).

39. Sudwarts, A. et al. BIN1 is a key regulator of proinflammatory and

neurodegeneration-related activation in microglia. Mol. Neurodegener. 17, 33 (2022).

40. Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for

Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet

Neurol. 18, 1091–1102 (2019).

41. Ota, M. et al. Dynamic landscape of immune cell-specific gene regulation in

immune-mediated diseases. Cell 184, 3006-3021.e17 (2021).

42. Craig, D. W. et al. RNA sequencing of whole blood reveals early alterations in immune

cells and gene expression in Parkinson’s disease. Nat. Aging 1, 734–747 (2021).

43. Irmady, K. et al. Blood transcriptomic signatures associated with molecular changes in

the brain and clinical outcomes in Parkinson’s disease. Nat. Commun. 14, 3956 (2023).

44. Mollenhauer, B. et al. α-Synuclein and tau concentrations in cerebrospinal fluid of

patients presenting with parkinsonism: a cohort study. Lancet Neurol. 10, 230–240

(2011).

45. Neuner, S. M., Tcw, J. & Goate, A. M. Genetic architecture of Alzheimer’s disease.

Neurobiol. Dis. 143, 104976 (2020).

46. Blauwendraat, C., Nalls, M. A. & Singleton, A. B. The genetic architecture of Parkinson’s

disease. Lancet Neurol. 19, 170–178 (2020).

47. Gustavsson, E. K. et al. RAB32 Ser71Arg in autosomal dominant Parkinson’s disease:

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2024. ; https://doi.org/10.1101/2024.11.20.624489doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.20.624489
http://creativecommons.org/licenses/by/4.0/


linkage, association, and functional analyses. Lancet Neurol. 23, 603–614 (2024).

48. Hop, P. J. et al. Systematic rare variant analyses identify RAB32 as a susceptibility gene

for familial Parkinson’s disease. Nat. Genet. 56, 1371–1376 (2024).

49. Antonioni, A. et al. Frontotemporal Dementia, Where Do We Stand? A Narrative Review.

Int. J. Mol. Sci. 24, 11732 (2023).

50. Quach, H. et al. Genetic adaptation and neandertal admixture shaped the immune

system of human populations. Cell 167, 643-656.e17 (2016).

51. Nédélec, Y. et al. Genetic ancestry and natural selection drive population differences in

immune responses to pathogens. Cell 167, 657-669.e21 (2016).

52. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74

(2015).

53. Chen, M.-H. et al. Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667

Individuals from 5 Global Populations. Cell 182, 1198-1213.e14 (2020).

54. Ochoa, D. et al. The next-generation Open Targets Platform: reimagined, redesigned,

rebuilt. Nucleic Acids Res. 51, D1353–D1359 (2023).

55. Yanai, I. et al. Genome-wide midrange transcription profiles reveal expression level

relationships in human tissue specification. Bioinformatics 21, 650–659 (2005).

56. Hervé Pagès. SNPlocs.Hsapiens.dbSNP144.GRCh38. (2017).

57. Reynolds, R. H. RHReynolds/colochelpR: v0.99.1. Zenodo (2021)

doi:10.5281/zenodo.5011869.

Code availability
The complete code utilised in this work can be accessed at
https://github.com/aaronwagen/peripheral_immune_neurodegeneration, including knitted
markdowns with integrated analysis, results, and packages utilised.

Data availability
Summary statistics for Foo et al, Rizig et al and Shigemizu et al were supplied by the
authors. Otherwise, all datasets utilised are from public sources (Supplementary Table 9).

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2024. ; https://doi.org/10.1101/2024.11.20.624489doi: bioRxiv preprint 

https://github.com/aaronwagen/peripheral_immune_neurodegeneration
https://doi.org/10.1101/2024.11.20.624489
http://creativecommons.org/licenses/by/4.0/


Acknowledgements
This research was funded in part by Aligning Science Across Parkinson’s [ASAP-000509
and ASAP-000463] through the Michael J. Fox Foundation for Parkinson’s Research
(MJFF). This work utilized the computational resources of the NIH HPC Biowulf cluster
(http://hpc.nih.gov). This work was supported in part by the Intramural Research Program of
the National Institutes of Health including: the Center for Alzheimer’s and Related
Dementias, within the Intramural Research Program of the National Institute on Aging and
the National Institute of Neurological Disorders and Stroke.

AZW was supported through the award of a Clinical Research Fellowship funded by the
Wolfson Foundation and Eisai Ltd. SG was supported by Wellcome (100172/Z/12/2) and is
currently an MRC Senior Clinical Fellow (MR/T008199/1). MR was supported by the UK
Medical Research Council (MRC) through her award of Tenure-track Clinician Scientist
Fellowship (MR/N008324/1).

Competing interests
RHR is currently employed by CoSyne Therapeutics (Lead Computational Biologist). All
work performed for this publication was performed in her own time, and not as a part of her
duties as an employee.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2024. ; https://doi.org/10.1101/2024.11.20.624489doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.20.624489
http://creativecommons.org/licenses/by/4.0/


Fig. 1: Genes causing neurodegeneration are expressed in peripheral immune cells in
a cell-type, cell-state and ancestry specific manner.
a, Number of genes causing neurodegeneration expressed in multi-ancestry study of
peripheral blood cells (Aquino et al35). b, Proportion of genes expressed in peripheral blood
cells (14 AD, 13 PD and 5 FTD) that have an association with lymphocyte, monocyte,
neutrophil and total white blood cell count (left-to-right, from Chen et al53). c, Results of
differential gene expression analysis, showing genes significantly differentially expressed in
blood cell lineages in European relative to African ancestry. Empty tile denotes no significant
differential expression. d Heatmap showing proportion of gene expression of genes causing
neurodegeneration across cell types and lineages in multi-ancestry study. The cell-state with
maximal gene expression is shown, with expression represented as proportion of maximal
expression per gene over all cell types. e, Column showing cell-type specificity of genes,
with labels showing the cell-type with greatest gene expression, and shaded by τ-statistic
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(darker suggests greater specificity). f, Column showing cell-state specificity, where, for the
cell-type that showed maximal expression for each gene, the label shows the exposure that
caused the maximal expression (or ‘-’ where maximal expression was in unstimulated cells).
Shading shows the τ-statistic of the labelled activation state compared to the other
activations.
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Fig 2. Expression of PD genes in peripheral immune cells mediate risk of PD in an
ancestry dependent manner. a, Colocalisation of LRRK2 (top) and SNCA (bottom)
between multi-ancestry eQTL and PD GWAS from European (left) and East Asian (right)
ancestry. PPH3 measures discrete risk, PPH4 measures colocalised risk (significant
colocalisation = posterior hypothesis > 0.75, represented by the dashed line). b,
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Colocalisation of SNCA using eQTL and GWAS from East Asian ancestry.
c-f, Locus analysis of significant colocalising signals between PD GWASs and eQTLs.
Results from LRRK2 locus using European PD GWAS and multi-ancestry eQTL in
SARS-CoV-2 treated monocytes, showing -log10(p values) (c) and betas (d). Results from
SNCA locus using East Asian PD GWAS and East Asian eQTL in CD16+ monocytes,
showing correlation of p-values (e) and beta values (f). Text shows Pearson’s correlation
coefficient and p value, with beta plots also showing the regression line of best fit shaded
with 95% confidence intervals.
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